cse.c 209 KB
Newer Older
Richard Kenner committed
1
/* Common subexpression elimination for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4
   Free Software Foundation, Inc.
Richard Kenner committed
5

6
This file is part of GCC.
Richard Kenner committed
7

8 9
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
Richard Kenner committed
12

13 14 15 16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
17 18

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Richard Kenner committed
21 22

#include "config.h"
23 24
/* stdio.h must precede rtl.h for FFS.  */
#include "system.h"
25 26
#include "coretypes.h"
#include "tm.h"
Richard Kenner committed
27
#include "rtl.h"
28
#include "tm_p.h"
Richard Kenner committed
29
#include "hard-reg-set.h"
30
#include "regs.h"
31
#include "basic-block.h"
Richard Kenner committed
32 33 34 35
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
36
#include "function.h"
Jeff Law committed
37
#include "expr.h"
Kaveh R. Ghazi committed
38 39
#include "toplev.h"
#include "output.h"
40
#include "ggc.h"
41
#include "timevar.h"
42
#include "except.h"
43
#include "target.h"
44
#include "params.h"
45
#include "rtlhooks-def.h"
46
#include "tree-pass.h"
47 48
#include "df.h"
#include "dbgcnt.h"
Richard Kenner committed
49 50 51 52 53 54 55

/* The basic idea of common subexpression elimination is to go
   through the code, keeping a record of expressions that would
   have the same value at the current scan point, and replacing
   expressions encountered with the cheapest equivalent expression.

   It is too complicated to keep track of the different possibilities
Jeffrey A Law committed
56 57 58 59 60 61 62 63
   when control paths merge in this code; so, at each label, we forget all
   that is known and start fresh.  This can be described as processing each
   extended basic block separately.  We have a separate pass to perform
   global CSE.

   Note CSE can turn a conditional or computed jump into a nop or
   an unconditional jump.  When this occurs we arrange to run the jump
   optimizer after CSE to delete the unreachable code.
Richard Kenner committed
64 65

   We use two data structures to record the equivalent expressions:
66 67
   a hash table for most expressions, and a vector of "quantity
   numbers" to record equivalent (pseudo) registers.
Richard Kenner committed
68 69 70 71 72 73 74 75 76 77 78

   The use of the special data structure for registers is desirable
   because it is faster.  It is possible because registers references
   contain a fairly small number, the register number, taken from
   a contiguously allocated series, and two register references are
   identical if they have the same number.  General expressions
   do not have any such thing, so the only way to retrieve the
   information recorded on an expression other than a register
   is to keep it in a hash table.

Registers and "quantity numbers":
79

Richard Kenner committed
80 81 82 83 84 85
   At the start of each basic block, all of the (hardware and pseudo)
   registers used in the function are given distinct quantity
   numbers to indicate their contents.  During scan, when the code
   copies one register into another, we copy the quantity number.
   When a register is loaded in any other way, we allocate a new
   quantity number to describe the value generated by this operation.
Kazu Hirata committed
86
   `REG_QTY (N)' records what quantity register N is currently thought
Richard Kenner committed
87 88
   of as containing.

89
   All real quantity numbers are greater than or equal to zero.
Kazu Hirata committed
90
   If register N has not been assigned a quantity, `REG_QTY (N)' will
91
   equal -N - 1, which is always negative.
Richard Kenner committed
92

93 94
   Quantity numbers below zero do not exist and none of the `qty_table'
   entries should be referenced with a negative index.
Richard Kenner committed
95 96

   We also maintain a bidirectional chain of registers for each
97 98
   quantity number.  The `qty_table` members `first_reg' and `last_reg',
   and `reg_eqv_table' members `next' and `prev' hold these chains.
Richard Kenner committed
99 100 101 102 103 104

   The first register in a chain is the one whose lifespan is least local.
   Among equals, it is the one that was seen first.
   We replace any equivalent register with that one.

   If two registers have the same quantity number, it must be true that
105
   REG expressions with qty_table `mode' must be in the hash table for both
Richard Kenner committed
106 107 108 109 110 111
   registers and must be in the same class.

   The converse is not true.  Since hard registers may be referenced in
   any mode, two REG expressions might be equivalent in the hash table
   but not have the same quantity number if the quantity number of one
   of the registers is not the same mode as those expressions.
112

Richard Kenner committed
113 114 115
Constants and quantity numbers

   When a quantity has a known constant value, that value is stored
116
   in the appropriate qty_table `const_rtx'.  This is in addition to
Richard Kenner committed
117 118
   putting the constant in the hash table as is usual for non-regs.

119
   Whether a reg or a constant is preferred is determined by the configuration
Richard Kenner committed
120 121 122 123
   macro CONST_COSTS and will often depend on the constant value.  In any
   event, expressions containing constants can be simplified, by fold_rtx.

   When a quantity has a known nearly constant value (such as an address
124 125
   of a stack slot), that value is stored in the appropriate qty_table
   `const_rtx'.
Richard Kenner committed
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

   Integer constants don't have a machine mode.  However, cse
   determines the intended machine mode from the destination
   of the instruction that moves the constant.  The machine mode
   is recorded in the hash table along with the actual RTL
   constant expression so that different modes are kept separate.

Other expressions:

   To record known equivalences among expressions in general
   we use a hash table called `table'.  It has a fixed number of buckets
   that contain chains of `struct table_elt' elements for expressions.
   These chains connect the elements whose expressions have the same
   hash codes.

   Other chains through the same elements connect the elements which
   currently have equivalent values.

   Register references in an expression are canonicalized before hashing
145
   the expression.  This is done using `reg_qty' and qty_table `first_reg'.
Richard Kenner committed
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
   The hash code of a register reference is computed using the quantity
   number, not the register number.

   When the value of an expression changes, it is necessary to remove from the
   hash table not just that expression but all expressions whose values
   could be different as a result.

     1. If the value changing is in memory, except in special cases
     ANYTHING referring to memory could be changed.  That is because
     nobody knows where a pointer does not point.
     The function `invalidate_memory' removes what is necessary.

     The special cases are when the address is constant or is
     a constant plus a fixed register such as the frame pointer
     or a static chain pointer.  When such addresses are stored in,
     we can tell exactly which other such addresses must be invalidated
     due to overlap.  `invalidate' does this.
     All expressions that refer to non-constant
     memory addresses are also invalidated.  `invalidate_memory' does this.

     2. If the value changing is a register, all expressions
     containing references to that register, and only those,
     must be removed.

   Because searching the entire hash table for expressions that contain
   a register is very slow, we try to figure out when it isn't necessary.
   Precisely, this is necessary only when expressions have been
   entered in the hash table using this register, and then the value has
   changed, and then another expression wants to be added to refer to
   the register's new value.  This sequence of circumstances is rare
   within any one basic block.

Kazu Hirata committed
178 179 180 181 182 183 184 185 186 187
   `REG_TICK' and `REG_IN_TABLE', accessors for members of
   cse_reg_info, are used to detect this case.  REG_TICK (i) is
   incremented whenever a value is stored in register i.
   REG_IN_TABLE (i) holds -1 if no references to register i have been
   entered in the table; otherwise, it contains the value REG_TICK (i)
   had when the references were entered.  If we want to enter a
   reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
   remove old references.  Until we want to enter a new entry, the
   mere fact that the two vectors don't match makes the entries be
   ignored if anyone tries to match them.
Richard Kenner committed
188 189

   Registers themselves are entered in the hash table as well as in
Kazu Hirata committed
190 191
   the equivalent-register chains.  However, `REG_TICK' and
   `REG_IN_TABLE' do not apply to expressions which are simple
Richard Kenner committed
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
   register references.  These expressions are removed from the table
   immediately when they become invalid, and this can be done even if
   we do not immediately search for all the expressions that refer to
   the register.

   A CLOBBER rtx in an instruction invalidates its operand for further
   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
   invalidates everything that resides in memory.

Related expressions:

   Constant expressions that differ only by an additive integer
   are called related.  When a constant expression is put in
   the table, the related expression with no constant term
   is also entered.  These are made to point at each other
   so that it is possible to find out if there exists any
   register equivalent to an expression related to a given expression.  */
209

210 211
/* Length of qty_table vector.  We know in advance we will not need
   a quantity number this big.  */
Richard Kenner committed
212 213 214 215 216 217 218 219

static int max_qty;

/* Next quantity number to be allocated.
   This is 1 + the largest number needed so far.  */

static int next_qty;

220
/* Per-qty information tracking.
Richard Kenner committed
221

222 223
   `first_reg' and `last_reg' track the head and tail of the
   chain of registers which currently contain this quantity.
Richard Kenner committed
224

225
   `mode' contains the machine mode of this quantity.
Richard Kenner committed
226

227 228 229 230 231
   `const_rtx' holds the rtx of the constant value of this
   quantity, if known.  A summations of the frame/arg pointer
   and a constant can also be entered here.  When this holds
   a known value, `const_insn' is the insn which stored the
   constant value.
Richard Kenner committed
232

233 234 235 236 237 238 239 240 241 242 243
   `comparison_{code,const,qty}' are used to track when a
   comparison between a quantity and some constant or register has
   been passed.  In such a case, we know the results of the comparison
   in case we see it again.  These members record a comparison that
   is known to be true.  `comparison_code' holds the rtx code of such
   a comparison, else it is set to UNKNOWN and the other two
   comparison members are undefined.  `comparison_const' holds
   the constant being compared against, or zero if the comparison
   is not against a constant.  `comparison_qty' holds the quantity
   being compared against when the result is known.  If the comparison
   is not with a register, `comparison_qty' is -1.  */
Richard Kenner committed
244

245 246 247 248 249 250
struct qty_table_elem
{
  rtx const_rtx;
  rtx const_insn;
  rtx comparison_const;
  int comparison_qty;
251
  unsigned int first_reg, last_reg;
252 253 254 255
  /* The sizes of these fields should match the sizes of the
     code and mode fields of struct rtx_def (see rtl.h).  */
  ENUM_BITFIELD(rtx_code) comparison_code : 16;
  ENUM_BITFIELD(machine_mode) mode : 8;
256
};
Richard Kenner committed
257

258 259
/* The table of all qtys, indexed by qty number.  */
static struct qty_table_elem *qty_table;
Richard Kenner committed
260

261 262 263 264 265 266 267 268
/* Structure used to pass arguments via for_each_rtx to function
   cse_change_cc_mode.  */
struct change_cc_mode_args
{
  rtx insn;
  rtx newreg;
};

Richard Kenner committed
269 270 271 272 273
#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
   table since its use is guaranteed to be the insn immediately following
   its definition and any other insn is presumed to invalidate it.

274 275 276 277
   Instead, we store below the current and last value assigned to CC0.
   If it should happen to be a constant, it is stored in preference
   to the actual assigned value.  In case it is a constant, we store
   the mode in which the constant should be interpreted.  */
Richard Kenner committed
278

279 280
static rtx this_insn_cc0, prev_insn_cc0;
static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281
#endif
Richard Kenner committed
282 283 284 285

/* Insn being scanned.  */

static rtx this_insn;
286
static bool optimize_this_for_speed_p;
Richard Kenner committed
287

288 289
/* Index by register number, gives the number of the next (or
   previous) register in the chain of registers sharing the same
Richard Kenner committed
290 291 292 293
   value.

   Or -1 if this register is at the end of the chain.

Kazu Hirata committed
294
   If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined.  */
295 296 297 298 299 300

/* Per-register equivalence chain.  */
struct reg_eqv_elem
{
  int next, prev;
};
Richard Kenner committed
301

302 303
/* The table of all register equivalence chains.  */
static struct reg_eqv_elem *reg_eqv_table;
Richard Kenner committed
304

Richard Kenner committed
305 306
struct cse_reg_info
{
307 308
  /* The timestamp at which this register is initialized.  */
  unsigned int timestamp;
309 310 311 312 313 314 315 316

  /* The quantity number of the register's current contents.  */
  int reg_qty;

  /* The number of times the register has been altered in the current
     basic block.  */
  int reg_tick;

317 318 319 320 321
  /* The REG_TICK value at which rtx's containing this register are
     valid in the hash table.  If this does not equal the current
     reg_tick value, such expressions existing in the hash table are
     invalid.  */
  int reg_in_table;
322 323 324

  /* The SUBREG that was set when REG_TICK was last incremented.  Set
     to -1 if the last store was to the whole register, not a subreg.  */
325
  unsigned int subreg_ticked;
326
};
Richard Kenner committed
327

328
/* A table of cse_reg_info indexed by register numbers.  */
329
static struct cse_reg_info *cse_reg_info_table;
330

331 332
/* The size of the above table.  */
static unsigned int cse_reg_info_table_size;
333

334 335
/* The index of the first entry that has not been initialized.  */
static unsigned int cse_reg_info_table_first_uninitialized;
Richard Kenner committed
336

337
/* The timestamp at the beginning of the current run of
338 339
   cse_extended_basic_block.  We increment this variable at the beginning of
   the current run of cse_extended_basic_block.  The timestamp field of a
340 341
   cse_reg_info entry matches the value of this variable if and only
   if the entry has been initialized during the current run of
342
   cse_extended_basic_block.  */
343
static unsigned int cse_reg_info_timestamp;
Richard Kenner committed
344

345
/* A HARD_REG_SET containing all the hard registers for which there is
Richard Kenner committed
346 347 348 349 350 351
   currently a REG expression in the hash table.  Note the difference
   from the above variables, which indicate if the REG is mentioned in some
   expression in the table.  */

static HARD_REG_SET hard_regs_in_table;

352 353
/* True if CSE has altered the CFG.  */
static bool cse_cfg_altered;
Richard Kenner committed
354

355 356 357
/* True if CSE has altered conditional jump insns in such a way
   that jump optimization should be redone.  */
static bool cse_jumps_altered;
Richard Kenner committed
358

359 360 361 362
/* True if we put a LABEL_REF into the hash table for an INSN
   without a REG_LABEL_OPERAND, we have to rerun jump after CSE
   to put in the note.  */
static bool recorded_label_ref;
363

Richard Kenner committed
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/* canon_hash stores 1 in do_not_record
   if it notices a reference to CC0, PC, or some other volatile
   subexpression.  */

static int do_not_record;

/* canon_hash stores 1 in hash_arg_in_memory
   if it notices a reference to memory within the expression being hashed.  */

static int hash_arg_in_memory;

/* The hash table contains buckets which are chains of `struct table_elt's,
   each recording one expression's information.
   That expression is in the `exp' field.

379 380 381
   The canon_exp field contains a canonical (from the point of view of
   alias analysis) version of the `exp' field.

Richard Kenner committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
   Those elements with the same hash code are chained in both directions
   through the `next_same_hash' and `prev_same_hash' fields.

   Each set of expressions with equivalent values
   are on a two-way chain through the `next_same_value'
   and `prev_same_value' fields, and all point with
   the `first_same_value' field at the first element in
   that chain.  The chain is in order of increasing cost.
   Each element's cost value is in its `cost' field.

   The `in_memory' field is nonzero for elements that
   involve any reference to memory.  These elements are removed
   whenever a write is done to an unidentified location in memory.
   To be safe, we assume that a memory address is unidentified unless
   the address is either a symbol constant or a constant plus
   the frame pointer or argument pointer.

   The `related_value' field is used to connect related expressions
   (that differ by adding an integer).
   The related expressions are chained in a circular fashion.
   `related_value' is zero for expressions for which this
   chain is not useful.

   The `cost' field stores the cost of this element's expression.
406 407
   The `regcost' field stores the value returned by approx_reg_cost for
   this element's expression.
Richard Kenner committed
408 409 410 411 412 413 414 415 416 417 418 419 420 421

   The `is_const' flag is set if the element is a constant (including
   a fixed address).

   The `flag' field is used as a temporary during some search routines.

   The `mode' field is usually the same as GET_MODE (`exp'), but
   if `exp' is a CONST_INT and has no machine mode then the `mode'
   field is the mode it was being used as.  Each constant is
   recorded separately for each mode it is used with.  */

struct table_elt
{
  rtx exp;
422
  rtx canon_exp;
Richard Kenner committed
423 424 425 426 427 428 429
  struct table_elt *next_same_hash;
  struct table_elt *prev_same_hash;
  struct table_elt *next_same_value;
  struct table_elt *prev_same_value;
  struct table_elt *first_same_value;
  struct table_elt *related_value;
  int cost;
430
  int regcost;
431 432 433
  /* The size of this field should match the size
     of the mode field of struct rtx_def (see rtl.h).  */
  ENUM_BITFIELD(machine_mode) mode : 8;
Richard Kenner committed
434 435 436 437 438 439 440 441
  char in_memory;
  char is_const;
  char flag;
};

/* We don't want a lot of buckets, because we rarely have very many
   things stored in the hash table, and a lot of buckets slows
   down a lot of loops that happen frequently.  */
442 443 444
#define HASH_SHIFT	5
#define HASH_SIZE	(1 << HASH_SHIFT)
#define HASH_MASK	(HASH_SIZE - 1)
Richard Kenner committed
445 446 447 448 449

/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
   register (hard registers may require `do_not_record' to be set).  */

#define HASH(X, M)	\
450
 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
451 452
  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
  : canon_hash (X, M)) & HASH_MASK)
Richard Kenner committed
453

454 455 456 457 458 459
/* Like HASH, but without side-effects.  */
#define SAFE_HASH(X, M)	\
 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
  : safe_hash (X, M)) & HASH_MASK)

460 461
/* Determine whether register number N is considered a fixed register for the
   purpose of approximating register costs.
Richard Kenner committed
462 463
   It is desirable to replace other regs with fixed regs, to reduce need for
   non-fixed hard regs.
Bernd Schmidt committed
464
   A reg wins if it is either the frame pointer or designated as fixed.  */
Richard Kenner committed
465
#define FIXED_REGNO_P(N)  \
466
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
467
   || fixed_regs[N] || global_regs[N])
Richard Kenner committed
468 469

/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
470 471 472 473
   hard registers and pointers into the frame are the cheapest with a cost
   of 0.  Next come pseudos with a cost of one and other hard registers with
   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */

474 475 476
#define CHEAP_REGNO(N)							\
  (REGNO_PTR_FRAME_P(N)							\
   || (HARD_REGISTER_NUM_P (N)						\
477
       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
Richard Kenner committed
478

479 480
#define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
#define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
Richard Kenner committed
481

482 483 484
/* Get the number of times this register has been updated in this
   basic block.  */

485
#define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
486 487 488

/* Get the point at which REG was recorded in the table.  */

489
#define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
490

491 492 493
/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
   SUBREG).  */

494
#define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
495

496 497
/* Get the quantity number for REG.  */

498
#define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
499

Richard Kenner committed
500
/* Determine if the quantity number for register X represents a valid index
501
   into the qty_table.  */
Richard Kenner committed
502

503
#define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
Richard Kenner committed
504

505
static struct table_elt *table[HASH_SIZE];
Richard Kenner committed
506 507 508 509 510 511 512 513 514 515 516 517

/* Chain of `struct table_elt's made so far for this function
   but currently removed from the table.  */

static struct table_elt *free_element_chain;

/* Set to the cost of a constant pool reference if one was found for a
   symbolic constant.  If this was found, it means we should try to
   convert constants into constant pool entries if they don't fit in
   the insn.  */

static int constant_pool_entries_cost;
518
static int constant_pool_entries_regcost;
Richard Kenner committed
519

520 521
/* This data describes a block that will be processed by
   cse_extended_basic_block.  */
522

Richard Kenner committed
523 524
struct cse_basic_block_data
{
525 526 527 528
  /* Total number of SETs in block.  */
  int nsets;
  /* Size of current branch path, if any.  */
  int path_size;
529
  /* Current path, indicating which basic_blocks will be processed.  */
Richard Kenner committed
530 531
  struct branch_path
    {
532 533
      /* The basic block for this path entry.  */
      basic_block bb;
534
    } *path;
535 536
};

537 538 539 540 541

/* Pointers to the live in/live out bitmaps for the boundaries of the
   current EBB.  */
static bitmap cse_ebb_live_in, cse_ebb_live_out;

542 543 544 545
/* A simple bitmap to track which basic blocks have been visited
   already as part of an already processed extended basic block.  */
static sbitmap cse_visited_basic_blocks;

546 547 548 549
static bool fixed_base_plus_p (rtx x);
static int notreg_cost (rtx, enum rtx_code);
static int approx_reg_cost_1 (rtx *, void *);
static int approx_reg_cost (rtx);
550
static int preferable (int, int, int, int);
551 552 553 554 555 556 557
static void new_basic_block (void);
static void make_new_qty (unsigned int, enum machine_mode);
static void make_regs_eqv (unsigned int, unsigned int);
static void delete_reg_equiv (unsigned int);
static int mention_regs (rtx);
static int insert_regs (rtx, struct table_elt *, int);
static void remove_from_table (struct table_elt *, unsigned);
558 559
static void remove_pseudo_from_table (rtx, unsigned);
static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
560 561 562 563 564 565
static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
static rtx lookup_as_function (rtx, enum rtx_code);
static struct table_elt *insert (rtx, struct table_elt *, unsigned,
				 enum machine_mode);
static void merge_equiv_classes (struct table_elt *, struct table_elt *);
static void invalidate (rtx, enum machine_mode);
566
static bool cse_rtx_varies_p (const_rtx, bool);
567 568 569 570 571 572 573
static void remove_invalid_refs (unsigned int);
static void remove_invalid_subreg_refs (unsigned int, unsigned int,
					enum machine_mode);
static void rehash_using_reg (rtx);
static void invalidate_memory (void);
static void invalidate_for_call (void);
static rtx use_related_value (rtx, struct table_elt *);
574 575 576

static inline unsigned canon_hash (rtx, enum machine_mode);
static inline unsigned safe_hash (rtx, enum machine_mode);
577
static inline unsigned hash_rtx_string (const char *);
578

579 580 581 582 583 584
static rtx canon_reg (rtx, rtx);
static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
					   enum machine_mode *,
					   enum machine_mode *);
static rtx fold_rtx (rtx, rtx);
static rtx equiv_constant (rtx);
585
static void record_jump_equiv (rtx, bool);
586 587
static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
			      int);
Steven Bosscher committed
588
static void cse_insn (rtx);
589
static void cse_prescan_path (struct cse_basic_block_data *);
590
static void invalidate_from_clobbers (rtx);
591
static rtx cse_process_notes (rtx, rtx, bool *);
592
static void cse_extended_basic_block (struct cse_basic_block_data *);
593
static void count_reg_usage (rtx, int *, rtx, int);
594 595
static int check_for_label_ref (rtx *, void *);
extern void dump_class (struct table_elt*);
596 597
static void get_cse_reg_info_1 (unsigned int regno);
static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
598 599 600 601 602
static int check_dependence (rtx *, void *);

static void flush_hash_table (void);
static bool insn_live_p (rtx, int *);
static bool set_live_p (rtx, rtx, int *);
603
static int cse_change_cc_mode (rtx *, void *);
604
static void cse_change_cc_mode_insn (rtx, rtx);
605
static void cse_change_cc_mode_insns (rtx, rtx, rtx);
606 607
static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
				       bool);
Richard Kenner committed
608

609 610 611 612 613 614

#undef RTL_HOOKS_GEN_LOWPART
#define RTL_HOOKS_GEN_LOWPART		gen_lowpart_if_possible

static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;

615 616 617 618 619
/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
   virtual regs here because the simplify_*_operation routines are called
   by integrate.c, which is called before virtual register instantiation.  */

static bool
620
fixed_base_plus_p (rtx x)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
{
  switch (GET_CODE (x))
    {
    case REG:
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
	return true;
      if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	return true;
      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
	return true;
      return false;

    case PLUS:
      if (GET_CODE (XEXP (x, 1)) != CONST_INT)
	return false;
      return fixed_base_plus_p (XEXP (x, 0));

    default:
      return false;
    }
}

644 645
/* Dump the expressions in the equivalence class indicated by CLASSP.
   This function is used only for debugging.  */
646
void
647
dump_class (struct table_elt *classp)
648 649 650 651 652 653
{
  struct table_elt *elt;

  fprintf (stderr, "Equivalence chain for ");
  print_rtl (stderr, classp->exp);
  fprintf (stderr, ": \n");
654

655 656 657 658 659 660 661
  for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
    {
      print_rtl (stderr, elt->exp);
      fprintf (stderr, "\n");
    }
}

662
/* Subroutine of approx_reg_cost; called through for_each_rtx.  */
663

664
static int
665
approx_reg_cost_1 (rtx *xp, void *data)
666 667
{
  rtx x = *xp;
668
  int *cost_p = (int *) data;
669

670
  if (x && REG_P (x))
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    {
      unsigned int regno = REGNO (x);

      if (! CHEAP_REGNO (regno))
	{
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      if (SMALL_REGISTER_CLASSES)
		return 1;
	      *cost_p += 2;
	    }
	  else
	    *cost_p += 1;
	}
    }

687 688 689 690 691
  return 0;
}

/* Return an estimate of the cost of the registers used in an rtx.
   This is mostly the number of different REG expressions in the rtx;
692
   however for some exceptions like fixed registers we use a cost of
693
   0.  If any other hard register reference occurs, return MAX_COST.  */
694 695

static int
696
approx_reg_cost (rtx x)
697 698
{
  int cost = 0;
699

700 701
  if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
    return MAX_COST;
702

703
  return cost;
704 705 706 707 708 709 710
}

/* Return a negative value if an rtx A, whose costs are given by COST_A
   and REGCOST_A, is more desirable than an rtx B.
   Return a positive value if A is less desirable, or 0 if the two are
   equally good.  */
static int
711
preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
712
{
Kazu Hirata committed
713
  /* First, get rid of cases involving expressions that are entirely
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
     unwanted.  */
  if (cost_a != cost_b)
    {
      if (cost_a == MAX_COST)
	return 1;
      if (cost_b == MAX_COST)
	return -1;
    }

  /* Avoid extending lifetimes of hardregs.  */
  if (regcost_a != regcost_b)
    {
      if (regcost_a == MAX_COST)
	return 1;
      if (regcost_b == MAX_COST)
	return -1;
    }

  /* Normal operation costs take precedence.  */
733 734
  if (cost_a != cost_b)
    return cost_a - cost_b;
735
  /* Only if these are identical consider effects on register pressure.  */
736 737 738 739 740
  if (regcost_a != regcost_b)
    return regcost_a - regcost_b;
  return 0;
}

741 742 743 744
/* Internal function, to compute cost when X is not a register; called
   from COST macro to keep it simple.  */

static int
745
notreg_cost (rtx x, enum rtx_code outer)
746 747
{
  return ((GET_CODE (x) == SUBREG
748
	   && REG_P (SUBREG_REG (x))
749 750 751 752 753 754 755
	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
	   && (GET_MODE_SIZE (GET_MODE (x))
	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	   && subreg_lowpart_p (x)
	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
756
	  ? 0
757
	  : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
758 759
}

760

761
/* Initialize CSE_REG_INFO_TABLE.  */
762

763 764 765 766 767
static void
init_cse_reg_info (unsigned int nregs)
{
  /* Do we need to grow the table?  */
  if (nregs > cse_reg_info_table_size)
768
    {
769 770 771
      unsigned int new_size;

      if (cse_reg_info_table_size < 2048)
772
	{
773 774 775 776 777 778 779
	  /* Compute a new size that is a power of 2 and no smaller
	     than the large of NREGS and 64.  */
	  new_size = (cse_reg_info_table_size
		      ? cse_reg_info_table_size : 64);

	  while (new_size < nregs)
	    new_size *= 2;
780 781
	}
      else
782
	{
783 784 785
	  /* If we need a big table, allocate just enough to hold
	     NREGS registers.  */
	  new_size = nregs;
786
	}
787

788
      /* Reallocate the table with NEW_SIZE entries.  */
789 790
      if (cse_reg_info_table)
	free (cse_reg_info_table);
791
      cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792
      cse_reg_info_table_size = new_size;
793
      cse_reg_info_table_first_uninitialized = 0;
794 795 796 797 798 799 800 801 802 803 804 805 806 807
    }

  /* Do we have all of the first NREGS entries initialized?  */
  if (cse_reg_info_table_first_uninitialized < nregs)
    {
      unsigned int old_timestamp = cse_reg_info_timestamp - 1;
      unsigned int i;

      /* Put the old timestamp on newly allocated entries so that they
	 will all be considered out of date.  We do not touch those
	 entries beyond the first NREGS entries to be nice to the
	 virtual memory.  */
      for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
	cse_reg_info_table[i].timestamp = old_timestamp;
808

809
      cse_reg_info_table_first_uninitialized = nregs;
810
    }
811 812
}

Kazu Hirata committed
813
/* Given REGNO, initialize the cse_reg_info entry for REGNO.  */
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

static void
get_cse_reg_info_1 (unsigned int regno)
{
  /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
     entry will be considered to have been initialized.  */
  cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;

  /* Initialize the rest of the entry.  */
  cse_reg_info_table[regno].reg_tick = 1;
  cse_reg_info_table[regno].reg_in_table = -1;
  cse_reg_info_table[regno].subreg_ticked = -1;
  cse_reg_info_table[regno].reg_qty = -regno - 1;
}

/* Find a cse_reg_info entry for REGNO.  */
830

831 832 833 834 835
static inline struct cse_reg_info *
get_cse_reg_info (unsigned int regno)
{
  struct cse_reg_info *p = &cse_reg_info_table[regno];

836 837
  /* If this entry has not been initialized, go ahead and initialize
     it.  */
838 839
  if (p->timestamp != cse_reg_info_timestamp)
    get_cse_reg_info_1 (regno);
840

841
  return p;
842 843
}

Richard Kenner committed
844 845 846 847
/* Clear the hash table and initialize each register with its own quantity,
   for a new basic block.  */

static void
848
new_basic_block (void)
Richard Kenner committed
849
{
850
  int i;
Richard Kenner committed
851

852
  next_qty = 0;
Richard Kenner committed
853

Kazu Hirata committed
854
  /* Invalidate cse_reg_info_table.  */
855
  cse_reg_info_timestamp++;
Richard Kenner committed
856

857
  /* Clear out hash table state for this pass.  */
Richard Kenner committed
858 859 860 861 862
  CLEAR_HARD_REG_SET (hard_regs_in_table);

  /* The per-quantity values used to be initialized here, but it is
     much faster to initialize each as it is made in `make_new_qty'.  */

863
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
864
    {
865 866 867 868
      struct table_elt *first;

      first = table[i];
      if (first != NULL)
Richard Kenner committed
869
	{
870 871 872 873 874 875 876 877 878 879 880 881
	  struct table_elt *last = first;

	  table[i] = NULL;

	  while (last->next_same_hash != NULL)
	    last = last->next_same_hash;

	  /* Now relink this hash entire chain into
	     the free element list.  */

	  last->next_same_hash = free_element_chain;
	  free_element_chain = first;
Richard Kenner committed
882 883 884 885 886 887 888 889
	}
    }

#ifdef HAVE_cc0
  prev_insn_cc0 = 0;
#endif
}

890 891
/* Say that register REG contains a quantity in mode MODE not in any
   register before and initialize that quantity.  */
Richard Kenner committed
892 893

static void
894
make_new_qty (unsigned int reg, enum machine_mode mode)
Richard Kenner committed
895
{
896 897 898
  int q;
  struct qty_table_elem *ent;
  struct reg_eqv_elem *eqv;
Richard Kenner committed
899

900
  gcc_assert (next_qty < max_qty);
Richard Kenner committed
901

902
  q = REG_QTY (reg) = next_qty++;
903 904 905 906 907 908 909 910 911
  ent = &qty_table[q];
  ent->first_reg = reg;
  ent->last_reg = reg;
  ent->mode = mode;
  ent->const_rtx = ent->const_insn = NULL_RTX;
  ent->comparison_code = UNKNOWN;

  eqv = &reg_eqv_table[reg];
  eqv->next = eqv->prev = -1;
Richard Kenner committed
912 913 914 915 916 917
}

/* Make reg NEW equivalent to reg OLD.
   OLD is not changing; NEW is.  */

static void
918
make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
Richard Kenner committed
919
{
920
  unsigned int lastr, firstr;
921
  int q = REG_QTY (old_reg);
922
  struct qty_table_elem *ent;
923 924

  ent = &qty_table[q];
Richard Kenner committed
925 926

  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
927
  gcc_assert (REGNO_QTY_VALID_P (old_reg));
Richard Kenner committed
928

929
  REG_QTY (new_reg) = q;
930 931
  firstr = ent->first_reg;
  lastr = ent->last_reg;
Richard Kenner committed
932 933 934 935 936 937 938 939

  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
     hard regs.  Among pseudos, if NEW will live longer than any other reg
     of the same qty, and that is beyond the current basic block,
     make it the new canonical replacement for this qty.  */
  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
      /* Certain fixed registers might be of the class NO_REGS.  This means
	 that not only can they not be allocated by the compiler, but
940
	 they cannot be used in substitutions or canonicalizations
Richard Kenner committed
941
	 either.  */
942 943 944
      && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
      && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
	  || (new_reg >= FIRST_PSEUDO_REGISTER
Richard Kenner committed
945
	      && (firstr < FIRST_PSEUDO_REGISTER
946
		  || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947
		      && !bitmap_bit_p (cse_ebb_live_out, firstr))
948
		  || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949
		      && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
Richard Kenner committed
950
    {
951 952 953 954
      reg_eqv_table[firstr].prev = new_reg;
      reg_eqv_table[new_reg].next = firstr;
      reg_eqv_table[new_reg].prev = -1;
      ent->first_reg = new_reg;
Richard Kenner committed
955 956 957 958 959 960 961
    }
  else
    {
      /* If NEW is a hard reg (known to be non-fixed), insert at end.
	 Otherwise, insert before any non-fixed hard regs that are at the
	 end.  Registers of class NO_REGS cannot be used as an
	 equivalent for anything.  */
962
      while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
Richard Kenner committed
963
	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964
	     && new_reg >= FIRST_PSEUDO_REGISTER)
965
	lastr = reg_eqv_table[lastr].prev;
966
      reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967
      if (reg_eqv_table[lastr].next >= 0)
968
	reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
Richard Kenner committed
969
      else
970 971 972
	qty_table[q].last_reg = new_reg;
      reg_eqv_table[lastr].next = new_reg;
      reg_eqv_table[new_reg].prev = lastr;
Richard Kenner committed
973 974 975 976 977 978
    }
}

/* Remove REG from its equivalence class.  */

static void
979
delete_reg_equiv (unsigned int reg)
Richard Kenner committed
980
{
981 982 983
  struct qty_table_elem *ent;
  int q = REG_QTY (reg);
  int p, n;
Richard Kenner committed
984

985
  /* If invalid, do nothing.  */
986
  if (! REGNO_QTY_VALID_P (reg))
Richard Kenner committed
987 988
    return;

989 990 991 992
  ent = &qty_table[q];

  p = reg_eqv_table[reg].prev;
  n = reg_eqv_table[reg].next;
993

Richard Kenner committed
994
  if (n != -1)
995
    reg_eqv_table[n].prev = p;
Richard Kenner committed
996
  else
997
    ent->last_reg = p;
Richard Kenner committed
998
  if (p != -1)
999
    reg_eqv_table[p].next = n;
Richard Kenner committed
1000
  else
1001
    ent->first_reg = n;
Richard Kenner committed
1002

1003
  REG_QTY (reg) = -reg - 1;
Richard Kenner committed
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
}

/* Remove any invalid expressions from the hash table
   that refer to any of the registers contained in expression X.

   Make sure that newly inserted references to those registers
   as subexpressions will be considered valid.

   mention_regs is not called when a register itself
   is being stored in the table.

   Return 1 if we have done something that may have changed the hash code
   of X.  */

static int
1019
mention_regs (rtx x)
Richard Kenner committed
1020
{
1021 1022 1023 1024
  enum rtx_code code;
  int i, j;
  const char *fmt;
  int changed = 0;
Richard Kenner committed
1025 1026

  if (x == 0)
1027
    return 0;
Richard Kenner committed
1028 1029 1030 1031

  code = GET_CODE (x);
  if (code == REG)
    {
1032
      unsigned int regno = REGNO (x);
1033
      unsigned int endregno = END_REGNO (x);
1034
      unsigned int i;
Richard Kenner committed
1035 1036 1037

      for (i = regno; i < endregno; i++)
	{
1038
	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
1039 1040
	    remove_invalid_refs (i);

1041
	  REG_IN_TABLE (i) = REG_TICK (i);
1042
	  SUBREG_TICKED (i) = -1;
Richard Kenner committed
1043 1044 1045 1046 1047
	}

      return 0;
    }

1048 1049 1050
  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
     pseudo if they don't use overlapping words.  We handle only pseudos
     here for simplicity.  */
1051
  if (code == SUBREG && REG_P (SUBREG_REG (x))
1052 1053
      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
    {
1054
      unsigned int i = REGNO (SUBREG_REG (x));
1055

1056
      if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1057
	{
1058 1059 1060 1061 1062 1063
	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
	     the last store to this register really stored into this
	     subreg, then remove the memory of this subreg.
	     Otherwise, remove any memory of the entire register and
	     all its subregs from the table.  */
	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064
	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 1066
	    remove_invalid_refs (i);
	  else
1067
	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1068 1069
	}

1070
      REG_IN_TABLE (i) = REG_TICK (i);
1071
      SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072 1073 1074
      return 0;
    }

Richard Kenner committed
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
  /* If X is a comparison or a COMPARE and either operand is a register
     that does not have a quantity, give it one.  This is so that a later
     call to record_jump_equiv won't cause X to be assigned a different
     hash code and not found in the table after that call.

     It is not necessary to do this here, since rehash_using_reg can
     fix up the table later, but doing this here eliminates the need to
     call that expensive function in the most common case where the only
     use of the register is in the comparison.  */

1085
  if (code == COMPARE || COMPARISON_P (x))
Richard Kenner committed
1086
    {
1087
      if (REG_P (XEXP (x, 0))
Richard Kenner committed
1088
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089
	if (insert_regs (XEXP (x, 0), NULL, 0))
Richard Kenner committed
1090 1091 1092 1093 1094
	  {
	    rehash_using_reg (XEXP (x, 0));
	    changed = 1;
	  }

1095
      if (REG_P (XEXP (x, 1))
Richard Kenner committed
1096
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097
	if (insert_regs (XEXP (x, 1), NULL, 0))
Richard Kenner committed
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	  {
	    rehash_using_reg (XEXP (x, 1));
	    changed = 1;
	  }
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      changed |= mention_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	changed |= mention_regs (XVECEXP (x, i, j));

  return changed;
}

/* Update the register quantities for inserting X into the hash table
   with a value equivalent to CLASSP.
   (If the class does not contain a REG, it is irrelevant.)
   If MODIFIED is nonzero, X is a destination; it is being modified.
   Note that delete_reg_equiv should be called on a register
   before insert_regs is done on that register with MODIFIED != 0.

   Nonzero value means that elements of reg_qty have changed
   so X's hash code may be different.  */

static int
1126
insert_regs (rtx x, struct table_elt *classp, int modified)
Richard Kenner committed
1127
{
1128
  if (REG_P (x))
Richard Kenner committed
1129
    {
1130 1131
      unsigned int regno = REGNO (x);
      int qty_valid;
Richard Kenner committed
1132

1133 1134 1135
      /* If REGNO is in the equivalence table already but is of the
	 wrong mode for that equivalence, don't do anything here.  */

1136 1137 1138 1139
      qty_valid = REGNO_QTY_VALID_P (regno);
      if (qty_valid)
	{
	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1140

1141 1142 1143 1144 1145
	  if (ent->mode != GET_MODE (x))
	    return 0;
	}

      if (modified || ! qty_valid)
Richard Kenner committed
1146 1147 1148 1149 1150
	{
	  if (classp)
	    for (classp = classp->first_same_value;
		 classp != 0;
		 classp = classp->next_same_value)
1151
	      if (REG_P (classp->exp)
Richard Kenner committed
1152 1153
		  && GET_MODE (classp->exp) == GET_MODE (x))
		{
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		  unsigned c_regno = REGNO (classp->exp);

		  gcc_assert (REGNO_QTY_VALID_P (c_regno));

		  /* Suppose that 5 is hard reg and 100 and 101 are
		     pseudos.  Consider

		     (set (reg:si 100) (reg:si 5))
		     (set (reg:si 5) (reg:si 100))
		     (set (reg:di 101) (reg:di 5))

		     We would now set REG_QTY (101) = REG_QTY (5), but the
		     entry for 5 is in SImode.  When we use this later in
		     copy propagation, we get the register in wrong mode.  */
		  if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
		    continue;

		  make_regs_eqv (regno, c_regno);
Richard Kenner committed
1172 1173 1174
		  return 1;
		}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
	     than REG_IN_TABLE to find out if there was only a single preceding
	     invalidation - for the SUBREG - or another one, which would be
	     for the full register.  However, if we find here that REG_TICK
	     indicates that the register is invalid, it means that it has
	     been invalidated in a separate operation.  The SUBREG might be used
	     now (then this is a recursive call), or we might use the full REG
	     now and a SUBREG of it later.  So bump up REG_TICK so that
	     mention_regs will do the right thing.  */
	  if (! modified
	      && REG_IN_TABLE (regno) >= 0
	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
	    REG_TICK (regno)++;
1188
	  make_new_qty (regno, GET_MODE (x));
Richard Kenner committed
1189 1190
	  return 1;
	}
1191 1192

      return 0;
Richard Kenner committed
1193
    }
1194 1195 1196 1197 1198 1199 1200

  /* If X is a SUBREG, we will likely be inserting the inner register in the
     table.  If that register doesn't have an assigned quantity number at
     this point but does later, the insertion that we will be doing now will
     not be accessible because its hash code will have changed.  So assign
     a quantity number now.  */

1201
  else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 1203
	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
    {
1204
      insert_regs (SUBREG_REG (x), NULL, 0);
1205
      mention_regs (x);
1206 1207
      return 1;
    }
Richard Kenner committed
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
  else
    return mention_regs (x);
}

/* Look in or update the hash table.  */

/* Remove table element ELT from use in the table.
   HASH is its hash code, made using the HASH macro.
   It's an argument because often that is known in advance
   and we save much time not recomputing it.  */

static void
1220
remove_from_table (struct table_elt *elt, unsigned int hash)
Richard Kenner committed
1221 1222 1223 1224 1225 1226 1227 1228
{
  if (elt == 0)
    return;

  /* Mark this element as removed.  See cse_insn.  */
  elt->first_same_value = 0;

  /* Remove the table element from its equivalence class.  */
1229

Richard Kenner committed
1230
  {
1231 1232
    struct table_elt *prev = elt->prev_same_value;
    struct table_elt *next = elt->next_same_value;
Richard Kenner committed
1233

1234 1235
    if (next)
      next->prev_same_value = prev;
Richard Kenner committed
1236 1237 1238 1239 1240

    if (prev)
      prev->next_same_value = next;
    else
      {
1241
	struct table_elt *newfirst = next;
Richard Kenner committed
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	while (next)
	  {
	    next->first_same_value = newfirst;
	    next = next->next_same_value;
	  }
      }
  }

  /* Remove the table element from its hash bucket.  */

  {
1253 1254
    struct table_elt *prev = elt->prev_same_hash;
    struct table_elt *next = elt->next_same_hash;
Richard Kenner committed
1255

1256 1257
    if (next)
      next->prev_same_hash = prev;
Richard Kenner committed
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

    if (prev)
      prev->next_same_hash = next;
    else if (table[hash] == elt)
      table[hash] = next;
    else
      {
	/* This entry is not in the proper hash bucket.  This can happen
	   when two classes were merged by `merge_equiv_classes'.  Search
	   for the hash bucket that it heads.  This happens only very
	   rarely, so the cost is acceptable.  */
1269
	for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1270 1271 1272 1273 1274 1275 1276 1277 1278
	  if (table[hash] == elt)
	    table[hash] = next;
      }
  }

  /* Remove the table element from its related-value circular chain.  */

  if (elt->related_value != 0 && elt->related_value != elt)
    {
1279
      struct table_elt *p = elt->related_value;
1280

Richard Kenner committed
1281 1282 1283 1284 1285 1286 1287
      while (p->related_value != elt)
	p = p->related_value;
      p->related_value = elt->related_value;
      if (p->related_value == p)
	p->related_value = 0;
    }

1288 1289 1290
  /* Now add it to the free element chain.  */
  elt->next_same_hash = free_element_chain;
  free_element_chain = elt;
Richard Kenner committed
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
/* Same as above, but X is a pseudo-register.  */

static void
remove_pseudo_from_table (rtx x, unsigned int hash)
{
  struct table_elt *elt;

  /* Because a pseudo-register can be referenced in more than one
     mode, we might have to remove more than one table entry.  */
  while ((elt = lookup_for_remove (x, hash, VOIDmode)))
    remove_from_table (elt, hash);
}

Richard Kenner committed
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/* Look up X in the hash table and return its table element,
   or 0 if X is not in the table.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   Here we are satisfied to find an expression whose tree structure
   looks like X.  */

static struct table_elt *
1316
lookup (rtx x, unsigned int hash, enum machine_mode mode)
Richard Kenner committed
1317
{
1318
  struct table_elt *p;
Richard Kenner committed
1319 1320

  for (p = table[hash]; p; p = p->next_same_hash)
1321
    if (mode == p->mode && ((x == p->exp && REG_P (x))
1322
			    || exp_equiv_p (x, p->exp, !REG_P (x), false)))
Richard Kenner committed
1323 1324 1325 1326 1327 1328 1329 1330 1331
      return p;

  return 0;
}

/* Like `lookup' but don't care whether the table element uses invalid regs.
   Also ignore discrepancies in the machine mode of a register.  */

static struct table_elt *
1332
lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
Richard Kenner committed
1333
{
1334
  struct table_elt *p;
Richard Kenner committed
1335

1336
  if (REG_P (x))
Richard Kenner committed
1337
    {
1338 1339
      unsigned int regno = REGNO (x);

Richard Kenner committed
1340 1341 1342
      /* Don't check the machine mode when comparing registers;
	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
      for (p = table[hash]; p; p = p->next_same_hash)
1343
	if (REG_P (p->exp)
Richard Kenner committed
1344 1345 1346 1347 1348 1349
	    && REGNO (p->exp) == regno)
	  return p;
    }
  else
    {
      for (p = table[hash]; p; p = p->next_same_hash)
1350 1351
	if (mode == p->mode
	    && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
Richard Kenner committed
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	  return p;
    }

  return 0;
}

/* Look for an expression equivalent to X and with code CODE.
   If one is found, return that expression.  */

static rtx
1362
lookup_as_function (rtx x, enum rtx_code code)
Richard Kenner committed
1363
{
1364
  struct table_elt *p
1365
    = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1366

1367 1368 1369 1370 1371 1372 1373 1374
  /* If we are looking for a CONST_INT, the mode doesn't really matter, as
     long as we are narrowing.  So if we looked in vain for a mode narrower
     than word_mode before, look for word_mode now.  */
  if (p == 0 && code == CONST_INT
      && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
    {
      x = copy_rtx (x);
      PUT_MODE (x, word_mode);
1375
      p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1376 1377
    }

Richard Kenner committed
1378 1379 1380 1381
  if (p == 0)
    return 0;

  for (p = p->first_same_value; p; p = p->next_same_value)
1382 1383
    if (GET_CODE (p->exp) == code
	/* Make sure this is a valid entry in the table.  */
1384
	&& exp_equiv_p (p->exp, p->exp, 1, false))
1385
      return p->exp;
1386

Richard Kenner committed
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
  return 0;
}

/* Insert X in the hash table, assuming HASH is its hash code
   and CLASSP is an element of the class it should go in
   (or 0 if a new class should be made).
   It is inserted at the proper position to keep the class in
   the order cheapest first.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   For elements of equal cheapness, the most recent one
   goes in front, except that the first element in the list
   remains first unless a cheaper element is added.  The order of
   pseudo-registers does not matter, as canon_reg will be called to
1403
   find the cheapest when a register is retrieved from the table.
Richard Kenner committed
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

   The in_memory field in the hash table element is set to 0.
   The caller must set it nonzero if appropriate.

   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
   and if insert_regs returns a nonzero value
   you must then recompute its hash code before calling here.

   If necessary, update table showing constant values of quantities.  */

1414
#define CHEAPER(X, Y) \
1415
 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
Richard Kenner committed
1416 1417

static struct table_elt *
1418
insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
Richard Kenner committed
1419
{
1420
  struct table_elt *elt;
Richard Kenner committed
1421 1422 1423

  /* If X is a register and we haven't made a quantity for it,
     something is wrong.  */
1424
  gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
Richard Kenner committed
1425 1426

  /* If X is a hard register, show it is being put in the table.  */
1427
  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1428
    add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
Richard Kenner committed
1429 1430 1431

  /* Put an element for X into the right hash bucket.  */

1432 1433
  elt = free_element_chain;
  if (elt)
1434
    free_element_chain = elt->next_same_hash;
1435
  else
1436
    elt = XNEW (struct table_elt);
1437

Richard Kenner committed
1438
  elt->exp = x;
1439
  elt->canon_exp = NULL_RTX;
Richard Kenner committed
1440
  elt->cost = COST (x);
1441
  elt->regcost = approx_reg_cost (x);
Richard Kenner committed
1442 1443 1444 1445 1446 1447 1448
  elt->next_same_value = 0;
  elt->prev_same_value = 0;
  elt->next_same_hash = table[hash];
  elt->prev_same_hash = 0;
  elt->related_value = 0;
  elt->in_memory = 0;
  elt->mode = mode;
1449
  elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
Richard Kenner committed
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

  if (table[hash])
    table[hash]->prev_same_hash = elt;
  table[hash] = elt;

  /* Put it into the proper value-class.  */
  if (classp)
    {
      classp = classp->first_same_value;
      if (CHEAPER (elt, classp))
1460
	/* Insert at the head of the class.  */
Richard Kenner committed
1461
	{
1462
	  struct table_elt *p;
Richard Kenner committed
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	  elt->next_same_value = classp;
	  classp->prev_same_value = elt;
	  elt->first_same_value = elt;

	  for (p = classp; p; p = p->next_same_value)
	    p->first_same_value = elt;
	}
      else
	{
	  /* Insert not at head of the class.  */
	  /* Put it after the last element cheaper than X.  */
1474
	  struct table_elt *p, *next;
1475

Richard Kenner committed
1476 1477
	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
	       p = next);
1478

Richard Kenner committed
1479 1480 1481 1482
	  /* Put it after P and before NEXT.  */
	  elt->next_same_value = next;
	  if (next)
	    next->prev_same_value = elt;
1483

Richard Kenner committed
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	  elt->prev_same_value = p;
	  p->next_same_value = elt;
	  elt->first_same_value = classp;
	}
    }
  else
    elt->first_same_value = elt;

  /* If this is a constant being set equivalent to a register or a register
     being set equivalent to a constant, note the constant equivalence.

     If this is a constant, it cannot be equivalent to a different constant,
     and a constant is the only thing that can be cheaper than a register.  So
     we know the register is the head of the class (before the constant was
     inserted).

     If this is a register that is not already known equivalent to a
     constant, we must check the entire class.

     If this is a register that is already known equivalent to an insn,
1504
     update the qtys `const_insn' to show that `this_insn' is the latest
Richard Kenner committed
1505 1506
     insn making that quantity equivalent to the constant.  */

1507 1508
  if (elt->is_const && classp && REG_P (classp->exp)
      && !REG_P (x))
Richard Kenner committed
1509
    {
1510 1511 1512
      int exp_q = REG_QTY (REGNO (classp->exp));
      struct qty_table_elem *exp_ent = &qty_table[exp_q];

1513
      exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1514
      exp_ent->const_insn = this_insn;
Richard Kenner committed
1515 1516
    }

1517
  else if (REG_P (x)
1518 1519
	   && classp
	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1520
	   && ! elt->is_const)
Richard Kenner committed
1521
    {
1522
      struct table_elt *p;
Richard Kenner committed
1523 1524 1525

      for (p = classp; p != 0; p = p->next_same_value)
	{
1526
	  if (p->is_const && !REG_P (p->exp))
Richard Kenner committed
1527
	    {
1528 1529 1530
	      int x_q = REG_QTY (REGNO (x));
	      struct qty_table_elem *x_ent = &qty_table[x_q];

1531
	      x_ent->const_rtx
1532
		= gen_lowpart (GET_MODE (x), p->exp);
1533
	      x_ent->const_insn = this_insn;
Richard Kenner committed
1534 1535 1536 1537 1538
	      break;
	    }
	}
    }

1539
  else if (REG_P (x)
1540 1541 1542
	   && qty_table[REG_QTY (REGNO (x))].const_rtx
	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
    qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
Richard Kenner committed
1543 1544 1545 1546 1547 1548 1549

  /* If this is a constant with symbolic value,
     and it has a term with an explicit integer value,
     link it up with related expressions.  */
  if (GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
Richard Kenner committed
1550
      unsigned subhash;
Richard Kenner committed
1551 1552 1553 1554 1555
      struct table_elt *subelt, *subelt_prev;

      if (subexp != 0)
	{
	  /* Get the integer-free subexpression in the hash table.  */
1556
	  subhash = SAFE_HASH (subexp, mode);
Richard Kenner committed
1557 1558
	  subelt = lookup (subexp, subhash, mode);
	  if (subelt == 0)
1559
	    subelt = insert (subexp, NULL, subhash, mode);
Richard Kenner committed
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	  /* Initialize SUBELT's circular chain if it has none.  */
	  if (subelt->related_value == 0)
	    subelt->related_value = subelt;
	  /* Find the element in the circular chain that precedes SUBELT.  */
	  subelt_prev = subelt;
	  while (subelt_prev->related_value != subelt)
	    subelt_prev = subelt_prev->related_value;
	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
	     This way the element that follows SUBELT is the oldest one.  */
	  elt->related_value = subelt_prev->related_value;
	  subelt_prev->related_value = elt;
	}
    }

  return elt;
}

/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
   the two classes equivalent.

   CLASS1 will be the surviving class; CLASS2 should not be used after this
   call.

   Any invalid entries in CLASS2 will not be copied.  */

static void
1587
merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
Richard Kenner committed
1588
{
1589
  struct table_elt *elt, *next, *new_elt;
Richard Kenner committed
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

  /* Ensure we start with the head of the classes.  */
  class1 = class1->first_same_value;
  class2 = class2->first_same_value;

  /* If they were already equal, forget it.  */
  if (class1 == class2)
    return;

  for (elt = class2; elt; elt = next)
    {
1601
      unsigned int hash;
Richard Kenner committed
1602 1603 1604 1605 1606 1607 1608
      rtx exp = elt->exp;
      enum machine_mode mode = elt->mode;

      next = elt->next_same_value;

      /* Remove old entry, make a new one in CLASS1's class.
	 Don't do this for invalid entries as we cannot find their
Mike Stump committed
1609
	 hash code (it also isn't necessary).  */
1610
      if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
Richard Kenner committed
1611
	{
1612 1613
	  bool need_rehash = false;

Richard Kenner committed
1614 1615
	  hash_arg_in_memory = 0;
	  hash = HASH (exp, mode);
1616

1617
	  if (REG_P (exp))
1618
	    {
1619
	      need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1620 1621
	      delete_reg_equiv (REGNO (exp));
	    }
1622

1623 1624 1625 1626
	  if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
	    remove_pseudo_from_table (exp, hash);
	  else
	    remove_from_table (elt, hash);
Richard Kenner committed
1627

1628
	  if (insert_regs (exp, class1, 0) || need_rehash)
1629 1630 1631 1632
	    {
	      rehash_using_reg (exp);
	      hash = HASH (exp, mode);
	    }
1633 1634
	  new_elt = insert (exp, class1, hash, mode);
	  new_elt->in_memory = hash_arg_in_memory;
Richard Kenner committed
1635 1636 1637 1638
	}
    }
}

1639 1640 1641
/* Flush the entire hash table.  */

static void
1642
flush_hash_table (void)
1643 1644 1645 1646
{
  int i;
  struct table_elt *p;

1647
  for (i = 0; i < HASH_SIZE; i++)
1648 1649 1650 1651
    for (p = table[i]; p; p = table[i])
      {
	/* Note that invalidate can remove elements
	   after P in the current hash chain.  */
1652
	if (REG_P (p->exp))
1653
	  invalidate (p->exp, VOIDmode);
1654 1655 1656 1657
	else
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1658

1659 1660 1661 1662 1663
/* Function called for each rtx to check whether true dependence exist.  */
struct check_dependence_data
{
  enum machine_mode mode;
  rtx exp;
Jan Hubicka committed
1664
  rtx addr;
1665
};
1666

1667
static int
1668
check_dependence (rtx *x, void *data)
1669 1670
{
  struct check_dependence_data *d = (struct check_dependence_data *) data;
1671
  if (*x && MEM_P (*x))
Jan Hubicka committed
1672 1673
    return canon_true_dependence (d->exp, d->mode, d->addr, *x,
		    		  cse_rtx_varies_p);
1674 1675 1676 1677
  else
    return 0;
}

Richard Kenner committed
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/* Remove from the hash table, or mark as invalid, all expressions whose
   values could be altered by storing in X.  X is a register, a subreg, or
   a memory reference with nonvarying address (because, when a memory
   reference with a varying address is stored in, all memory references are
   removed by invalidate_memory so specific invalidation is superfluous).
   FULL_MODE, if not VOIDmode, indicates that this much should be
   invalidated instead of just the amount indicated by the mode of X.  This
   is only used for bitfield stores into memory.

   A nonvarying address may be just a register or just a symbol reference,
   or it may be either of those plus a numeric offset.  */
Richard Kenner committed
1689 1690

static void
1691
invalidate (rtx x, enum machine_mode full_mode)
Richard Kenner committed
1692
{
1693 1694
  int i;
  struct table_elt *p;
Jan Hubicka committed
1695
  rtx addr;
Richard Kenner committed
1696

Richard Kenner committed
1697
  switch (GET_CODE (x))
Richard Kenner committed
1698
    {
Richard Kenner committed
1699 1700 1701 1702 1703 1704
    case REG:
      {
	/* If X is a register, dependencies on its contents are recorded
	   through the qty number mechanism.  Just change the qty number of
	   the register, mark it as invalid for expressions that refer to it,
	   and remove it itself.  */
1705 1706
	unsigned int regno = REGNO (x);
	unsigned int hash = HASH (x, GET_MODE (x));
Richard Kenner committed
1707

Richard Kenner committed
1708 1709 1710
	/* Remove REGNO from any quantity list it might be on and indicate
	   that its value might have changed.  If it is a pseudo, remove its
	   entry from the hash table.
Richard Kenner committed
1711

Richard Kenner committed
1712 1713 1714 1715
	   For a hard register, we do the first two actions above for any
	   additional hard registers corresponding to X.  Then, if any of these
	   registers are in the table, we must remove any REG entries that
	   overlap these registers.  */
Richard Kenner committed
1716

Richard Kenner committed
1717 1718
	delete_reg_equiv (regno);
	REG_TICK (regno)++;
1719
	SUBREG_TICKED (regno) = -1;
1720

Richard Kenner committed
1721
	if (regno >= FIRST_PSEUDO_REGISTER)
1722
	  remove_pseudo_from_table (x, hash);
Richard Kenner committed
1723 1724 1725 1726
	else
	  {
	    HOST_WIDE_INT in_table
	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1727
	    unsigned int endregno = END_HARD_REGNO (x);
1728
	    unsigned int tregno, tendregno, rn;
1729
	    struct table_elt *p, *next;
Richard Kenner committed
1730

Richard Kenner committed
1731
	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
Richard Kenner committed
1732

1733
	    for (rn = regno + 1; rn < endregno; rn++)
Richard Kenner committed
1734
	      {
1735 1736 1737 1738
		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
		delete_reg_equiv (rn);
		REG_TICK (rn)++;
1739
		SUBREG_TICKED (rn) = -1;
Richard Kenner committed
1740
	      }
Richard Kenner committed
1741

Richard Kenner committed
1742
	    if (in_table)
1743
	      for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1744 1745 1746
		for (p = table[hash]; p; p = next)
		  {
		    next = p->next_same_hash;
Richard Kenner committed
1747

1748
		    if (!REG_P (p->exp)
1749 1750 1751
			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
		      continue;

Richard Kenner committed
1752
		    tregno = REGNO (p->exp);
1753
		    tendregno = END_HARD_REGNO (p->exp);
Richard Kenner committed
1754 1755 1756 1757 1758
		    if (tendregno > regno && tregno < endregno)
		      remove_from_table (p, hash);
		  }
	  }
      }
Richard Kenner committed
1759 1760
      return;

Richard Kenner committed
1761
    case SUBREG:
1762
      invalidate (SUBREG_REG (x), VOIDmode);
Richard Kenner committed
1763
      return;
1764

Richard Kenner committed
1765
    case PARALLEL:
1766
      for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1767 1768 1769
	invalidate (XVECEXP (x, 0, i), VOIDmode);
      return;

Richard Kenner committed
1770 1771 1772
    case EXPR_LIST:
      /* This is part of a disjoint return value; extract the location in
	 question ignoring the offset.  */
1773 1774
      invalidate (XEXP (x, 0), VOIDmode);
      return;
Richard Kenner committed
1775

Richard Kenner committed
1776
    case MEM:
Jan Hubicka committed
1777
      addr = canon_rtx (get_addr (XEXP (x, 0)));
1778 1779 1780 1781
      /* Calculate the canonical version of X here so that
	 true_dependence doesn't generate new RTL for X on each call.  */
      x = canon_rtx (x);

Richard Kenner committed
1782 1783 1784 1785
      /* Remove all hash table elements that refer to overlapping pieces of
	 memory.  */
      if (full_mode == VOIDmode)
	full_mode = GET_MODE (x);
1786

1787
      for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1788
	{
1789
	  struct table_elt *next;
Richard Kenner committed
1790 1791 1792 1793

	  for (p = table[i]; p; p = next)
	    {
	      next = p->next_same_hash;
1794 1795
	      if (p->in_memory)
		{
1796 1797 1798 1799 1800 1801 1802 1803 1804
		  struct check_dependence_data d;

		  /* Just canonicalize the expression once;
		     otherwise each time we call invalidate
		     true_dependence will canonicalize the
		     expression again.  */
		  if (!p->canon_exp)
		    p->canon_exp = canon_rtx (p->exp);
		  d.exp = x;
Jan Hubicka committed
1805
		  d.addr = addr;
1806 1807
		  d.mode = full_mode;
		  if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1808 1809
		    remove_from_table (p, i);
		}
Richard Kenner committed
1810
	    }
Richard Kenner committed
1811
	}
Richard Kenner committed
1812 1813 1814
      return;

    default:
1815
      gcc_unreachable ();
Richard Kenner committed
1816 1817
    }
}
Richard Kenner committed
1818

Richard Kenner committed
1819 1820 1821 1822 1823 1824
/* Remove all expressions that refer to register REGNO,
   since they are already invalid, and we are about to
   mark that register valid again and don't want the old
   expressions to reappear as valid.  */

static void
1825
remove_invalid_refs (unsigned int regno)
Richard Kenner committed
1826
{
1827 1828
  unsigned int i;
  struct table_elt *p, *next;
Richard Kenner committed
1829

1830
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1831 1832 1833
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
1834
	if (!REG_P (p->exp)
Kazu Hirata committed
1835
	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
Richard Kenner committed
1836 1837 1838
	  remove_from_table (p, i);
      }
}
1839

1840 1841
/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
   and mode MODE.  */
1842
static void
1843 1844
remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
			    enum machine_mode mode)
1845
{
1846 1847
  unsigned int i;
  struct table_elt *p, *next;
1848
  unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1849

1850
  for (i = 0; i < HASH_SIZE; i++)
1851 1852
    for (p = table[i]; p; p = next)
      {
1853
	rtx exp = p->exp;
1854
	next = p->next_same_hash;
1855

1856
	if (!REG_P (exp)
1857
	    && (GET_CODE (exp) != SUBREG
1858
		|| !REG_P (SUBREG_REG (exp))
1859
		|| REGNO (SUBREG_REG (exp)) != regno
1860 1861 1862
		|| (((SUBREG_BYTE (exp)
		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
		    && SUBREG_BYTE (exp) <= end))
Kazu Hirata committed
1863
	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1864 1865 1866
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1867 1868 1869 1870 1871 1872 1873

/* Recompute the hash codes of any valid entries in the hash table that
   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.

   This is called when we make a jump equivalence.  */

static void
1874
rehash_using_reg (rtx x)
Richard Kenner committed
1875
{
Kaveh R. Ghazi committed
1876
  unsigned int i;
Richard Kenner committed
1877
  struct table_elt *p, *next;
Richard Kenner committed
1878
  unsigned hash;
Richard Kenner committed
1879 1880 1881 1882 1883 1884 1885

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* If X is not a register or if the register is known not to be in any
     valid entries in the table, we have no work to do.  */

1886
  if (!REG_P (x)
1887 1888
      || REG_IN_TABLE (REGNO (x)) < 0
      || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
Richard Kenner committed
1889 1890 1891
    return;

  /* Scan all hash chains looking for valid entries that mention X.
1892
     If we find one and it is in the wrong hash chain, move it.  */
Richard Kenner committed
1893

1894
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1895 1896 1897
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
1898
	if (reg_mentioned_p (x, p->exp)
1899 1900
	    && exp_equiv_p (p->exp, p->exp, 1, false)
	    && i != (hash = SAFE_HASH (p->exp, p->mode)))
Richard Kenner committed
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	  {
	    if (p->next_same_hash)
	      p->next_same_hash->prev_same_hash = p->prev_same_hash;

	    if (p->prev_same_hash)
	      p->prev_same_hash->next_same_hash = p->next_same_hash;
	    else
	      table[i] = p->next_same_hash;

	    p->next_same_hash = table[hash];
	    p->prev_same_hash = 0;
	    if (table[hash])
	      table[hash]->prev_same_hash = p;
	    table[hash] = p;
	  }
      }
}

/* Remove from the hash table any expression that is a call-clobbered
   register.  Also update their TICK values.  */

static void
1923
invalidate_for_call (void)
Richard Kenner committed
1924
{
1925 1926
  unsigned int regno, endregno;
  unsigned int i;
Richard Kenner committed
1927
  unsigned hash;
Richard Kenner committed
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
  struct table_elt *p, *next;
  int in_table = 0;

  /* Go through all the hard registers.  For each that is clobbered in
     a CALL_INSN, remove the register from quantity chains and update
     reg_tick if defined.  Also see if any of these registers is currently
     in the table.  */

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
      {
	delete_reg_equiv (regno);
1940
	if (REG_TICK (regno) >= 0)
1941 1942 1943 1944
	  {
	    REG_TICK (regno)++;
	    SUBREG_TICKED (regno) = -1;
	  }
Richard Kenner committed
1945

1946
	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
Richard Kenner committed
1947 1948 1949 1950 1951 1952 1953
      }

  /* In the case where we have no call-clobbered hard registers in the
     table, we are done.  Otherwise, scan the table and remove any
     entry that overlaps a call-clobbered register.  */

  if (in_table)
1954
    for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1955 1956 1957 1958
      for (p = table[hash]; p; p = next)
	{
	  next = p->next_same_hash;

1959
	  if (!REG_P (p->exp)
Richard Kenner committed
1960 1961 1962 1963
	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
	    continue;

	  regno = REGNO (p->exp);
1964
	  endregno = END_HARD_REGNO (p->exp);
Richard Kenner committed
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	      {
		remove_from_table (p, hash);
		break;
	      }
	}
}

/* Given an expression X of type CONST,
   and ELT which is its table entry (or 0 if it
   is not in the hash table),
   return an alternate expression for X as a register plus integer.
   If none can be found, return 0.  */

static rtx
1982
use_related_value (rtx x, struct table_elt *elt)
Richard Kenner committed
1983
{
1984 1985
  struct table_elt *relt = 0;
  struct table_elt *p, *q;
1986
  HOST_WIDE_INT offset;
Richard Kenner committed
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

  /* First, is there anything related known?
     If we have a table element, we can tell from that.
     Otherwise, must look it up.  */

  if (elt != 0 && elt->related_value != 0)
    relt = elt;
  else if (elt == 0 && GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      if (subexp != 0)
	relt = lookup (subexp,
1999
		       SAFE_HASH (subexp, GET_MODE (subexp)),
Richard Kenner committed
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		       GET_MODE (subexp));
    }

  if (relt == 0)
    return 0;

  /* Search all related table entries for one that has an
     equivalent register.  */

  p = relt;
  while (1)
    {
      /* This loop is strange in that it is executed in two different cases.
	 The first is when X is already in the table.  Then it is searching
	 the RELATED_VALUE list of X's class (RELT).  The second case is when
	 X is not in the table.  Then RELT points to a class for the related
	 value.

	 Ensure that, whatever case we are in, that we ignore classes that have
	 the same value as X.  */

      if (rtx_equal_p (x, p->exp))
	q = 0;
      else
	for (q = p->first_same_value; q; q = q->next_same_value)
2025
	  if (REG_P (q->exp))
Richard Kenner committed
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	    break;

      if (q)
	break;

      p = p->related_value;

      /* We went all the way around, so there is nothing to be found.
	 Alternatively, perhaps RELT was in the table for some other reason
	 and it has no related values recorded.  */
      if (p == relt || p == 0)
	break;
    }

  if (q == 0)
    return 0;

  offset = (get_integer_term (x) - get_integer_term (p->exp));
  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
  return plus_constant (q->exp, offset);
}

2048

2049 2050
/* Hash a string.  Just add its bytes up.  */
static inline unsigned
2051
hash_rtx_string (const char *ps)
2052 2053
{
  unsigned hash = 0;
Kazu Hirata committed
2054 2055
  const unsigned char *p = (const unsigned char *) ps;

2056 2057 2058 2059 2060 2061 2062
  if (p)
    while (*p)
      hash += *p++;

  return hash;
}

2063 2064
/* Same as hash_rtx, but call CB on each rtx if it is not NULL.  
   When the callback returns true, we continue with the new rtx.  */
Richard Kenner committed
2065

2066
unsigned
2067 2068 2069
hash_rtx_cb (const_rtx x, enum machine_mode mode,
             int *do_not_record_p, int *hash_arg_in_memory_p,
             bool have_reg_qty, hash_rtx_callback_function cb)
Richard Kenner committed
2070
{
2071 2072 2073 2074
  int i, j;
  unsigned hash = 0;
  enum rtx_code code;
  const char *fmt;
2075 2076
  enum machine_mode newmode;
  rtx newx;
Richard Kenner committed
2077

2078 2079 2080
  /* Used to turn recursion into iteration.  We can't rely on GCC's
     tail-recursion elimination since we need to keep accumulating values
     in HASH.  */
Richard Kenner committed
2081 2082 2083 2084
 repeat:
  if (x == 0)
    return hash;

2085 2086 2087 2088 2089 2090 2091 2092 2093
  /* Invoke the callback first.  */
  if (cb != NULL 
      && ((*cb) (x, mode, &newx, &newmode)))
    {
      hash += hash_rtx_cb (newx, newmode, do_not_record_p,
                           hash_arg_in_memory_p, have_reg_qty, cb);
      return hash;
    }

Richard Kenner committed
2094 2095 2096 2097 2098
  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
2099
	unsigned int regno = REGNO (x);
Richard Kenner committed
2100

2101
	if (do_not_record_p && !reload_completed)
Richard Kenner committed
2102
	  {
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	    /* On some machines, we can't record any non-fixed hard register,
	       because extending its life will cause reload problems.  We
	       consider ap, fp, sp, gp to be fixed for this purpose.

	       We also consider CCmode registers to be fixed for this purpose;
	       failure to do so leads to failure to simplify 0<100 type of
	       conditionals.

	       On all machines, we can't record any global registers.
	       Nor should we record any register that is in a small
	       class, as defined by CLASS_LIKELY_SPILLED_P.  */
	    bool record;

	    if (regno >= FIRST_PSEUDO_REGISTER)
	      record = true;
	    else if (x == frame_pointer_rtx
		     || x == hard_frame_pointer_rtx
		     || x == arg_pointer_rtx
		     || x == stack_pointer_rtx
		     || x == pic_offset_table_rtx)
	      record = true;
	    else if (global_regs[regno])
	      record = false;
	    else if (fixed_regs[regno])
	      record = true;
	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
	      record = true;
	    else if (SMALL_REGISTER_CLASSES)
	      record = false;
	    else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
	      record = false;
	    else
	      record = true;

	    if (!record)
	      {
		*do_not_record_p = 1;
		return 0;
	      }
Richard Kenner committed
2142
	  }
2143

2144 2145
	hash += ((unsigned int) REG << 7);
        hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
Richard Kenner committed
2146
	return hash;
Richard Kenner committed
2147 2148
      }

2149 2150 2151 2152 2153
    /* We handle SUBREG of a REG specially because the underlying
       reg changes its hash value with every value change; we don't
       want to have to forget unrelated subregs when one subreg changes.  */
    case SUBREG:
      {
2154
	if (REG_P (SUBREG_REG (x)))
2155
	  {
2156
	    hash += (((unsigned int) SUBREG << 7)
2157 2158
		     + REGNO (SUBREG_REG (x))
		     + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2159 2160 2161 2162 2163
	    return hash;
	  }
	break;
      }

Richard Kenner committed
2164
    case CONST_INT:
2165 2166 2167
      hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
               + (unsigned int) INTVAL (x));
      return hash;
Richard Kenner committed
2168 2169 2170 2171

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
2172
      hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2173
      if (GET_MODE (x) != VOIDmode)
2174
	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2175
      else
2176 2177
	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
		 + (unsigned int) CONST_DOUBLE_HIGH (x));
Richard Kenner committed
2178 2179
      return hash;

2180 2181 2182 2183 2184
    case CONST_FIXED:
      hash += (unsigned int) code + (unsigned int) GET_MODE (x);
      hash += fixed_hash (CONST_FIXED_VALUE (x));
      return hash;

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    case CONST_VECTOR:
      {
	int units;
	rtx elt;

	units = CONST_VECTOR_NUNITS (x);

	for (i = 0; i < units; ++i)
	  {
	    elt = CONST_VECTOR_ELT (x, i);
2195 2196 2197
	    hash += hash_rtx_cb (elt, GET_MODE (elt),
                                 do_not_record_p, hash_arg_in_memory_p, 
                                 have_reg_qty, cb);
2198 2199 2200 2201 2202
	  }

	return hash;
      }

Richard Kenner committed
2203 2204
      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
2205 2206 2207 2208
      /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
	 differences and differences between each stage's debugging dumps.  */
	 hash += (((unsigned int) LABEL_REF << 7)
		  + CODE_LABEL_NUMBER (XEXP (x, 0)));
Richard Kenner committed
2209
      return hash;
Richard Kenner committed
2210 2211

    case SYMBOL_REF:
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
      {
	/* Don't hash on the symbol's address to avoid bootstrap differences.
	   Different hash values may cause expressions to be recorded in
	   different orders and thus different registers to be used in the
	   final assembler.  This also avoids differences in the dump files
	   between various stages.  */
	unsigned int h = 0;
	const unsigned char *p = (const unsigned char *) XSTR (x, 0);

	while (*p)
	  h += (h << 7) + *p++; /* ??? revisit */

	hash += ((unsigned int) SYMBOL_REF << 7) + h;
	return hash;
      }
Richard Kenner committed
2227 2228

    case MEM:
Richard Kenner committed
2229 2230
      /* We don't record if marked volatile or if BLKmode since we don't
	 know the size of the move.  */
2231
      if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
Richard Kenner committed
2232
	{
2233
	  *do_not_record_p = 1;
Richard Kenner committed
2234 2235
	  return 0;
	}
2236 2237
      if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
	*hash_arg_in_memory_p = 1;
2238

Richard Kenner committed
2239 2240
      /* Now that we have already found this special case,
	 might as well speed it up as much as possible.  */
Richard Kenner committed
2241
      hash += (unsigned) MEM;
Richard Kenner committed
2242 2243 2244
      x = XEXP (x, 0);
      goto repeat;

2245 2246 2247 2248
    case USE:
      /* A USE that mentions non-volatile memory needs special
	 handling since the MEM may be BLKmode which normally
	 prevents an entry from being made.  Pure calls are
2249 2250
	 marked by a USE which mentions BLKmode memory.
	 See calls.c:emit_call_1.  */
2251
      if (MEM_P (XEXP (x, 0))
2252 2253
	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
	{
Kazu Hirata committed
2254
	  hash += (unsigned) USE;
2255 2256
	  x = XEXP (x, 0);

2257 2258
	  if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
	    *hash_arg_in_memory_p = 1;
2259 2260 2261 2262 2263 2264 2265 2266 2267

	  /* Now that we have already found this special case,
	     might as well speed it up as much as possible.  */
	  hash += (unsigned) MEM;
	  x = XEXP (x, 0);
	  goto repeat;
	}
      break;

Richard Kenner committed
2268 2269 2270 2271
    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
2272 2273
    case PRE_MODIFY:
    case POST_MODIFY:
Richard Kenner committed
2274 2275 2276 2277
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
2278 2279 2280 2281 2282 2283 2284
      if (do_not_record_p) {
        *do_not_record_p = 1;
        return 0;
      }
      else
        return hash;
      break;
Richard Kenner committed
2285 2286

    case ASM_OPERANDS:
2287
      if (do_not_record_p && MEM_VOLATILE_P (x))
Richard Kenner committed
2288
	{
2289
	  *do_not_record_p = 1;
Richard Kenner committed
2290 2291
	  return 0;
	}
2292 2293 2294 2295
      else
	{
	  /* We don't want to take the filename and line into account.  */
	  hash += (unsigned) code + (unsigned) GET_MODE (x)
2296 2297
	    + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
	    + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2298 2299 2300 2301 2302 2303
	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);

	  if (ASM_OPERANDS_INPUT_LENGTH (x))
	    {
	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
		{
2304 2305 2306 2307
		  hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
                                        GET_MODE (ASM_OPERANDS_INPUT (x, i)),
                                        do_not_record_p, hash_arg_in_memory_p,
                                        have_reg_qty, cb)
2308
			   + hash_rtx_string
2309
                           (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2310 2311
		}

2312
	      hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2313 2314 2315 2316 2317 2318 2319
	      x = ASM_OPERANDS_INPUT (x, 0);
	      mode = GET_MODE (x);
	      goto repeat;
	    }

	  return hash;
	}
2320
      break;
2321

2322 2323
    default:
      break;
Richard Kenner committed
2324 2325 2326
    }

  i = GET_RTX_LENGTH (code) - 1;
Richard Kenner committed
2327
  hash += (unsigned) code + (unsigned) GET_MODE (x);
Richard Kenner committed
2328 2329 2330
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
2331
      switch (fmt[i])
Richard Kenner committed
2332
	{
2333
	case 'e':
Richard Kenner committed
2334 2335 2336 2337 2338
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function  is called enough to be worth it.  */
	  if (i == 0)
	    {
2339
	      x = XEXP (x, i);
Richard Kenner committed
2340 2341
	      goto repeat;
	    }
2342 2343 2344 2345
          
	  hash += hash_rtx_cb (XEXP (x, i), 0, do_not_record_p,
                               hash_arg_in_memory_p,
                               have_reg_qty, cb);
2346
	  break;
2347

2348 2349
	case 'E':
	  for (j = 0; j < XVECLEN (x, i); j++)
2350 2351 2352
	    hash += hash_rtx_cb (XVECEXP (x, i, j), 0, do_not_record_p,
                                 hash_arg_in_memory_p,
                                 have_reg_qty, cb);
2353
	  break;
2354

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	case 's':
	  hash += hash_rtx_string (XSTR (x, i));
	  break;

	case 'i':
	  hash += (unsigned int) XINT (x, i);
	  break;

	case '0': case 't':
	  /* Unused.  */
	  break;

	default:
	  gcc_unreachable ();
	}
Richard Kenner committed
2370
    }
2371

Richard Kenner committed
2372 2373 2374
  return hash;
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/* Hash an rtx.  We are careful to make sure the value is never negative.
   Equivalent registers hash identically.
   MODE is used in hashing for CONST_INTs only;
   otherwise the mode of X is used.

   Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.

   If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
   a MEM rtx which does not have the RTX_UNCHANGING_P bit set.

   Note that cse_insn knows that the hash code of a MEM expression
   is just (int) MEM plus the hash code of the address.  */

unsigned
hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
	  int *hash_arg_in_memory_p, bool have_reg_qty)
{
  return hash_rtx_cb (x, mode, do_not_record_p,
                      hash_arg_in_memory_p, have_reg_qty, NULL);
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
/* Hash an rtx X for cse via hash_rtx.
   Stores 1 in do_not_record if any subexpression is volatile.
   Stores 1 in hash_arg_in_memory if X contains a mem rtx which
   does not have the RTX_UNCHANGING_P bit set.  */

static inline unsigned
canon_hash (rtx x, enum machine_mode mode)
{
  return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
}

/* Like canon_hash but with no side effects, i.e. do_not_record
   and hash_arg_in_memory are not changed.  */
Richard Kenner committed
2409

2410
static inline unsigned
2411
safe_hash (rtx x, enum machine_mode mode)
Richard Kenner committed
2412
{
2413 2414
  int dummy_do_not_record;
  return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
Richard Kenner committed
2415 2416 2417 2418 2419 2420 2421 2422 2423
}

/* Return 1 iff X and Y would canonicalize into the same thing,
   without actually constructing the canonicalization of either one.
   If VALIDATE is nonzero,
   we assume X is an expression being processed from the rtl
   and Y was found in the hash table.  We check register refs
   in Y for being marked as valid.

2424
   If FOR_GCSE is true, we compare X and Y for equivalence for GCSE.  */
Richard Kenner committed
2425

2426
int
2427
exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
Richard Kenner committed
2428
{
2429 2430 2431
  int i, j;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2432 2433 2434 2435 2436

  /* Note: it is incorrect to assume an expression is equivalent to itself
     if VALIDATE is nonzero.  */
  if (x == y && !validate)
    return 1;
2437

Richard Kenner committed
2438 2439 2440 2441 2442
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
2443
    return 0;
Richard Kenner committed
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
    case CONST_INT:
2454
    case CONST_DOUBLE:
2455
    case CONST_FIXED:
2456
      return x == y;
Richard Kenner committed
2457 2458 2459 2460

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

2461 2462 2463
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

Richard Kenner committed
2464
    case REG:
2465 2466 2467 2468 2469 2470
      if (for_gcse)
	return REGNO (x) == REGNO (y);
      else
	{
	  unsigned int regno = REGNO (y);
	  unsigned int i;
2471
	  unsigned int endregno = END_REGNO (y);
Richard Kenner committed
2472

2473 2474 2475
	  /* If the quantities are not the same, the expressions are not
	     equivalent.  If there are and we are not to validate, they
	     are equivalent.  Otherwise, ensure all regs are up-to-date.  */
Richard Kenner committed
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485
	  if (REG_QTY (REGNO (x)) != REG_QTY (regno))
	    return 0;

	  if (! validate)
	    return 1;

	  for (i = regno; i < endregno; i++)
	    if (REG_IN_TABLE (i) != REG_TICK (i))
	      return 0;
Richard Kenner committed
2486 2487

	  return 1;
2488
	}
Richard Kenner committed
2489

2490 2491 2492 2493 2494 2495 2496
    case MEM:
      if (for_gcse)
	{
	  /* A volatile mem should not be considered equivalent to any
	     other.  */
	  if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	    return 0;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	  /* Can't merge two expressions in different alias sets, since we
	     can decide that the expression is transparent in a block when
	     it isn't, due to it being set with the different alias set.

	     Also, can't merge two expressions with different MEM_ATTRS.
	     They could e.g. be two different entities allocated into the
	     same space on the stack (see e.g. PR25130).  In that case, the
	     MEM addresses can be the same, even though the two MEMs are
	     absolutely not equivalent.  
   
	     But because really all MEM attributes should be the same for
	     equivalent MEMs, we just use the invariant that MEMs that have
	     the same attributes share the same mem_attrs data structure.  */
	  if (MEM_ATTRS (x) != MEM_ATTRS (y))
	    return 0;
2513 2514
	}
      break;
Richard Kenner committed
2515 2516 2517 2518 2519 2520 2521 2522 2523

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
2524 2525
      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
			     validate, for_gcse)
Richard Kenner committed
2526
	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2527
				validate, for_gcse))
Richard Kenner committed
2528
	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2529
				validate, for_gcse)
Richard Kenner committed
2530
		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2531
				   validate, for_gcse)));
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
    case ASM_OPERANDS:
      /* We don't use the generic code below because we want to
	 disregard filename and line numbers.  */

      /* A volatile asm isn't equivalent to any other.  */
      if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	return 0;

      if (GET_MODE (x) != GET_MODE (y)
	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
	return 0;

      if (ASM_OPERANDS_INPUT_LENGTH (x))
	{
	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
			       ASM_OPERANDS_INPUT (y, i),
2554
			       validate, for_gcse)
2555 2556 2557 2558 2559 2560 2561
		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
	      return 0;
	}

      return 1;

2562 2563
    default:
      break;
Richard Kenner committed
2564 2565 2566
    }

  /* Compare the elements.  If any pair of corresponding elements
2567
     fail to match, return 0 for the whole thing.  */
Richard Kenner committed
2568 2569 2570 2571

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2572
      switch (fmt[i])
Richard Kenner committed
2573
	{
2574
	case 'e':
2575 2576
	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
			      validate, for_gcse))
Richard Kenner committed
2577
	    return 0;
2578 2579 2580
	  break;

	case 'E':
Richard Kenner committed
2581 2582 2583 2584
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2585
				validate, for_gcse))
Richard Kenner committed
2586
	      return 0;
2587 2588 2589
	  break;

	case 's':
Richard Kenner committed
2590 2591
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
2592 2593 2594
	  break;

	case 'i':
Richard Kenner committed
2595 2596
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
2597 2598 2599 2600 2601
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
2602
	  break;
2603 2604

	case '0':
2605
	case 't':
2606 2607 2608
	  break;

	default:
2609
	  gcc_unreachable ();
Richard Kenner committed
2610
	}
2611
    }
2612

Richard Kenner committed
2613 2614 2615
  return 1;
}

2616 2617 2618
/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.  */
Richard Kenner committed
2619

2620 2621
static bool
cse_rtx_varies_p (const_rtx x, bool from_alias)
Richard Kenner committed
2622 2623 2624 2625 2626
{
  /* We need not check for X and the equivalence class being of the same
     mode because if X is equivalent to a constant in some mode, it
     doesn't vary in any mode.  */

2627
  if (REG_P (x)
2628 2629 2630 2631 2632 2633 2634 2635 2636
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (GET_MODE (x) == x_ent->mode
	  && x_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2637

2638 2639
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT
2640
      && REG_P (XEXP (x, 0))
2641 2642 2643 2644 2645 2646 2647 2648 2649
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2650

2651 2652 2653 2654 2655
  /* This can happen as the result of virtual register instantiation, if
     the initial constant is too large to be a valid address.  This gives
     us a three instruction sequence, load large offset into a register,
     load fp minus a constant into a register, then a MEM which is the
     sum of the two `constant' registers.  */
2656
  if (GET_CODE (x) == PLUS
2657 2658
      && REG_P (XEXP (x, 0))
      && REG_P (XEXP (x, 1))
2659
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];
      struct qty_table_elem *x1_ent = &qty_table[x1_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX
	  && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
	  && x1_ent->const_rtx != NULL_RTX)
	return 0;
    }
2673

2674
  return rtx_varies_p (x, from_alias);
Richard Kenner committed
2675 2676
}

2677 2678 2679 2680 2681 2682
/* Subroutine of canon_reg.  Pass *XLOC through canon_reg, and validate
   the result if necessary.  INSN is as for canon_reg.  */

static void
validate_canon_reg (rtx *xloc, rtx insn)
{
2683 2684
  if (*xloc)
    {
2685
      rtx new_rtx = canon_reg (*xloc, insn);
2686

2687 2688
      /* If replacing pseudo with hard reg or vice versa, ensure the
         insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2689 2690
      gcc_assert (insn && new_rtx);
      validate_change (insn, xloc, new_rtx, 1);
2691
    }
2692 2693
}

Richard Kenner committed
2694 2695 2696 2697
/* Canonicalize an expression:
   replace each register reference inside it
   with the "oldest" equivalent register.

2698
   If INSN is nonzero validate_change is used to ensure that INSN remains valid
2699
   after we make our substitution.  The calls are made with IN_GROUP nonzero
2700 2701 2702
   so apply_change_group must be called upon the outermost return from this
   function (unless INSN is zero).  The result of apply_change_group can
   generally be discarded since the changes we are making are optional.  */
Richard Kenner committed
2703 2704

static rtx
2705
canon_reg (rtx x, rtx insn)
Richard Kenner committed
2706
{
2707 2708 2709
  int i;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
2722
    case CONST_FIXED:
2723
    case CONST_VECTOR:
Richard Kenner committed
2724 2725 2726 2727 2728 2729 2730 2731
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return x;

    case REG:
      {
2732 2733 2734
	int first;
	int q;
	struct qty_table_elem *ent;
Richard Kenner committed
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

	/* Never replace a hard reg, because hard regs can appear
	   in more than one machine mode, and we must preserve the mode
	   of each occurrence.  Also, some hard regs appear in
	   MEMs that are shared and mustn't be altered.  Don't try to
	   replace any reg that maps to a reg of class NO_REGS.  */
	if (REGNO (x) < FIRST_PSEUDO_REGISTER
	    || ! REGNO_QTY_VALID_P (REGNO (x)))
	  return x;

2745
	q = REG_QTY (REGNO (x));
2746 2747
	ent = &qty_table[q];
	first = ent->first_reg;
Richard Kenner committed
2748 2749
	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
		: REGNO_REG_CLASS (first) == NO_REGS ? x
2750
		: gen_rtx_REG (ent->mode, first));
Richard Kenner committed
2751
      }
2752

2753 2754
    default:
      break;
Richard Kenner committed
2755 2756 2757 2758 2759
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2760
      int j;
Richard Kenner committed
2761 2762

      if (fmt[i] == 'e')
2763
	validate_canon_reg (&XEXP (x, i), insn);
Richard Kenner committed
2764 2765
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
2766
	  validate_canon_reg (&XVECEXP (x, i, j), insn);
Richard Kenner committed
2767 2768 2769 2770 2771
    }

  return x;
}

2772 2773 2774
/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
   operation (EQ, NE, GT, etc.), follow it back through the hash table and
   what values are being compared.
2775

2776 2777 2778 2779
   *PARG1 and *PARG2 are updated to contain the rtx representing the values
   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
   compared to produce cc0.
2780

2781 2782
   The return value is the comparison operator and is either the code of
   A or the code corresponding to the inverse of the comparison.  */
Richard Kenner committed
2783

2784
static enum rtx_code
2785 2786
find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
		      enum machine_mode *pmode1, enum machine_mode *pmode2)
Richard Kenner committed
2787
{
2788
  rtx arg1, arg2;
2789

2790
  arg1 = *parg1, arg2 = *parg2;
Richard Kenner committed
2791

2792
  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
Richard Kenner committed
2793

2794
  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2795
    {
2796
      /* Set nonzero when we find something of interest.  */
2797 2798 2799
      rtx x = 0;
      int reverse_code = 0;
      struct table_elt *p = 0;
2800

2801 2802 2803 2804
      /* If arg1 is a COMPARE, extract the comparison arguments from it.
	 On machines with CC0, this is the only case that can occur, since
	 fold_rtx will return the COMPARE or item being compared with zero
	 when given CC0.  */
2805

2806 2807
      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
	x = arg1;
2808

2809 2810
      /* If ARG1 is a comparison operator and CODE is testing for
	 STORE_FLAG_VALUE, get the inner arguments.  */
2811

2812
      else if (COMPARISON_P (arg1))
Richard Kenner committed
2813
	{
2814 2815 2816 2817
#ifdef FLOAT_STORE_FLAG_VALUE
	  REAL_VALUE_TYPE fsfv;
#endif

2818 2819 2820 2821
	  if (code == NE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		  && code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
2822
	      || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2823 2824
		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
		      REAL_VALUE_NEGATIVE (fsfv)))
Richard Kenner committed
2825
#endif
2826
	      )
2827 2828 2829 2830 2831
	    x = arg1;
	  else if (code == EQ
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		       && code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
2832
		   || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2833 2834
		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
			   REAL_VALUE_NEGATIVE (fsfv)))
2835 2836 2837
#endif
		   )
	    x = arg1, reverse_code = 1;
Richard Kenner committed
2838 2839
	}

2840
      /* ??? We could also check for
Richard Kenner committed
2841

2842
	 (ne (and (eq (...) (const_int 1))) (const_int 0))
Richard Kenner committed
2843

2844
	 and related forms, but let's wait until we see them occurring.  */
Richard Kenner committed
2845

2846 2847 2848
      if (x == 0)
	/* Look up ARG1 in the hash table and see if it has an equivalence
	   that lets us see what is being compared.  */
2849
	p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2850
      if (p)
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	{
	  p = p->first_same_value;

	  /* If what we compare is already known to be constant, that is as
	     good as it gets.
	     We need to break the loop in this case, because otherwise we
	     can have an infinite loop when looking at a reg that is known
	     to be a constant which is the same as a comparison of a reg
	     against zero which appears later in the insn stream, which in
	     turn is constant and the same as the comparison of the first reg
	     against zero...  */
	  if (p->is_const)
	    break;
	}
Richard Kenner committed
2865

2866
      for (; p; p = p->next_same_value)
Richard Kenner committed
2867
	{
2868
	  enum machine_mode inner_mode = GET_MODE (p->exp);
2869 2870 2871
#ifdef FLOAT_STORE_FLAG_VALUE
	  REAL_VALUE_TYPE fsfv;
#endif
Richard Kenner committed
2872

2873
	  /* If the entry isn't valid, skip it.  */
2874
	  if (! exp_equiv_p (p->exp, p->exp, 1, false))
2875
	    continue;
2876

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	  if (GET_CODE (p->exp) == COMPARE
	      /* Another possibility is that this machine has a compare insn
		 that includes the comparison code.  In that case, ARG1 would
		 be equivalent to a comparison operation that would set ARG1 to
		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
		 ORIG_CODE is the actual comparison being done; if it is an EQ,
		 we must reverse ORIG_CODE.  On machine with a negative value
		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
	      || ((code == NE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_INT
		       && (GET_MODE_BITSIZE (inner_mode)
			   <= HOST_BITS_PER_WIDE_INT)
		       && (STORE_FLAG_VALUE
			   & ((HOST_WIDE_INT) 1
			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
2893
#ifdef FLOAT_STORE_FLAG_VALUE
2894
		   || (code == LT
2895
		       && SCALAR_FLOAT_MODE_P (inner_mode)
2896 2897
		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
			   REAL_VALUE_NEGATIVE (fsfv)))
2898
#endif
2899
		   )
2900
		  && COMPARISON_P (p->exp)))
Richard Kenner committed
2901
	    {
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	      x = p->exp;
	      break;
	    }
	  else if ((code == EQ
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_INT
			&& (GET_MODE_BITSIZE (inner_mode)
			    <= HOST_BITS_PER_WIDE_INT)
			&& (STORE_FLAG_VALUE
			    & ((HOST_WIDE_INT) 1
			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		    || (code == GE
2915
			&& SCALAR_FLOAT_MODE_P (inner_mode)
2916 2917
			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
			    REAL_VALUE_NEGATIVE (fsfv)))
2918 2919
#endif
		    )
2920
		   && COMPARISON_P (p->exp))
2921 2922 2923 2924
	    {
	      reverse_code = 1;
	      x = p->exp;
	      break;
Richard Kenner committed
2925 2926
	    }

2927 2928 2929 2930
	  /* If this non-trapping address, e.g. fp + constant, the
	     equivalent is a better operand since it may let us predict
	     the value of the comparison.  */
	  else if (!rtx_addr_can_trap_p (p->exp))
2931 2932 2933 2934
	    {
	      arg1 = p->exp;
	      continue;
	    }
Richard Kenner committed
2935 2936
	}

2937 2938 2939 2940
      /* If we didn't find a useful equivalence for ARG1, we are done.
	 Otherwise, set up for the next iteration.  */
      if (x == 0)
	break;
Richard Kenner committed
2941

2942 2943 2944
      /* If we need to reverse the comparison, make sure that that is
	 possible -- we can't necessarily infer the value of GE from LT
	 with floating-point operands.  */
2945
      if (reverse_code)
2946 2947 2948 2949
	{
	  enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
	  if (reversed == UNKNOWN)
	    break;
Kazu Hirata committed
2950 2951
	  else
	    code = reversed;
2952
	}
2953
      else if (COMPARISON_P (x))
2954 2955
	code = GET_CODE (x);
      arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
Richard Kenner committed
2956 2957
    }

2958 2959 2960 2961 2962 2963
  /* Return our results.  Return the modes from before fold_rtx
     because fold_rtx might produce const_int, and then it's too late.  */
  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);

  return code;
Richard Kenner committed
2964 2965
}

Paolo Bonzini committed
2966 2967 2968 2969
/* If X is a nontrivial arithmetic operation on an argument for which
   a constant value can be determined, return the result of operating
   on that value, as a constant.  Otherwise, return X, possibly with
   one or more operands changed to a forward-propagated constant.
2970

Paolo Bonzini committed
2971 2972 2973
   If X is a register whose contents are known, we do NOT return
   those contents here; equiv_constant is called to perform that task.
   For SUBREGs and MEMs, we do that both here and in equiv_constant.
Richard Kenner committed
2974 2975 2976 2977 2978

   INSN is the insn that we may be modifying.  If it is 0, make a copy
   of X before modifying it.  */

static rtx
2979
fold_rtx (rtx x, rtx insn)
Richard Kenner committed
2980
{
2981 2982 2983 2984
  enum rtx_code code;
  enum machine_mode mode;
  const char *fmt;
  int i;
2985
  rtx new_rtx = 0;
Paolo Bonzini committed
2986
  int changed = 0;
Richard Kenner committed
2987

Paolo Bonzini committed
2988
  /* Operands of X.  */
Richard Kenner committed
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
  rtx folded_arg0;
  rtx folded_arg1;

  /* Constant equivalents of first three operands of X;
     0 when no such equivalent is known.  */
  rtx const_arg0;
  rtx const_arg1;
  rtx const_arg2;

  /* The mode of the first operand of X.  We need this for sign and zero
     extends.  */
  enum machine_mode mode_arg0;

  if (x == 0)
    return x;

Paolo Bonzini committed
3005
  /* Try to perform some initial simplifications on X.  */
Richard Kenner committed
3006 3007 3008
  code = GET_CODE (x);
  switch (code)
    {
Paolo Bonzini committed
3009 3010
    case MEM:
    case SUBREG:
3011 3012
      if ((new_rtx = equiv_constant (x)) != NULL_RTX)
        return new_rtx;
Paolo Bonzini committed
3013 3014
      return x;

Richard Kenner committed
3015 3016 3017
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
3018
    case CONST_FIXED:
3019
    case CONST_VECTOR:
Richard Kenner committed
3020 3021 3022
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
3023
    case PC:
Richard Kenner committed
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
      /* No use simplifying an EXPR_LIST
	 since they are used only for lists of args
	 in a function call's REG_EQUAL note.  */
    case EXPR_LIST:
      return x;

#ifdef HAVE_cc0
    case CC0:
      return prev_insn_cc0;
#endif

3035
    case ASM_OPERANDS:
3036 3037 3038 3039 3040 3041
      if (insn)
	{
	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
	}
Paolo Bonzini committed
3042 3043 3044 3045 3046 3047
      return x;

#ifdef NO_FUNCTION_CSE
    case CALL:
      if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
	return x;
3048
      break;
Paolo Bonzini committed
3049
#endif
3050

Paolo Bonzini committed
3051
    /* Anything else goes through the loop below.  */
3052 3053
    default:
      break;
Richard Kenner committed
3054 3055
    }

Paolo Bonzini committed
3056
  mode = GET_MODE (x);
Richard Kenner committed
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
  const_arg0 = 0;
  const_arg1 = 0;
  const_arg2 = 0;
  mode_arg0 = VOIDmode;

  /* Try folding our operands.
     Then see which ones have constant values known.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
Paolo Bonzini committed
3069 3070
	rtx folded_arg = XEXP (x, i), const_arg;
	enum machine_mode mode_arg = GET_MODE (folded_arg);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084

	switch (GET_CODE (folded_arg))
	  {
	  case MEM:
	  case REG:
	  case SUBREG:
	    const_arg = equiv_constant (folded_arg);
	    break;

	  case CONST:
	  case CONST_INT:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case CONST_DOUBLE:
3085
	  case CONST_FIXED:
3086 3087 3088 3089
	  case CONST_VECTOR:
	    const_arg = folded_arg;
	    break;

Richard Kenner committed
3090
#ifdef HAVE_cc0
3091 3092 3093 3094 3095
	  case CC0:
	    folded_arg = prev_insn_cc0;
	    mode_arg = prev_insn_cc0_mode;
	    const_arg = equiv_constant (folded_arg);
	    break;
Richard Kenner committed
3096
#endif
3097 3098 3099 3100 3101 3102

	  default:
	    folded_arg = fold_rtx (folded_arg, insn);
	    const_arg = equiv_constant (folded_arg);
	    break;
	  }
Richard Kenner committed
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121

	/* For the first three operands, see if the operand
	   is constant or equivalent to a constant.  */
	switch (i)
	  {
	  case 0:
	    folded_arg0 = folded_arg;
	    const_arg0 = const_arg;
	    mode_arg0 = mode_arg;
	    break;
	  case 1:
	    folded_arg1 = folded_arg;
	    const_arg1 = const_arg;
	    break;
	  case 2:
	    const_arg2 = const_arg;
	    break;
	  }

Paolo Bonzini committed
3122 3123 3124 3125 3126
	/* Pick the least expensive of the argument and an equivalent constant
	   argument.  */
	if (const_arg != 0
	    && const_arg != folded_arg
	    && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3127

3128 3129
	    /* It's not safe to substitute the operand of a conversion
	       operator with a constant, as the conversion's identity
3130
	       depends upon the mode of its operand.  This optimization
3131
	       is handled by the call to simplify_unary_operation.  */
Paolo Bonzini committed
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	    && (GET_RTX_CLASS (code) != RTX_UNARY
		|| GET_MODE (const_arg) == mode_arg0
		|| (code != ZERO_EXTEND
		    && code != SIGN_EXTEND
		    && code != TRUNCATE
		    && code != FLOAT_TRUNCATE
		    && code != FLOAT_EXTEND
		    && code != FLOAT
		    && code != FIX
		    && code != UNSIGNED_FLOAT
		    && code != UNSIGNED_FIX)))
	  folded_arg = const_arg;

	if (folded_arg == XEXP (x, i))
	  continue;
Richard Kenner committed
3147

Paolo Bonzini committed
3148 3149 3150
	if (insn == NULL_RTX && !changed)
	  x = copy_rtx (x);
	changed = 1;
3151
	validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3152
      }
Richard Kenner committed
3153

Paolo Bonzini committed
3154
  if (changed)
Richard Kenner committed
3155
    {
Paolo Bonzini committed
3156 3157 3158
      /* Canonicalize X if necessary, and keep const_argN and folded_argN
	 consistent with the order in X.  */
      if (canonicalize_change_group (insn, x))
Richard Kenner committed
3159
	{
Paolo Bonzini committed
3160 3161 3162
	  rtx tem;
	  tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
	  tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
Richard Kenner committed
3163
	}
Paolo Bonzini committed
3164 3165

      apply_change_group ();
Richard Kenner committed
3166 3167 3168 3169 3170 3171
    }

  /* If X is an arithmetic operation, see if we can simplify it.  */

  switch (GET_RTX_CLASS (code))
    {
3172
    case RTX_UNARY:
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
      {
	int is_const = 0;

	/* We can't simplify extension ops unless we know the
	   original mode.  */
	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
	    && mode_arg0 == VOIDmode)
	  break;

	/* If we had a CONST, strip it off and put it back later if we
	   fold.  */
	if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
	  is_const = 1, const_arg0 = XEXP (const_arg0, 0);

3187
	new_rtx = simplify_unary_operation (code, mode,
3188 3189
					const_arg0 ? const_arg0 : folded_arg0,
					mode_arg0);
3190 3191 3192 3193 3194
	/* NEG of PLUS could be converted into MINUS, but that causes
	   expressions of the form
	   (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
	   which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
	   FIXME: those ports should be fixed.  */
3195 3196 3197 3198 3199 3200
	if (new_rtx != 0 && is_const
	    && GET_CODE (new_rtx) == PLUS
	    && (GET_CODE (XEXP (new_rtx, 0)) == SYMBOL_REF
		|| GET_CODE (XEXP (new_rtx, 0)) == LABEL_REF)
	    && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT)
	  new_rtx = gen_rtx_CONST (mode, new_rtx);
3201
      }
Richard Kenner committed
3202
      break;
3203

3204 3205
    case RTX_COMPARE:
    case RTX_COMM_COMPARE:
Richard Kenner committed
3206 3207 3208 3209 3210
      /* See what items are actually being compared and set FOLDED_ARG[01]
	 to those values and CODE to the actual comparison code.  If any are
	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
	 do anything if both operands are already known to be constant.  */

3211 3212 3213 3214
      /* ??? Vector mode comparisons are not supported yet.  */
      if (VECTOR_MODE_P (mode))
	break;

Richard Kenner committed
3215 3216 3217
      if (const_arg0 == 0 || const_arg1 == 0)
	{
	  struct table_elt *p0, *p1;
3218
	  rtx true_rtx, false_rtx;
3219
	  enum machine_mode mode_arg1;
3220

3221
	  if (SCALAR_FLOAT_MODE_P (mode))
3222
	    {
3223
#ifdef FLOAT_STORE_FLAG_VALUE
3224
	      true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
Kazu Hirata committed
3225
			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3226 3227 3228
#else
	      true_rtx = NULL_RTX;
#endif
3229
	      false_rtx = CONST0_RTX (mode);
3230
	    }
3231 3232 3233 3234 3235
	  else
	    {
	      true_rtx = const_true_rtx;
	      false_rtx = const0_rtx;
	    }
Richard Kenner committed
3236

3237 3238
	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
				       &mode_arg0, &mode_arg1);
Richard Kenner committed
3239

3240 3241 3242
	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
	     what kinds of things are being compared, so we can't do
	     anything with this comparison.  */
Richard Kenner committed
3243 3244 3245 3246

	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
	    break;

3247 3248 3249
	  const_arg0 = equiv_constant (folded_arg0);
	  const_arg1 = equiv_constant (folded_arg1);

Mike Stump committed
3250 3251 3252
	  /* If we do not now have two constants being compared, see
	     if we can nevertheless deduce some things about the
	     comparison.  */
Richard Kenner committed
3253 3254
	  if (const_arg0 == 0 || const_arg1 == 0)
	    {
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	      if (const_arg1 != NULL)
		{
		  rtx cheapest_simplification;
		  int cheapest_cost;
		  rtx simp_result;
		  struct table_elt *p;

		  /* See if we can find an equivalent of folded_arg0
		     that gets us a cheaper expression, possibly a
		     constant through simplifications.  */
		  p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
			      mode_arg0);
		  
		  if (p != NULL)
		    {
		      cheapest_simplification = x;
		      cheapest_cost = COST (x);

		      for (p = p->first_same_value; p != NULL; p = p->next_same_value)
			{
			  int cost;

			  /* If the entry isn't valid, skip it.  */
			  if (! exp_equiv_p (p->exp, p->exp, 1, false))
			    continue;

			  /* Try to simplify using this equivalence.  */
			  simp_result
			    = simplify_relational_operation (code, mode,
							     mode_arg0,
							     p->exp,
							     const_arg1);

			  if (simp_result == NULL)
			    continue;

			  cost = COST (simp_result);
			  if (cost < cheapest_cost)
			    {
			      cheapest_cost = cost;
			      cheapest_simplification = simp_result;
			    }
			}

		      /* If we have a cheaper expression now, use that
			 and try folding it further, from the top.  */
		      if (cheapest_simplification != x)
3302 3303
			return fold_rtx (copy_rtx (cheapest_simplification),
					 insn);
3304 3305 3306
		    }
		}

3307 3308
	      /* See if the two operands are the same.  */

3309 3310 3311 3312
	      if ((REG_P (folded_arg0)
		   && REG_P (folded_arg1)
		   && (REG_QTY (REGNO (folded_arg0))
		       == REG_QTY (REGNO (folded_arg1))))
3313
		  || ((p0 = lookup (folded_arg0,
3314 3315
				    SAFE_HASH (folded_arg0, mode_arg0),
				    mode_arg0))
3316
		      && (p1 = lookup (folded_arg1,
3317 3318
				       SAFE_HASH (folded_arg1, mode_arg0),
				       mode_arg0))
3319
		      && p0->first_same_value == p1->first_same_value))
3320
		folded_arg1 = folded_arg0;
Richard Kenner committed
3321 3322 3323 3324

	      /* If FOLDED_ARG0 is a register, see if the comparison we are
		 doing now is either the same as we did before or the reverse
		 (we only check the reverse if not floating-point).  */
3325
	      else if (REG_P (folded_arg0))
Richard Kenner committed
3326
		{
3327
		  int qty = REG_QTY (REGNO (folded_arg0));
Richard Kenner committed
3328

3329 3330 3331 3332 3333
		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
		    {
		      struct qty_table_elem *ent = &qty_table[qty];

		      if ((comparison_dominates_p (ent->comparison_code, code)
3334 3335 3336
			   || (! FLOAT_MODE_P (mode_arg0)
			       && comparison_dominates_p (ent->comparison_code,
						          reverse_condition (code))))
3337 3338 3339 3340
			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
			      || (const_arg1
				  && rtx_equal_p (ent->comparison_const,
						  const_arg1))
3341
			      || (REG_P (folded_arg1)
3342
				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
			{
			  if (comparison_dominates_p (ent->comparison_code, code))
			    {
			      if (true_rtx)
				return true_rtx;
			      else
				break;
			    }
			  else
			    return false_rtx;
			}
3354
		    }
Richard Kenner committed
3355 3356 3357 3358 3359 3360 3361
		}
	    }
	}

      /* If we are comparing against zero, see if the first operand is
	 equivalent to an IOR with a constant.  If so, we may be able to
	 determine the result of this comparison.  */
3362
      if (const_arg1 == const0_rtx && !const_arg0)
Richard Kenner committed
3363 3364 3365 3366 3367 3368 3369 3370
	{
	  rtx y = lookup_as_function (folded_arg0, IOR);
	  rtx inner_const;

	  if (y != 0
	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
	      && GET_CODE (inner_const) == CONST_INT
	      && INTVAL (inner_const) != 0)
3371
	    folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
Richard Kenner committed
3372 3373
	}

3374 3375 3376
      {
	rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
	rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3377
        new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3378
      }
Richard Kenner committed
3379 3380
      break;

3381 3382
    case RTX_BIN_ARITH:
    case RTX_COMM_ARITH:
Richard Kenner committed
3383 3384 3385 3386 3387 3388 3389 3390 3391
      switch (code)
	{
	case PLUS:
	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
	     with that LABEL_REF as its second operand.  If so, the result is
	     the first operand of that MINUS.  This handles switches with an
	     ADDR_DIFF_VEC table.  */
	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
	    {
3392 3393
	      rtx y
		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
Kazu Hirata committed
3394
		: lookup_as_function (folded_arg0, MINUS);
Richard Kenner committed
3395 3396 3397 3398

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
		return XEXP (y, 0);
3399 3400

	      /* Now try for a CONST of a MINUS like the above.  */
3401 3402
	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
			: lookup_as_function (folded_arg0, CONST))) != 0
3403 3404
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
3405
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3406
		return XEXP (XEXP (y, 0), 0);
Richard Kenner committed
3407
	    }
Richard Kenner committed
3408

3409 3410 3411 3412 3413
	  /* Likewise if the operands are in the other order.  */
	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
Kazu Hirata committed
3414
		: lookup_as_function (folded_arg1, MINUS);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
			: lookup_as_function (folded_arg1, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
3425
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3426 3427 3428
		return XEXP (XEXP (y, 0), 0);
	    }

Richard Kenner committed
3429 3430 3431
	  /* If second operand is a register equivalent to a negative
	     CONST_INT, see if we can find a register equivalent to the
	     positive constant.  Make a MINUS if so.  Don't do this for
3432
	     a non-negative constant since we might then alternate between
3433
	     choosing positive and negative constants.  Having the positive
3434 3435 3436 3437 3438 3439 3440
	     constant previously-used is the more common case.  Be sure
	     the resulting constant is non-negative; if const_arg1 were
	     the smallest negative number this would overflow: depending
	     on the mode, this would either just be the same value (and
	     hence not save anything) or be incorrect.  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
	      && INTVAL (const_arg1) < 0
3441 3442
	      /* This used to test

Kazu Hirata committed
3443
	         -INTVAL (const_arg1) >= 0
3444 3445 3446 3447

		 But The Sun V5.0 compilers mis-compiled that test.  So
		 instead we test for the problematic value in a more direct
		 manner and hope the Sun compilers get it correct.  */
3448 3449
	      && INTVAL (const_arg1) !=
	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3450
	      && REG_P (folded_arg1))
Richard Kenner committed
3451
	    {
Kazu Hirata committed
3452
	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
Richard Kenner committed
3453
	      struct table_elt *p
3454
		= lookup (new_const, SAFE_HASH (new_const, mode), mode);
Richard Kenner committed
3455 3456 3457

	      if (p)
		for (p = p->first_same_value; p; p = p->next_same_value)
3458
		  if (REG_P (p->exp))
3459 3460
		    return simplify_gen_binary (MINUS, mode, folded_arg0,
						canon_reg (p->exp, NULL_RTX));
Richard Kenner committed
3461
	    }
3462 3463 3464 3465 3466 3467 3468 3469 3470
	  goto from_plus;

	case MINUS:
	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
	     If so, produce (PLUS Z C2-C).  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
	      if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3471 3472
		return fold_rtx (plus_constant (copy_rtx (y),
						-INTVAL (const_arg1)),
3473
				 NULL_RTX);
3474
	    }
Richard Kenner committed
3475

Kazu Hirata committed
3476
	  /* Fall through.  */
Richard Kenner committed
3477

3478
	from_plus:
Richard Kenner committed
3479 3480
	case SMIN:    case SMAX:      case UMIN:    case UMAX:
	case IOR:     case AND:       case XOR:
3481
	case MULT:
Richard Kenner committed
3482 3483 3484 3485 3486 3487 3488 3489
	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
	     is known to be of similar form, we may be able to replace the
	     operation with a combined operation.  This may eliminate the
	     intermediate operation if every use is simplified in this way.
	     Note that the similar optimization done by combine.c only works
	     if the intermediate operation's result has only one reference.  */

3490
	  if (REG_P (folded_arg0)
Richard Kenner committed
3491 3492 3493 3494
	      && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      int is_shift
		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3495
	      rtx y, inner_const, new_const;
Richard Kenner committed
3496 3497
	      enum rtx_code associate_code;

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	      if (is_shift
		  && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
		      || INTVAL (const_arg1) < 0))
		{
		  if (SHIFT_COUNT_TRUNCATED)
		    const_arg1 = GEN_INT (INTVAL (const_arg1)
					  & (GET_MODE_BITSIZE (mode) - 1));
		  else
		    break;
		}

3509
	      y = lookup_as_function (folded_arg0, code);
3510 3511 3512 3513 3514 3515 3516 3517 3518
	      if (y == 0)
		break;

	      /* If we have compiled a statement like
		 "if (x == (x & mask1))", and now are looking at
		 "x & mask2", we will have a case where the first operand
		 of Y is the same as our first operand.  Unless we detect
		 this case, an infinite loop will result.  */
	      if (XEXP (y, 0) == folded_arg0)
Richard Kenner committed
3519 3520
		break;

3521 3522 3523 3524
	      inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
	      if (!inner_const || GET_CODE (inner_const) != CONST_INT)
		break;

Richard Kenner committed
3525 3526 3527 3528 3529
	      /* Don't associate these operations if they are a PLUS with the
		 same constant and it is a power of two.  These might be doable
		 with a pre- or post-increment.  Similarly for two subtracts of
		 identical powers of two with post decrement.  */

3530
	      if (code == PLUS && const_arg1 == inner_const
3531 3532 3533 3534 3535 3536 3537 3538
		  && ((HAVE_PRE_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_PRE_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
Richard Kenner committed
3539 3540
		break;

3541 3542 3543 3544 3545
	      /* ??? Vector mode shifts by scalar
		 shift operand are not supported yet.  */
	      if (is_shift && VECTOR_MODE_P (mode))
                break;

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	      if (is_shift
		  && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
		      || INTVAL (inner_const) < 0))
		{
		  if (SHIFT_COUNT_TRUNCATED)
		    inner_const = GEN_INT (INTVAL (inner_const)
					   & (GET_MODE_BITSIZE (mode) - 1));
		  else
		    break;
		}

Richard Kenner committed
3557
	      /* Compute the code used to compose the constants.  For example,
3558
		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
Richard Kenner committed
3559

3560
	      associate_code = (is_shift || code == MINUS ? PLUS : code);
Richard Kenner committed
3561 3562 3563 3564 3565 3566 3567 3568

	      new_const = simplify_binary_operation (associate_code, mode,
						     const_arg1, inner_const);

	      if (new_const == 0)
		break;

	      /* If we are associating shift operations, don't let this
3569 3570 3571 3572
		 produce a shift of the size of the object or larger.
		 This could occur when we follow a sign-extend by a right
		 shift on a machine that does a sign-extend as a pair
		 of shifts.  */
Richard Kenner committed
3573

3574 3575
	      if (is_shift
		  && GET_CODE (new_const) == CONST_INT
3576 3577 3578 3579 3580 3581
		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
		{
		  /* As an exception, we can turn an ASHIFTRT of this
		     form into a shift of the number of bits - 1.  */
		  if (code == ASHIFTRT)
		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3582 3583
		  else if (!side_effects_p (XEXP (y, 0)))
		    return CONST0_RTX (mode);
3584 3585 3586
		  else
		    break;
		}
Richard Kenner committed
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

	      y = copy_rtx (XEXP (y, 0));

	      /* If Y contains our first operand (the most common way this
		 can happen is if Y is a MEM), we would do into an infinite
		 loop if we tried to fold it.  So don't in that case.  */

	      if (! reg_mentioned_p (folded_arg0, y))
		y = fold_rtx (y, insn);

3597
	      return simplify_gen_binary (code, mode, y, new_const);
Richard Kenner committed
3598
	    }
3599 3600
	  break;

3601 3602 3603 3604 3605 3606 3607 3608
	case DIV:       case UDIV:
	  /* ??? The associative optimization performed immediately above is
	     also possible for DIV and UDIV using associate_code of MULT.
	     However, we would need extra code to verify that the
	     multiplication does not overflow, that is, there is no overflow
	     in the calculation of new_const.  */
	  break;

3609 3610
	default:
	  break;
Richard Kenner committed
3611 3612
	}

3613
      new_rtx = simplify_binary_operation (code, mode,
Richard Kenner committed
3614 3615 3616 3617
				       const_arg0 ? const_arg0 : folded_arg0,
				       const_arg1 ? const_arg1 : folded_arg1);
      break;

3618
    case RTX_OBJ:
Richard Kenner committed
3619 3620 3621 3622 3623 3624 3625
      /* (lo_sum (high X) X) is simply X.  */
      if (code == LO_SUM && const_arg0 != 0
	  && GET_CODE (const_arg0) == HIGH
	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
	return const_arg1;
      break;

3626 3627
    case RTX_TERNARY:
    case RTX_BITFIELD_OPS:
3628
      new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
Richard Kenner committed
3629 3630 3631 3632
					const_arg0 ? const_arg0 : folded_arg0,
					const_arg1 ? const_arg1 : folded_arg1,
					const_arg2 ? const_arg2 : XEXP (x, 2));
      break;
3633

3634 3635
    default:
      break;
Richard Kenner committed
3636 3637
    }

3638
  return new_rtx ? new_rtx : x;
Richard Kenner committed
3639 3640 3641 3642 3643 3644
}

/* Return a constant value currently equivalent to X.
   Return 0 if we don't know one.  */

static rtx
3645
equiv_constant (rtx x)
Richard Kenner committed
3646
{
3647
  if (REG_P (x)
3648 3649 3650 3651 3652 3653
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (x_ent->const_rtx)
3654
	x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3655
    }
Richard Kenner committed
3656

3657
  if (x == 0 || CONSTANT_P (x))
Richard Kenner committed
3658 3659
    return x;

Paolo Bonzini committed
3660 3661
  if (GET_CODE (x) == SUBREG)
    {
3662
      rtx new_rtx;
Paolo Bonzini committed
3663 3664

      /* See if we previously assigned a constant value to this SUBREG.  */
3665 3666 3667 3668
      if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
          || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
          || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
        return new_rtx;
Paolo Bonzini committed
3669 3670

      if (REG_P (SUBREG_REG (x))
3671
	  && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
Paolo Bonzini committed
3672 3673 3674 3675 3676 3677 3678 3679
        return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
				GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));

      return 0;
    }

  /* If X is a MEM, see if it is a constant-pool reference, or look it up in
     the hash table in case its value was seen before.  */
3680

3681
  if (MEM_P (x))
3682 3683 3684
    {
      struct table_elt *elt;

Paolo Bonzini committed
3685
      x = avoid_constant_pool_reference (x);
3686 3687 3688
      if (CONSTANT_P (x))
	return x;

3689
      elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3690 3691 3692 3693 3694 3695 3696 3697
      if (elt == 0)
	return 0;

      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->is_const && CONSTANT_P (elt->exp))
	  return elt->exp;
    }

Richard Kenner committed
3698 3699 3700
  return 0;
}

3701 3702
/* Given INSN, a jump insn, TAKEN indicates if we are following the
   "taken" branch.
Richard Kenner committed
3703 3704

   In certain cases, this can cause us to add an equivalence.  For example,
3705
   if we are following the taken case of
3706
	if (i == 2)
Richard Kenner committed
3707 3708 3709 3710 3711 3712
   we can add the fact that `i' and '2' are now equivalent.

   In any case, we can record that this comparison was passed.  If the same
   comparison is seen later, we will know its value.  */

static void
3713
record_jump_equiv (rtx insn, bool taken)
Richard Kenner committed
3714 3715 3716
{
  int cond_known_true;
  rtx op0, op1;
3717
  rtx set;
3718
  enum machine_mode mode, mode0, mode1;
Richard Kenner committed
3719 3720 3721 3722
  int reversed_nonequality = 0;
  enum rtx_code code;

  /* Ensure this is the right kind of insn.  */
3723 3724
  gcc_assert (any_condjump_p (insn));

3725
  set = pc_set (insn);
Richard Kenner committed
3726 3727 3728

  /* See if this jump condition is known true or false.  */
  if (taken)
3729
    cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
Richard Kenner committed
3730
  else
3731
    cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
Richard Kenner committed
3732 3733 3734 3735

  /* Get the type of comparison being done and the operands being compared.
     If we had to reverse a non-equality condition, record that fact so we
     know that it isn't valid for floating-point.  */
3736 3737 3738
  code = GET_CODE (XEXP (SET_SRC (set), 0));
  op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
  op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
Richard Kenner committed
3739

3740
  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
Richard Kenner committed
3741 3742
  if (! cond_known_true)
    {
3743
      code = reversed_comparison_code_parts (code, op0, op1, insn);
3744 3745 3746 3747

      /* Don't remember if we can't find the inverse.  */
      if (code == UNKNOWN)
	return;
Richard Kenner committed
3748 3749 3750
    }

  /* The mode is the mode of the non-constant.  */
3751 3752 3753
  mode = mode0;
  if (mode1 != VOIDmode)
    mode = mode1;
Richard Kenner committed
3754 3755 3756 3757

  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
/* Yet another form of subreg creation.  In this case, we want something in
   MODE, and we should assume OP has MODE iff it is naturally modeless.  */

static rtx
record_jump_cond_subreg (enum machine_mode mode, rtx op)
{
  enum machine_mode op_mode = GET_MODE (op);
  if (op_mode == mode || op_mode == VOIDmode)
    return op;
  return lowpart_subreg (mode, op, op_mode);
}

Richard Kenner committed
3770 3771 3772 3773 3774 3775
/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
   Make any useful entries we can with that information.  Called from
   above function and called recursively.  */

static void
3776 3777
record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
		  rtx op1, int reversed_nonequality)
Richard Kenner committed
3778
{
Richard Kenner committed
3779
  unsigned op0_hash, op1_hash;
Bernd Schmidt committed
3780
  int op0_in_memory, op1_in_memory;
Richard Kenner committed
3781 3782 3783 3784 3785
  struct table_elt *op0_elt, *op1_elt;

  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
     we know that they are also equal in the smaller mode (this is also
     true for all smaller modes whether or not there is a SUBREG, but
3786
     is not worth testing for with no SUBREG).  */
Richard Kenner committed
3787

3788
  /* Note that GET_MODE (op0) may not equal MODE.  */
Richard Kenner committed
3789
  if (code == EQ && GET_CODE (op0) == SUBREG
3790 3791
      && (GET_MODE_SIZE (GET_MODE (op0))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
3792 3793
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3794 3795 3796 3797
      rtx tem = record_jump_cond_subreg (inner_mode, op1);
      if (tem)
	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
			  reversed_nonequality);
Richard Kenner committed
3798 3799 3800
    }

  if (code == EQ && GET_CODE (op1) == SUBREG
3801 3802
      && (GET_MODE_SIZE (GET_MODE (op1))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
3803 3804
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3805 3806 3807 3808
      rtx tem = record_jump_cond_subreg (inner_mode, op0);
      if (tem)
	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
			  reversed_nonequality);
Richard Kenner committed
3809 3810
    }

3811
  /* Similarly, if this is an NE comparison, and either is a SUBREG
Richard Kenner committed
3812 3813
     making a smaller mode, we know the whole thing is also NE.  */

3814 3815 3816 3817
  /* Note that GET_MODE (op0) may not equal MODE;
     if we test MODE instead, we can get an infinite recursion
     alternating between two modes each wider than MODE.  */

Richard Kenner committed
3818 3819
  if (code == NE && GET_CODE (op0) == SUBREG
      && subreg_lowpart_p (op0)
3820 3821
      && (GET_MODE_SIZE (GET_MODE (op0))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
3822 3823
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3824 3825 3826 3827
      rtx tem = record_jump_cond_subreg (inner_mode, op1);
      if (tem)
	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
			  reversed_nonequality);
Richard Kenner committed
3828 3829 3830 3831
    }

  if (code == NE && GET_CODE (op1) == SUBREG
      && subreg_lowpart_p (op1)
3832 3833
      && (GET_MODE_SIZE (GET_MODE (op1))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
3834 3835
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3836 3837 3838 3839
      rtx tem = record_jump_cond_subreg (inner_mode, op0);
      if (tem)
	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
			  reversed_nonequality);
Richard Kenner committed
3840 3841 3842 3843 3844 3845
    }

  /* Hash both operands.  */

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
3846
  op0_hash = HASH (op0, mode);
Richard Kenner committed
3847 3848 3849 3850 3851 3852 3853
  op0_in_memory = hash_arg_in_memory;

  if (do_not_record)
    return;

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
3854
  op1_hash = HASH (op1, mode);
Richard Kenner committed
3855
  op1_in_memory = hash_arg_in_memory;
3856

Richard Kenner committed
3857 3858 3859 3860
  if (do_not_record)
    return;

  /* Look up both operands.  */
Richard Kenner committed
3861 3862
  op0_elt = lookup (op0, op0_hash, mode);
  op1_elt = lookup (op1, op1_hash, mode);
Richard Kenner committed
3863

3864 3865 3866 3867 3868 3869 3870
  /* If both operands are already equivalent or if they are not in the
     table but are identical, do nothing.  */
  if ((op0_elt != 0 && op1_elt != 0
       && op0_elt->first_same_value == op1_elt->first_same_value)
      || op0 == op1 || rtx_equal_p (op0, op1))
    return;

Richard Kenner committed
3871
  /* If we aren't setting two things equal all we can do is save this
3872 3873 3874 3875 3876
     comparison.   Similarly if this is floating-point.  In the latter
     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
     If we record the equality, we might inadvertently delete code
     whose intent was to change -0 to +0.  */

3877
  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
Richard Kenner committed
3878
    {
3879 3880 3881
      struct qty_table_elem *ent;
      int qty;

Richard Kenner committed
3882 3883 3884 3885
      /* If we reversed a floating-point comparison, if OP0 is not a
	 register, or if OP1 is neither a register or constant, we can't
	 do anything.  */

3886
      if (!REG_P (op1))
Richard Kenner committed
3887 3888
	op1 = equiv_constant (op1);

3889
      if ((reversed_nonequality && FLOAT_MODE_P (mode))
3890
	  || !REG_P (op0) || op1 == 0)
Richard Kenner committed
3891 3892 3893 3894 3895 3896
	return;

      /* Put OP0 in the hash table if it isn't already.  This gives it a
	 new quantity number.  */
      if (op0_elt == 0)
	{
3897
	  if (insert_regs (op0, NULL, 0))
Richard Kenner committed
3898 3899
	    {
	      rehash_using_reg (op0);
Richard Kenner committed
3900
	      op0_hash = HASH (op0, mode);
3901 3902 3903 3904 3905

	      /* If OP0 is contained in OP1, this changes its hash code
		 as well.  Faster to rehash than to check, except
		 for the simple case of a constant.  */
	      if (! CONSTANT_P (op1))
Richard Kenner committed
3906
		op1_hash = HASH (op1,mode);
Richard Kenner committed
3907 3908
	    }

3909
	  op0_elt = insert (op0, NULL, op0_hash, mode);
Richard Kenner committed
3910 3911 3912
	  op0_elt->in_memory = op0_in_memory;
	}

3913 3914 3915 3916
      qty = REG_QTY (REGNO (op0));
      ent = &qty_table[qty];

      ent->comparison_code = code;
3917
      if (REG_P (op1))
Richard Kenner committed
3918
	{
3919
	  /* Look it up again--in case op0 and op1 are the same.  */
Richard Kenner committed
3920
	  op1_elt = lookup (op1, op1_hash, mode);
3921

Richard Kenner committed
3922 3923 3924
	  /* Put OP1 in the hash table so it gets a new quantity number.  */
	  if (op1_elt == 0)
	    {
3925
	      if (insert_regs (op1, NULL, 0))
Richard Kenner committed
3926 3927
		{
		  rehash_using_reg (op1);
Richard Kenner committed
3928
		  op1_hash = HASH (op1, mode);
Richard Kenner committed
3929 3930
		}

3931
	      op1_elt = insert (op1, NULL, op1_hash, mode);
Richard Kenner committed
3932 3933 3934
	      op1_elt->in_memory = op1_in_memory;
	    }

3935 3936
	  ent->comparison_const = NULL_RTX;
	  ent->comparison_qty = REG_QTY (REGNO (op1));
Richard Kenner committed
3937 3938 3939
	}
      else
	{
3940 3941
	  ent->comparison_const = op1;
	  ent->comparison_qty = -1;
Richard Kenner committed
3942 3943 3944 3945 3946
	}

      return;
    }

3947 3948
  /* If either side is still missing an equivalence, make it now,
     then merge the equivalences.  */
Richard Kenner committed
3949 3950 3951

  if (op0_elt == 0)
    {
3952
      if (insert_regs (op0, NULL, 0))
Richard Kenner committed
3953 3954
	{
	  rehash_using_reg (op0);
Richard Kenner committed
3955
	  op0_hash = HASH (op0, mode);
Richard Kenner committed
3956 3957
	}

3958
      op0_elt = insert (op0, NULL, op0_hash, mode);
Richard Kenner committed
3959 3960 3961 3962 3963
      op0_elt->in_memory = op0_in_memory;
    }

  if (op1_elt == 0)
    {
3964
      if (insert_regs (op1, NULL, 0))
Richard Kenner committed
3965 3966
	{
	  rehash_using_reg (op1);
Richard Kenner committed
3967
	  op1_hash = HASH (op1, mode);
Richard Kenner committed
3968 3969
	}

3970
      op1_elt = insert (op1, NULL, op1_hash, mode);
Richard Kenner committed
3971 3972
      op1_elt->in_memory = op1_in_memory;
    }
3973 3974

  merge_equiv_classes (op0_elt, op1_elt);
Richard Kenner committed
3975 3976 3977 3978 3979 3980
}

/* CSE processing for one instruction.
   First simplify sources and addresses of all assignments
   in the instruction, using previously-computed equivalents values.
   Then install the new sources and destinations in the table
Steven Bosscher committed
3981
   of available values.  */
Richard Kenner committed
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992

/* Data on one SET contained in the instruction.  */

struct set
{
  /* The SET rtx itself.  */
  rtx rtl;
  /* The SET_SRC of the rtx (the original value, if it is changing).  */
  rtx src;
  /* The hash-table element for the SET_SRC of the SET.  */
  struct table_elt *src_elt;
Richard Kenner committed
3993 3994 3995 3996
  /* Hash value for the SET_SRC.  */
  unsigned src_hash;
  /* Hash value for the SET_DEST.  */
  unsigned dest_hash;
Richard Kenner committed
3997 3998
  /* The SET_DEST, with SUBREG, etc., stripped.  */
  rtx inner_dest;
3999
  /* Nonzero if the SET_SRC is in memory.  */
Richard Kenner committed
4000 4001 4002 4003
  char src_in_memory;
  /* Nonzero if the SET_SRC contains something
     whose value cannot be predicted and understood.  */
  char src_volatile;
4004 4005 4006 4007
  /* Original machine mode, in case it becomes a CONST_INT.
     The size of this field should match the size of the mode
     field of struct rtx_def (see rtl.h).  */
  ENUM_BITFIELD(machine_mode) mode : 8;
Richard Kenner committed
4008 4009
  /* A constant equivalent for SET_SRC, if any.  */
  rtx src_const;
Richard Kenner committed
4010 4011
  /* Hash value of constant equivalent for SET_SRC.  */
  unsigned src_const_hash;
Richard Kenner committed
4012 4013
  /* Table entry for constant equivalent for SET_SRC, if any.  */
  struct table_elt *src_const_elt;
4014 4015
  /* Table entry for the destination address.  */
  struct table_elt *dest_addr_elt;
Richard Kenner committed
4016 4017 4018
};

static void
Steven Bosscher committed
4019
cse_insn (rtx insn)
Richard Kenner committed
4020
{
4021 4022
  rtx x = PATTERN (insn);
  int i;
4023
  rtx tem;
4024
  int n_sets = 0;
Richard Kenner committed
4025 4026 4027

  rtx src_eqv = 0;
  struct table_elt *src_eqv_elt = 0;
Kaveh R. Ghazi committed
4028 4029 4030
  int src_eqv_volatile = 0;
  int src_eqv_in_memory = 0;
  unsigned src_eqv_hash = 0;
Richard Kenner committed
4031

4032
  struct set *sets = (struct set *) 0;
Richard Kenner committed
4033 4034

  this_insn = insn;
4035 4036 4037 4038 4039
#ifdef HAVE_cc0
  /* Records what this insn does to set CC0.  */
  this_insn_cc0 = 0;
  this_insn_cc0_mode = VOIDmode;
#endif
Richard Kenner committed
4040 4041 4042 4043 4044 4045

  /* Find all the SETs and CLOBBERs in this instruction.
     Record all the SETs in the array `set' and count them.
     Also determine whether there is a CLOBBER that invalidates
     all memory references, or all references at varying addresses.  */

4046
  if (CALL_P (insn))
4047 4048
    {
      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4049 4050 4051 4052 4053
	{
	  if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
	    invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
	}
4054 4055
    }

Richard Kenner committed
4056 4057
  if (GET_CODE (x) == SET)
    {
4058
      sets = XALLOCA (struct set);
Richard Kenner committed
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
      sets[0].rtl = x;

      /* Ignore SETs that are unconditional jumps.
	 They never need cse processing, so this does not hurt.
	 The reason is not efficiency but rather
	 so that we can test at the end for instructions
	 that have been simplified to unconditional jumps
	 and not be misled by unchanged instructions
	 that were unconditional jumps to begin with.  */
      if (SET_DEST (x) == pc_rtx
	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
	;

      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
	 The hard function value register is used only once, to copy to
	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
	 Ensure we invalidate the destination register.  On the 80386 no
4076
	 other code would invalidate it since it is a fixed_reg.
Mike Stump committed
4077
	 We need not check the return of apply_change_group; see canon_reg.  */
Richard Kenner committed
4078 4079 4080 4081

      else if (GET_CODE (SET_SRC (x)) == CALL)
	{
	  canon_reg (SET_SRC (x), insn);
4082
	  apply_change_group ();
Richard Kenner committed
4083
	  fold_rtx (SET_SRC (x), insn);
4084
	  invalidate (SET_DEST (x), VOIDmode);
Richard Kenner committed
4085 4086 4087 4088 4089 4090
	}
      else
	n_sets = 1;
    }
  else if (GET_CODE (x) == PARALLEL)
    {
4091
      int lim = XVECLEN (x, 0);
Richard Kenner committed
4092

4093
      sets = XALLOCAVEC (struct set, lim);
Richard Kenner committed
4094 4095 4096 4097 4098 4099 4100 4101 4102

      /* Find all regs explicitly clobbered in this insn,
	 and ensure they are not replaced with any other regs
	 elsewhere in this insn.
	 When a reg that is clobbered is also used for input,
	 we should presume that that is for a reason,
	 and we should not substitute some other register
	 which is not supposed to be clobbered.
	 Therefore, this loop cannot be merged into the one below
4103
	 because a CALL may precede a CLOBBER and refer to the
Richard Kenner committed
4104 4105 4106 4107
	 value clobbered.  We must not let a canonicalization do
	 anything in that case.  */
      for (i = 0; i < lim; i++)
	{
4108
	  rtx y = XVECEXP (x, 0, i);
4109 4110 4111 4112
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx clobbered = XEXP (y, 0);

4113
	      if (REG_P (clobbered)
4114
		  || GET_CODE (clobbered) == SUBREG)
4115
		invalidate (clobbered, VOIDmode);
4116 4117
	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
		       || GET_CODE (clobbered) == ZERO_EXTRACT)
4118
		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4119
	    }
Richard Kenner committed
4120
	}
4121

Richard Kenner committed
4122 4123
      for (i = 0; i < lim; i++)
	{
4124
	  rtx y = XVECEXP (x, 0, i);
Richard Kenner committed
4125 4126
	  if (GET_CODE (y) == SET)
	    {
4127 4128
	      /* As above, we ignore unconditional jumps and call-insns and
		 ignore the result of apply_change_group.  */
Richard Kenner committed
4129 4130 4131
	      if (GET_CODE (SET_SRC (y)) == CALL)
		{
		  canon_reg (SET_SRC (y), insn);
4132
		  apply_change_group ();
Richard Kenner committed
4133
		  fold_rtx (SET_SRC (y), insn);
4134
		  invalidate (SET_DEST (y), VOIDmode);
Richard Kenner committed
4135 4136 4137 4138 4139 4140 4141 4142 4143
		}
	      else if (SET_DEST (y) == pc_rtx
		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
		;
	      else
		sets[n_sets++].rtl = y;
	    }
	  else if (GET_CODE (y) == CLOBBER)
	    {
4144
	      /* If we clobber memory, canon the address.
Richard Kenner committed
4145 4146
		 This does nothing when a register is clobbered
		 because we have already invalidated the reg.  */
4147
	      if (MEM_P (XEXP (y, 0)))
4148
		canon_reg (XEXP (y, 0), insn);
Richard Kenner committed
4149 4150
	    }
	  else if (GET_CODE (y) == USE
4151
		   && ! (REG_P (XEXP (y, 0))
Richard Kenner committed
4152
			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4153
	    canon_reg (y, insn);
Richard Kenner committed
4154 4155
	  else if (GET_CODE (y) == CALL)
	    {
4156 4157
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */
Richard Kenner committed
4158
	      canon_reg (y, insn);
4159
	      apply_change_group ();
Richard Kenner committed
4160 4161 4162 4163 4164 4165
	      fold_rtx (y, insn);
	    }
	}
    }
  else if (GET_CODE (x) == CLOBBER)
    {
4166
      if (MEM_P (XEXP (x, 0)))
4167
	canon_reg (XEXP (x, 0), insn);
Richard Kenner committed
4168 4169 4170 4171
    }

  /* Canonicalize a USE of a pseudo register or memory location.  */
  else if (GET_CODE (x) == USE
4172
	   && ! (REG_P (XEXP (x, 0))
Richard Kenner committed
4173
		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4174
    canon_reg (XEXP (x, 0), insn);
Richard Kenner committed
4175 4176
  else if (GET_CODE (x) == CALL)
    {
4177
      /* The result of apply_change_group can be ignored; see canon_reg.  */
Richard Kenner committed
4178
      canon_reg (x, insn);
4179
      apply_change_group ();
Richard Kenner committed
4180 4181 4182
      fold_rtx (x, insn);
    }

4183 4184 4185
  /* Store the equivalent value in SRC_EQV, if different, or if the DEST
     is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
     is handled specially for this case, and if it isn't set, then there will
Richard Kenner committed
4186
     be no equivalence for the destination.  */
4187 4188
  if (n_sets == 1 && REG_NOTES (insn) != 0
      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4189 4190
      && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4191
    {
4192 4193 4194 4195
      /* The result of apply_change_group can be ignored; see canon_reg.  */
      canon_reg (XEXP (tem, 0), insn);
      apply_change_group ();
      src_eqv = fold_rtx (XEXP (tem, 0), insn);
4196
      XEXP (tem, 0) = copy_rtx (src_eqv);
4197
      df_notes_rescan (insn);
4198
    }
Richard Kenner committed
4199 4200 4201 4202 4203 4204 4205 4206 4207

  /* Canonicalize sources and addresses of destinations.
     We do this in a separate pass to avoid problems when a MATCH_DUP is
     present in the insn pattern.  In that case, we want to ensure that
     we don't break the duplicate nature of the pattern.  So we will replace
     both operands at the same time.  Otherwise, we would fail to find an
     equivalent substitution in the loop calling validate_change below.

     We used to suppress canonicalization of DEST if it appears in SRC,
4208
     but we don't do this any more.  */
Richard Kenner committed
4209 4210 4211 4212 4213

  for (i = 0; i < n_sets; i++)
    {
      rtx dest = SET_DEST (sets[i].rtl);
      rtx src = SET_SRC (sets[i].rtl);
4214
      rtx new_rtx = canon_reg (src, insn);
Richard Kenner committed
4215

4216
      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
Richard Kenner committed
4217

4218
      if (GET_CODE (dest) == ZERO_EXTRACT)
Richard Kenner committed
4219 4220
	{
	  validate_change (insn, &XEXP (dest, 1),
4221
			   canon_reg (XEXP (dest, 1), insn), 1);
Richard Kenner committed
4222
	  validate_change (insn, &XEXP (dest, 2),
4223
			   canon_reg (XEXP (dest, 2), insn), 1);
Richard Kenner committed
4224 4225
	}

4226
      while (GET_CODE (dest) == SUBREG
Richard Kenner committed
4227
	     || GET_CODE (dest) == ZERO_EXTRACT
4228
	     || GET_CODE (dest) == STRICT_LOW_PART)
Richard Kenner committed
4229 4230
	dest = XEXP (dest, 0);

4231
      if (MEM_P (dest))
Richard Kenner committed
4232 4233 4234
	canon_reg (dest, insn);
    }

4235 4236 4237 4238
  /* Now that we have done all the replacements, we can apply the change
     group and see if they all work.  Note that this will cause some
     canonicalizations that would have worked individually not to be applied
     because some other canonicalization didn't work, but this should not
4239
     occur often.
4240 4241

     The result of apply_change_group can be ignored; see canon_reg.  */
4242 4243 4244

  apply_change_group ();

Richard Kenner committed
4245 4246 4247 4248 4249 4250 4251 4252 4253
  /* Set sets[i].src_elt to the class each source belongs to.
     Detect assignments from or to volatile things
     and set set[i] to zero so they will be ignored
     in the rest of this function.

     Nothing in this loop changes the hash table or the register chains.  */

  for (i = 0; i < n_sets; i++)
    {
4254 4255 4256
      rtx src, dest;
      rtx src_folded;
      struct table_elt *elt = 0, *p;
Richard Kenner committed
4257 4258 4259 4260 4261
      enum machine_mode mode;
      rtx src_eqv_here;
      rtx src_const = 0;
      rtx src_related = 0;
      struct table_elt *src_const_elt = 0;
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
      int src_cost = MAX_COST;
      int src_eqv_cost = MAX_COST;
      int src_folded_cost = MAX_COST;
      int src_related_cost = MAX_COST;
      int src_elt_cost = MAX_COST;
      int src_regcost = MAX_COST;
      int src_eqv_regcost = MAX_COST;
      int src_folded_regcost = MAX_COST;
      int src_related_regcost = MAX_COST;
      int src_elt_regcost = MAX_COST;
4272
      /* Set nonzero if we need to call force_const_mem on with the
Richard Kenner committed
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
	 contents of src_folded before using it.  */
      int src_folded_force_flag = 0;

      dest = SET_DEST (sets[i].rtl);
      src = SET_SRC (sets[i].rtl);

      /* If SRC is a constant that has no machine mode,
	 hash it with the destination's machine mode.
	 This way we can keep different modes separate.  */

      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
      sets[i].mode = mode;

      if (src_eqv)
	{
	  enum machine_mode eqvmode = mode;
	  if (GET_CODE (dest) == STRICT_LOW_PART)
	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
Richard Kenner committed
4293
	  src_eqv_hash = HASH (src_eqv, eqvmode);
Richard Kenner committed
4294 4295 4296 4297

	  /* Find the equivalence class for the equivalent expression.  */

	  if (!do_not_record)
Richard Kenner committed
4298
	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
Richard Kenner committed
4299 4300 4301 4302 4303 4304 4305

	  src_eqv_volatile = do_not_record;
	  src_eqv_in_memory = hash_arg_in_memory;
	}

      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
	 value of the INNER register, not the destination.  So it is not
Richard Kenner committed
4306
	 a valid substitution for the source.  But save it for later.  */
Richard Kenner committed
4307 4308 4309 4310 4311 4312 4313 4314 4315
      if (GET_CODE (dest) == STRICT_LOW_PART)
	src_eqv_here = 0;
      else
	src_eqv_here = src_eqv;

      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
	 simplified result, which may not necessarily be valid.  */
      src_folded = fold_rtx (src, insn);

4316 4317 4318 4319 4320 4321 4322
#if 0
      /* ??? This caused bad code to be generated for the m68k port with -O2.
	 Suppose src is (CONST_INT -1), and that after truncation src_folded
	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
	 At the end we will add src and src_const to the same equivalence
	 class.  We now have 3 and -1 on the same equivalence class.  This
	 causes later instructions to be mis-optimized.  */
Richard Kenner committed
4323 4324
      /* If storing a constant in a bitfield, pre-truncate the constant
	 so we will be able to record it later.  */
4325
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
Richard Kenner committed
4326 4327 4328 4329 4330
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (GET_CODE (src) == CONST_INT
	      && GET_CODE (width) == CONST_INT
4331 4332 4333 4334 4335
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    src_folded
	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
					  << INTVAL (width)) - 1));
Richard Kenner committed
4336
	}
4337
#endif
Richard Kenner committed
4338 4339 4340 4341 4342 4343 4344 4345

      /* Compute SRC's hash code, and also notice if it
	 should not be recorded at all.  In that case,
	 prevent any further processing of this assignment.  */
      do_not_record = 0;
      hash_arg_in_memory = 0;

      sets[i].src = src;
Richard Kenner committed
4346
      sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
4347 4348 4349
      sets[i].src_volatile = do_not_record;
      sets[i].src_in_memory = hash_arg_in_memory;

4350
      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4351 4352 4353 4354 4355
	 a pseudo, do not record SRC.  Using SRC as a replacement for
	 anything else will be incorrect in that situation.  Note that
	 this usually occurs only for stack slots, in which case all the
	 RTL would be referring to SRC, so we don't lose any optimization
	 opportunities by not having SRC in the hash table.  */
4356

4357
      if (MEM_P (src)
4358
	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4359
	  && REG_P (dest)
4360
	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4361 4362
	sets[i].src_volatile = 1;

4363 4364 4365 4366
#if 0
      /* It is no longer clear why we used to do this, but it doesn't
	 appear to still be needed.  So let's try without it since this
	 code hurts cse'ing widened ops.  */
4367
      /* If source is a paradoxical subreg (such as QI treated as an SI),
Richard Kenner committed
4368 4369 4370 4371 4372 4373 4374
	 treat it as volatile.  It may do the work of an SI in one context
	 where the extra bits are not being used, but cannot replace an SI
	 in general.  */
      if (GET_CODE (src) == SUBREG
	  && (GET_MODE_SIZE (GET_MODE (src))
	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
	sets[i].src_volatile = 1;
4375
#endif
Richard Kenner committed
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393

      /* Locate all possible equivalent forms for SRC.  Try to replace
         SRC in the insn with each cheaper equivalent.

         We have the following types of equivalents: SRC itself, a folded
         version, a value given in a REG_EQUAL note, or a value related
	 to a constant.

         Each of these equivalents may be part of an additional class
         of equivalents (if more than one is in the table, they must be in
         the same class; we check for this).

	 If the source is volatile, we don't do any table lookups.

         We note any constant equivalent for possible later use in a
         REG_NOTE.  */

      if (!sets[i].src_volatile)
Richard Kenner committed
4394
	elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
4395 4396 4397 4398

      sets[i].src_elt = elt;

      if (elt && src_eqv_here && src_eqv_elt)
4399 4400
	{
	  if (elt->first_same_value != src_eqv_elt->first_same_value)
Richard Kenner committed
4401 4402 4403 4404
	    {
	      /* The REG_EQUAL is indicating that two formerly distinct
		 classes are now equivalent.  So merge them.  */
	      merge_equiv_classes (elt, src_eqv_elt);
Richard Kenner committed
4405 4406
	      src_eqv_hash = HASH (src_eqv, elt->mode);
	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
Richard Kenner committed
4407 4408
	    }

4409 4410
	  src_eqv_here = 0;
	}
Richard Kenner committed
4411 4412

      else if (src_eqv_elt)
4413
	elt = src_eqv_elt;
Richard Kenner committed
4414 4415 4416 4417

      /* Try to find a constant somewhere and record it in `src_const'.
	 Record its table element, if any, in `src_const_elt'.  Look in
	 any known equivalences first.  (If the constant is not in the
Richard Kenner committed
4418
	 table, also set `sets[i].src_const_hash').  */
Richard Kenner committed
4419
      if (elt)
4420
	for (p = elt->first_same_value; p; p = p->next_same_value)
Richard Kenner committed
4421 4422 4423 4424 4425 4426 4427 4428 4429
	  if (p->is_const)
	    {
	      src_const = p->exp;
	      src_const_elt = elt;
	      break;
	    }

      if (src_const == 0
	  && (CONSTANT_P (src_folded)
4430
	      /* Consider (minus (label_ref L1) (label_ref L2)) as
Richard Kenner committed
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
		 "constant" here so we will record it. This allows us
		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
	      || (GET_CODE (src_folded) == MINUS
		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
	src_const = src_folded, src_const_elt = elt;
      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
	src_const = src_eqv_here, src_const_elt = src_eqv_elt;

      /* If we don't know if the constant is in the table, get its
	 hash code and look it up.  */
      if (src_const && src_const_elt == 0)
	{
Richard Kenner committed
4444 4445
	  sets[i].src_const_hash = HASH (src_const, mode);
	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
Richard Kenner committed
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	}

      sets[i].src_const = src_const;
      sets[i].src_const_elt = src_const_elt;

      /* If the constant and our source are both in the table, mark them as
	 equivalent.  Otherwise, if a constant is in the table but the source
	 isn't, set ELT to it.  */
      if (src_const_elt && elt
	  && src_const_elt->first_same_value != elt->first_same_value)
	merge_equiv_classes (elt, src_const_elt);
      else if (src_const_elt && elt == 0)
	elt = src_const_elt;

      /* See if there is a register linearly related to a constant
         equivalent of SRC.  */
      if (src_const
	  && (GET_CODE (src_const) == CONST
	      || (src_const_elt && src_const_elt->related_value != 0)))
4465 4466 4467 4468
	{
	  src_related = use_related_value (src_const, src_const_elt);
	  if (src_related)
	    {
Richard Kenner committed
4469
	      struct table_elt *src_related_elt
4470
		= lookup (src_related, HASH (src_related, mode), mode);
Richard Kenner committed
4471
	      if (src_related_elt && elt)
4472
		{
Richard Kenner committed
4473 4474
		  if (elt->first_same_value
		      != src_related_elt->first_same_value)
4475
		    /* This can occur when we previously saw a CONST
Richard Kenner committed
4476 4477 4478 4479
		       involving a SYMBOL_REF and then see the SYMBOL_REF
		       twice.  Merge the involved classes.  */
		    merge_equiv_classes (elt, src_related_elt);

4480
		  src_related = 0;
Richard Kenner committed
4481
		  src_related_elt = 0;
4482 4483 4484
		}
	      else if (src_related_elt && elt == 0)
		elt = src_related_elt;
Richard Kenner committed
4485
	    }
4486
	}
Richard Kenner committed
4487

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
      /* See if we have a CONST_INT that is already in a register in a
	 wider mode.  */

      if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	{
	  enum machine_mode wider_mode;

	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
	       && src_related == 0;
	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
	    {
	      struct table_elt *const_elt
		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);

	      if (const_elt == 0)
		continue;

	      for (const_elt = const_elt->first_same_value;
		   const_elt; const_elt = const_elt->next_same_value)
4510
		if (REG_P (const_elt->exp))
4511
		  {
4512
		    src_related = gen_lowpart (mode, const_elt->exp);
4513 4514 4515 4516 4517
		    break;
		  }
	    }
	}

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
      /* Another possibility is that we have an AND with a constant in
	 a mode narrower than a word.  If so, it might have been generated
	 as part of an "if" which would narrow the AND.  If we already
	 have done the AND in a wider mode, we can use a SUBREG of that
	 value.  */

      if (flag_expensive_optimizations && ! src_related
	  && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  enum machine_mode tmode;
4529
	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4530 4531 4532 4533 4534

	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
4535
	      rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	      struct table_elt *larger_elt;

	      if (inner)
		{
		  PUT_MODE (new_and, tmode);
		  XEXP (new_and, 0) = inner;
		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
		  if (larger_elt == 0)
		    continue;

		  for (larger_elt = larger_elt->first_same_value;
		       larger_elt; larger_elt = larger_elt->next_same_value)
4548
		    if (REG_P (larger_elt->exp))
4549 4550
		      {
			src_related
4551
			  = gen_lowpart (mode, larger_elt->exp);
4552 4553 4554 4555 4556 4557 4558 4559
			break;
		      }

		  if (src_related)
		    break;
		}
	    }
	}
4560 4561 4562 4563 4564

#ifdef LOAD_EXTEND_OP
      /* See if a MEM has already been loaded with a widening operation;
	 if it has, we can use a subreg of that.  Many CISC machines
	 also have such operations, but this is only likely to be
4565
	 beneficial on these machines.  */
4566

Kazu Hirata committed
4567
      if (flag_expensive_optimizations && src_related == 0
4568 4569
	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	  && GET_MODE_CLASS (mode) == MODE_INT
4570
	  && MEM_P (src) && ! do_not_record
Zack Weinberg committed
4571
	  && LOAD_EXTEND_OP (mode) != UNKNOWN)
4572
	{
4573 4574
	  struct rtx_def memory_extend_buf;
	  rtx memory_extend_rtx = &memory_extend_buf;
4575
	  enum machine_mode tmode;
4576

4577 4578
	  /* Set what we are trying to extend and the operation it might
	     have been extended with.  */
4579
	  memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4580 4581
	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
	  XEXP (memory_extend_rtx, 0) = src;
4582

4583 4584 4585 4586 4587
	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      struct table_elt *larger_elt;
4588

4589
	      PUT_MODE (memory_extend_rtx, tmode);
4590
	      larger_elt = lookup (memory_extend_rtx,
4591 4592 4593
				   HASH (memory_extend_rtx, tmode), tmode);
	      if (larger_elt == 0)
		continue;
4594

4595 4596
	      for (larger_elt = larger_elt->first_same_value;
		   larger_elt; larger_elt = larger_elt->next_same_value)
4597
		if (REG_P (larger_elt->exp))
4598
		  {
4599
		    src_related = gen_lowpart (mode, larger_elt->exp);
4600 4601
		    break;
		  }
4602

4603 4604 4605 4606 4607
	      if (src_related)
		break;
	    }
	}
#endif /* LOAD_EXTEND_OP */
4608

Richard Kenner committed
4609
      if (src == src_folded)
4610
	src_folded = 0;
Richard Kenner committed
4611

4612
      /* At this point, ELT, if nonzero, points to a class of expressions
Richard Kenner committed
4613
         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4614
	 and SRC_RELATED, if nonzero, each contain additional equivalent
Richard Kenner committed
4615 4616 4617 4618 4619 4620 4621 4622
	 expressions.  Prune these latter expressions by deleting expressions
	 already in the equivalence class.

	 Check for an equivalent identical to the destination.  If found,
	 this is the preferred equivalent since it will likely lead to
	 elimination of the insn.  Indicate this by placing it in
	 `src_related'.  */

4623 4624
      if (elt)
	elt = elt->first_same_value;
Richard Kenner committed
4625
      for (p = elt; p; p = p->next_same_value)
4626
	{
Richard Kenner committed
4627 4628 4629 4630 4631
	  enum rtx_code code = GET_CODE (p->exp);

	  /* If the expression is not valid, ignore it.  Then we do not
	     have to check for validity below.  In most cases, we can use
	     `rtx_equal_p', since canonicalization has already been done.  */
4632
	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
Richard Kenner committed
4633 4634
	    continue;

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
	  /* Also skip paradoxical subregs, unless that's what we're
	     looking for.  */
	  if (code == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (p->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (p->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
	    continue;

4647
	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
Richard Kenner committed
4648
	    src = 0;
4649
	  else if (src_folded && GET_CODE (src_folded) == code
Richard Kenner committed
4650 4651
		   && rtx_equal_p (src_folded, p->exp))
	    src_folded = 0;
4652
	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
Richard Kenner committed
4653 4654
		   && rtx_equal_p (src_eqv_here, p->exp))
	    src_eqv_here = 0;
4655
	  else if (src_related && GET_CODE (src_related) == code
Richard Kenner committed
4656 4657 4658 4659 4660 4661 4662 4663
		   && rtx_equal_p (src_related, p->exp))
	    src_related = 0;

	  /* This is the same as the destination of the insns, we want
	     to prefer it.  Copy it to src_related.  The code below will
	     then give it a negative cost.  */
	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
	    src_related = dest;
4664
	}
Richard Kenner committed
4665 4666 4667 4668 4669

      /* Find the cheapest valid equivalent, trying all the available
         possibilities.  Prefer items not in the hash table to ones
         that are when they are equal cost.  Note that we can never
         worsen an insn as the current contents will also succeed.
4670
	 If we find an equivalent identical to the destination, use it as best,
Mike Stump committed
4671
	 since this insn will probably be eliminated in that case.  */
Richard Kenner committed
4672 4673 4674
      if (src)
	{
	  if (rtx_equal_p (src, dest))
4675
	    src_cost = src_regcost = -1;
Richard Kenner committed
4676
	  else
4677 4678 4679 4680
	    {
	      src_cost = COST (src);
	      src_regcost = approx_reg_cost (src);
	    }
Richard Kenner committed
4681 4682 4683 4684 4685
	}

      if (src_eqv_here)
	{
	  if (rtx_equal_p (src_eqv_here, dest))
4686
	    src_eqv_cost = src_eqv_regcost = -1;
Richard Kenner committed
4687
	  else
4688 4689 4690 4691
	    {
	      src_eqv_cost = COST (src_eqv_here);
	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
	    }
Richard Kenner committed
4692 4693 4694 4695 4696
	}

      if (src_folded)
	{
	  if (rtx_equal_p (src_folded, dest))
4697
	    src_folded_cost = src_folded_regcost = -1;
Richard Kenner committed
4698
	  else
4699 4700 4701 4702
	    {
	      src_folded_cost = COST (src_folded);
	      src_folded_regcost = approx_reg_cost (src_folded);
	    }
Richard Kenner committed
4703 4704 4705 4706 4707
	}

      if (src_related)
	{
	  if (rtx_equal_p (src_related, dest))
4708
	    src_related_cost = src_related_regcost = -1;
Richard Kenner committed
4709
	  else
4710 4711 4712 4713
	    {
	      src_related_cost = COST (src_related);
	      src_related_regcost = approx_reg_cost (src_related);
	    }
Richard Kenner committed
4714 4715 4716 4717 4718
	}

      /* If this was an indirect jump insn, a known label will really be
	 cheaper even though it looks more expensive.  */
      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4719
	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4720

Richard Kenner committed
4721 4722 4723
      /* Terminate loop when replacement made.  This must terminate since
         the current contents will be tested and will always be valid.  */
      while (1)
4724 4725
	{
	  rtx trial;
Richard Kenner committed
4726

4727
	  /* Skip invalid entries.  */
4728
	  while (elt && !REG_P (elt->exp)
4729
		 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4730
	    elt = elt->next_same_value;
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749

	  /* A paradoxical subreg would be bad here: it'll be the right
	     size, but later may be adjusted so that the upper bits aren't
	     what we want.  So reject it.  */
	  if (elt != 0
	      && GET_CODE (elt->exp) == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
	      /* It is okay, though, if the rtx we're trying to match
		 will ignore any of the bits we can't predict.  */
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (elt->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
	    {
	      elt = elt->next_same_value;
	      continue;
	    }
4750

Kazu Hirata committed
4751
	  if (elt)
4752 4753 4754 4755
	    {
	      src_elt_cost = elt->cost;
	      src_elt_regcost = elt->regcost;
	    }
Richard Kenner committed
4756

Kazu Hirata committed
4757
	  /* Find cheapest and skip it for the next time.   For items
Richard Kenner committed
4758 4759
	     of equal cost, use this order:
	     src_folded, src, src_eqv, src_related and hash table entry.  */
4760
	  if (src_folded
4761 4762 4763 4764 4765 4766 4767 4768
	      && preferable (src_folded_cost, src_folded_regcost,
			     src_cost, src_regcost) <= 0
	      && preferable (src_folded_cost, src_folded_regcost,
			     src_eqv_cost, src_eqv_regcost) <= 0
	      && preferable (src_folded_cost, src_folded_regcost,
			     src_related_cost, src_related_regcost) <= 0
	      && preferable (src_folded_cost, src_folded_regcost,
			     src_elt_cost, src_elt_regcost) <= 0)
Richard Kenner committed
4769
	    {
4770
	      trial = src_folded, src_folded_cost = MAX_COST;
Richard Kenner committed
4771
	      if (src_folded_force_flag)
4772 4773 4774 4775 4776
		{
		  rtx forced = force_const_mem (mode, trial);
		  if (forced)
		    trial = forced;
		}
Richard Kenner committed
4777
	    }
4778
	  else if (src
4779 4780 4781 4782 4783 4784
		   && preferable (src_cost, src_regcost,
				  src_eqv_cost, src_eqv_regcost) <= 0
		   && preferable (src_cost, src_regcost,
				  src_related_cost, src_related_regcost) <= 0
		   && preferable (src_cost, src_regcost,
				  src_elt_cost, src_elt_regcost) <= 0)
4785
	    trial = src, src_cost = MAX_COST;
4786
	  else if (src_eqv_here
4787 4788 4789 4790
		   && preferable (src_eqv_cost, src_eqv_regcost,
				  src_related_cost, src_related_regcost) <= 0
		   && preferable (src_eqv_cost, src_eqv_regcost,
				  src_elt_cost, src_elt_regcost) <= 0)
4791
	    trial = src_eqv_here, src_eqv_cost = MAX_COST;
4792
	  else if (src_related
4793 4794
		   && preferable (src_related_cost, src_related_regcost,
				  src_elt_cost, src_elt_regcost) <= 0)
4795
	    trial = src_related, src_related_cost = MAX_COST;
4796
	  else
Richard Kenner committed
4797
	    {
4798
	      trial = elt->exp;
Richard Kenner committed
4799
	      elt = elt->next_same_value;
4800
	      src_elt_cost = MAX_COST;
Richard Kenner committed
4801 4802
	    }

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	  /* Avoid creation of overlapping memory moves.  */
	  if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
	    {
	      rtx src, dest;

	      /* BLKmode moves are not handled by cse anyway.  */
	      if (GET_MODE (trial) == BLKmode)
		break;

	      src = canon_rtx (trial);
	      dest = canon_rtx (SET_DEST (sets[i].rtl));

	      if (!MEM_P (src) || !MEM_P (dest)
		  || !nonoverlapping_memrefs_p (src, dest))
		break;
	    }

Richard Kenner committed
4820 4821 4822 4823
	  /* We don't normally have an insn matching (set (pc) (pc)), so
	     check for this separately here.  We will delete such an
	     insn below.

4824 4825 4826 4827 4828
	     For other cases such as a table jump or conditional jump
	     where we know the ultimate target, go ahead and replace the
	     operand.  While that may not make a valid insn, we will
	     reemit the jump below (and also insert any necessary
	     barriers).  */
Richard Kenner committed
4829 4830 4831 4832 4833
	  if (n_sets == 1 && dest == pc_rtx
	      && (trial == pc_rtx
		  || (GET_CODE (trial) == LABEL_REF
		      && ! condjump_p (insn))))
	    {
4834 4835 4836 4837 4838
	      /* Don't substitute non-local labels, this confuses CFG.  */
	      if (GET_CODE (trial) == LABEL_REF
		  && LABEL_REF_NONLOCAL_P (trial))
		continue;

4839
	      SET_SRC (sets[i].rtl) = trial;
4840
	      cse_jumps_altered = true;
Richard Kenner committed
4841 4842
	      break;
	    }
4843

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	  /* Reject certain invalid forms of CONST that we create.  */
	  else if (CONSTANT_P (trial)
		   && GET_CODE (trial) == CONST
		   /* Reject cases that will cause decode_rtx_const to
		      die.  On the alpha when simplifying a switch, we
		      get (const (truncate (minus (label_ref)
		      (label_ref)))).  */
		   && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
		       /* Likewise on IA-64, except without the
			  truncate.  */
		       || (GET_CODE (XEXP (trial, 0)) == MINUS
			   && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
			   && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
	    /* Do nothing for this case.  */
	    ;

Richard Kenner committed
4860
	  /* Look for a substitution that makes a valid insn.  */
4861 4862
	  else if (validate_unshare_change
		     (insn, &SET_SRC (sets[i].rtl), trial, 0))
4863
	    {
4864
	      rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
4865

4866 4867 4868
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */

4869
	      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4870
	      apply_change_group ();
4871

4872 4873
	      break;
	    }
Richard Kenner committed
4874

4875
	  /* If we previously found constant pool entries for
Richard Kenner committed
4876 4877 4878 4879 4880 4881
	     constants and this is a constant, try making a
	     pool entry.  Put it in src_folded unless we already have done
	     this since that is where it likely came from.  */

	  else if (constant_pool_entries_cost
		   && CONSTANT_P (trial)
4882
		   && (src_folded == 0
4883
		       || (!MEM_P (src_folded)
4884
			   && ! src_folded_force_flag))
4885 4886
		   && GET_MODE_CLASS (mode) != MODE_CC
		   && mode != VOIDmode)
Richard Kenner committed
4887 4888 4889 4890
	    {
	      src_folded_force_flag = 1;
	      src_folded = trial;
	      src_folded_cost = constant_pool_entries_cost;
4891
	      src_folded_regcost = constant_pool_entries_regcost;
Richard Kenner committed
4892
	    }
4893
	}
Richard Kenner committed
4894 4895 4896 4897 4898 4899 4900 4901 4902

      src = SET_SRC (sets[i].rtl);

      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
	 However, there is an important exception:  If both are registers
	 that are not the head of their equivalence class, replace SET_SRC
	 with the head of the class.  If we do not do this, we will have
	 both registers live over a portion of the basic block.  This way,
	 their lifetimes will likely abut instead of overlapping.  */
4903
      if (REG_P (dest)
4904
	  && REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
4905
	{
4906 4907 4908 4909 4910
	  int dest_q = REG_QTY (REGNO (dest));
	  struct qty_table_elem *dest_ent = &qty_table[dest_q];

	  if (dest_ent->mode == GET_MODE (dest)
	      && dest_ent->first_reg != REGNO (dest)
4911
	      && REG_P (src) && REGNO (src) == REGNO (dest)
4912 4913
	      /* Don't do this if the original insn had a hard reg as
		 SET_SRC or SET_DEST.  */
4914
	      && (!REG_P (sets[i].src)
4915
		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4916
	      && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4917 4918
	    /* We can't call canon_reg here because it won't do anything if
	       SRC is a hard register.  */
4919
	    {
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
	      int src_q = REG_QTY (REGNO (src));
	      struct qty_table_elem *src_ent = &qty_table[src_q];
	      int first = src_ent->first_reg;
	      rtx new_src
		= (first >= FIRST_PSEUDO_REGISTER
		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));

	      /* We must use validate-change even for this, because this
		 might be a special no-op instruction, suitable only to
		 tag notes onto.  */
	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
		{
		  src = new_src;
		  /* If we had a constant that is cheaper than what we are now
		     setting SRC to, use that constant.  We ignored it when we
		     thought we could make this into a no-op.  */
		  if (src_const && COST (src_const) < COST (src)
4937 4938
		      && validate_change (insn, &SET_SRC (sets[i].rtl),
					  src_const, 0))
4939 4940
		    src = src_const;
		}
4941
	    }
Richard Kenner committed
4942 4943 4944 4945
	}

      /* If we made a change, recompute SRC values.  */
      if (src != sets[i].src)
4946 4947 4948
	{
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
Richard Kenner committed
4949
	  sets[i].src = src;
4950 4951 4952 4953 4954
	  sets[i].src_hash = HASH (src, mode);
	  sets[i].src_volatile = do_not_record;
	  sets[i].src_in_memory = hash_arg_in_memory;
	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
	}
Richard Kenner committed
4955 4956 4957 4958

      /* If this is a single SET, we are setting a register, and we have an
	 equivalent constant, we want to add a REG_NOTE.   We don't want
	 to write a REG_EQUAL note for a constant pseudo since verifying that
4959
	 that pseudo hasn't been eliminated is a pain.  Such a note also
4960
	 won't help anything.
4961 4962 4963 4964 4965

	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
	 which can be created for a reference to a compile time computable
	 entry in a jump table.  */

4966 4967
      if (n_sets == 1 && src_const && REG_P (dest)
	  && !REG_P (src_const)
4968 4969 4970 4971
	  && ! (GET_CODE (src_const) == CONST
		&& GET_CODE (XEXP (src_const, 0)) == MINUS
		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
Richard Kenner committed
4972
	{
4973 4974 4975 4976 4977
	  /* We only want a REG_EQUAL note if src_const != src.  */
	  if (! rtx_equal_p (src, src_const))
	    {
	      /* Make sure that the rtx is not shared.  */
	      src_const = copy_rtx (src_const);
4978

4979 4980 4981
	      /* Record the actual constant value in a REG_EQUAL note,
		 making a new one if one does not already exist.  */
	      set_unique_reg_note (insn, REG_EQUAL, src_const);
4982
	      df_notes_rescan (insn);
4983
	    }
Richard Kenner committed
4984 4985 4986 4987 4988
	}

      /* Now deal with the destination.  */
      do_not_record = 0;

4989 4990
      /* Look within any ZERO_EXTRACT to the MEM or REG within it.  */
      while (GET_CODE (dest) == SUBREG
Richard Kenner committed
4991 4992
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == STRICT_LOW_PART)
4993
	dest = XEXP (dest, 0);
Richard Kenner committed
4994 4995 4996

      sets[i].inner_dest = dest;

4997
      if (MEM_P (dest))
Richard Kenner committed
4998
	{
4999 5000 5001
#ifdef PUSH_ROUNDING
	  /* Stack pushes invalidate the stack pointer.  */
	  rtx addr = XEXP (dest, 0);
5002
	  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5003
	      && XEXP (addr, 0) == stack_pointer_rtx)
5004
	    invalidate (stack_pointer_rtx, VOIDmode);
5005
#endif
Richard Kenner committed
5006 5007 5008 5009 5010 5011 5012
	  dest = fold_rtx (dest, insn);
	}

      /* Compute the hash code of the destination now,
	 before the effects of this instruction are recorded,
	 since the register values used in the address computation
	 are those before this instruction.  */
Richard Kenner committed
5013
      sets[i].dest_hash = HASH (dest, mode);
Richard Kenner committed
5014 5015 5016 5017 5018

      /* Don't enter a bit-field in the hash table
	 because the value in it after the store
	 may not equal what was stored, due to truncation.  */

5019
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
Richard Kenner committed
5020 5021 5022 5023 5024
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (src_const != 0 && GET_CODE (src_const) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5025 5026 5027
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && ! (INTVAL (src_const)
		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
Richard Kenner committed
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
	    /* Exception: if the value is constant,
	       and it won't be truncated, record it.  */
	    ;
	  else
	    {
	      /* This is chosen so that the destination will be invalidated
		 but no new value will be recorded.
		 We must invalidate because sometimes constant
		 values can be recorded for bitfields.  */
	      sets[i].src_elt = 0;
	      sets[i].src_volatile = 1;
	      src_eqv = 0;
	      src_eqv_elt = 0;
	    }
	}

      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
	 the insn.  */
      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
	{
5048
	  /* One less use of the label this insn used to jump to.  */
5049
	  delete_insn_and_edges (insn);
5050
	  cse_jumps_altered = true;
Richard Kenner committed
5051 5052 5053 5054 5055
	  /* No more processing for this set.  */
	  sets[i].rtl = 0;
	}

      /* If this SET is now setting PC to a label, we know it used to
5056
	 be a conditional or computed branch.  */
5057 5058
      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
	       && !LABEL_REF_NONLOCAL_P (src))
Richard Kenner committed
5059
	{
5060 5061 5062 5063 5064 5065 5066 5067
	  /* We reemit the jump in as many cases as possible just in
	     case the form of an unconditional jump is significantly
	     different than a computed jump or conditional jump.

	     If this insn has multiple sets, then reemitting the
	     jump is nontrivial.  So instead we just force rerecognition
	     and hope for the best.  */
	  if (n_sets == 1)
Richard Kenner committed
5068
	    {
5069
	      rtx new_rtx, note;
5070

5071 5072
	      new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
	      JUMP_LABEL (new_rtx) = XEXP (src, 0);
Richard Kenner committed
5073
	      LABEL_NUSES (XEXP (src, 0))++;
5074 5075 5076 5077 5078 5079

	      /* Make sure to copy over REG_NON_LOCAL_GOTO.  */
	      note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
	      if (note)
		{
		  XEXP (note, 1) = NULL_RTX;
5080
		  REG_NOTES (new_rtx) = note;
5081 5082
		}

5083
	      delete_insn_and_edges (insn);
5084
	      insn = new_rtx;
Richard Kenner committed
5085
	    }
5086 5087
	  else
	    INSN_CODE (insn) = -1;
Richard Kenner committed
5088

5089 5090
	  /* Do not bother deleting any unreachable code, let jump do it.  */
	  cse_jumps_altered = true;
Richard Kenner committed
5091 5092 5093
	  sets[i].rtl = 0;
	}

5094 5095
      /* If destination is volatile, invalidate it and then do no further
	 processing for this assignment.  */
Richard Kenner committed
5096 5097

      else if (do_not_record)
5098
	{
5099
	  if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5100
	    invalidate (dest, VOIDmode);
5101
	  else if (MEM_P (dest))
5102
	    invalidate (dest, VOIDmode);
5103 5104
	  else if (GET_CODE (dest) == STRICT_LOW_PART
		   || GET_CODE (dest) == ZERO_EXTRACT)
5105
	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5106 5107
	  sets[i].rtl = 0;
	}
Richard Kenner committed
5108 5109

      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
Richard Kenner committed
5110
	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
Richard Kenner committed
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122

#ifdef HAVE_cc0
      /* If setting CC0, record what it was set to, or a constant, if it
	 is equivalent to a constant.  If it is being set to a floating-point
	 value, make a COMPARE with the appropriate constant of 0.  If we
	 don't do this, later code can interpret this as a test against
	 const0_rtx, which can cause problems if we try to put it into an
	 insn as a floating-point operand.  */
      if (dest == cc0_rtx)
	{
	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
	  this_insn_cc0_mode = mode;
5123
	  if (FLOAT_MODE_P (mode))
5124 5125
	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
					     CONST0_RTX (mode));
Richard Kenner committed
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
	}
#endif
    }

  /* Now enter all non-volatile source expressions in the hash table
     if they are not already present.
     Record their equivalence classes in src_elt.
     This way we can insert the corresponding destinations into
     the same classes even if the actual sources are no longer in them
     (having been invalidated).  */

  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
    {
5140 5141
      struct table_elt *elt;
      struct table_elt *classp = sets[0].src_elt;
Richard Kenner committed
5142 5143 5144 5145 5146 5147 5148 5149 5150
      rtx dest = SET_DEST (sets[0].rtl);
      enum machine_mode eqvmode = GET_MODE (dest);

      if (GET_CODE (dest) == STRICT_LOW_PART)
	{
	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  classp = 0;
	}
      if (insert_regs (src_eqv, classp, 0))
5151 5152 5153 5154
	{
	  rehash_using_reg (src_eqv);
	  src_eqv_hash = HASH (src_eqv, eqvmode);
	}
Richard Kenner committed
5155
      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
Richard Kenner committed
5156 5157
      elt->in_memory = src_eqv_in_memory;
      src_eqv_elt = elt;
5158 5159 5160 5161 5162

      /* Check to see if src_eqv_elt is the same as a set source which
	 does not yet have an elt, and if so set the elt of the set source
	 to src_eqv_elt.  */
      for (i = 0; i < n_sets; i++)
5163 5164
	if (sets[i].rtl && sets[i].src_elt == 0
	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5165
	  sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
    }

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl && ! sets[i].src_volatile
	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
      {
	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
	  {
	    /* REG_EQUAL in setting a STRICT_LOW_PART
	       gives an equivalent for the entire destination register,
	       not just for the subreg being stored in now.
	       This is a more interesting equivalence, so we arrange later
	       to treat the entire reg as the destination.  */
	    sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5180
	    sets[i].src_hash = src_eqv_hash;
Richard Kenner committed
5181 5182 5183 5184 5185
	  }
	else
	  {
	    /* Insert source and constant equivalent into hash table, if not
	       already present.  */
5186 5187 5188
	    struct table_elt *classp = src_eqv_elt;
	    rtx src = sets[i].src;
	    rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
5189 5190 5191
	    enum machine_mode mode
	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	    /* It's possible that we have a source value known to be
	       constant but don't have a REG_EQUAL note on the insn.
	       Lack of a note will mean src_eqv_elt will be NULL.  This
	       can happen where we've generated a SUBREG to access a
	       CONST_INT that is already in a register in a wider mode.
	       Ensure that the source expression is put in the proper
	       constant class.  */
	    if (!classp)
	      classp = sets[i].src_const_elt;

5202
	    if (sets[i].src_elt == 0)
Richard Kenner committed
5203
	      {
Steven Bosscher committed
5204
		struct table_elt *elt;
5205

Steven Bosscher committed
5206 5207 5208 5209 5210 5211 5212
		/* Note that these insert_regs calls cannot remove
		   any of the src_elt's, because they would have failed to
		   match if not still valid.  */
		if (insert_regs (src, classp, 0))
		  {
		    rehash_using_reg (src);
		    sets[i].src_hash = HASH (src, mode);
5213
		  }
Steven Bosscher committed
5214 5215 5216
		elt = insert (src, classp, sets[i].src_hash, mode);
		elt->in_memory = sets[i].src_in_memory;
		sets[i].src_elt = classp = elt;
Richard Kenner committed
5217 5218 5219 5220 5221
	      }
	    if (sets[i].src_const && sets[i].src_const_elt == 0
		&& src != sets[i].src_const
		&& ! rtx_equal_p (sets[i].src_const, src))
	      sets[i].src_elt = insert (sets[i].src_const, classp,
Richard Kenner committed
5222
					sets[i].src_const_hash, mode);
Richard Kenner committed
5223 5224 5225 5226 5227 5228 5229 5230
	  }
      }
    else if (sets[i].src_elt == 0)
      /* If we did not insert the source into the hash table (e.g., it was
	 volatile), note the equivalence class for the REG_EQUAL value, if any,
	 so that the destination goes into that class.  */
      sets[i].src_elt = src_eqv_elt;

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
  /* Record destination addresses in the hash table.  This allows us to
     check if they are invalidated by other sets.  */
  for (i = 0; i < n_sets; i++)
    {
      if (sets[i].rtl)
	{
	  rtx x = sets[i].inner_dest;
	  struct table_elt *elt;
	  enum machine_mode mode;
	  unsigned hash;

	  if (MEM_P (x))
	    {
	      x = XEXP (x, 0);
	      mode = GET_MODE (x);
	      hash = HASH (x, mode);
	      elt = lookup (x, hash, mode);
	      if (!elt)
		{
		  if (insert_regs (x, NULL, 0))
		    {
5252 5253
		      rtx dest = SET_DEST (sets[i].rtl);

5254 5255
		      rehash_using_reg (x);
		      hash = HASH (x, mode);
5256
		      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
		    }
		  elt = insert (x, NULL, hash, mode);
		}

	      sets[i].dest_addr_elt = elt;
	    }
	  else
	    sets[i].dest_addr_elt = NULL;
	}
    }

5268
  invalidate_from_clobbers (x);
5269

5270
  /* Some registers are invalidated by subroutine calls.  Memory is
5271 5272
     invalidated by non-constant calls.  */

5273
  if (CALL_P (insn))
Richard Kenner committed
5274
    {
Kenneth Zadeck committed
5275
      if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5276
	invalidate_memory ();
Richard Kenner committed
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
      invalidate_for_call ();
    }

  /* Now invalidate everything set by this instruction.
     If a SUBREG or other funny destination is being set,
     sets[i].rtl is still nonzero, so here we invalidate the reg
     a part of which is being set.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
5288 5289
	/* We can't use the inner dest, because the mode associated with
	   a ZERO_EXTRACT is significant.  */
5290
	rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
5291 5292 5293 5294 5295

	/* Needed for registers to remove the register from its
	   previous quantity's chain.
	   Needed for memory if this is a nonvarying address, unless
	   we have just done an invalidate_memory that covers even those.  */
5296
	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5297
	  invalidate (dest, VOIDmode);
5298
	else if (MEM_P (dest))
5299
	  invalidate (dest, VOIDmode);
5300 5301
	else if (GET_CODE (dest) == STRICT_LOW_PART
		 || GET_CODE (dest) == ZERO_EXTRACT)
5302
	  invalidate (XEXP (dest, 0), GET_MODE (dest));
Richard Kenner committed
5303 5304
      }

5305
  /* A volatile ASM invalidates everything.  */
5306
  if (NONJUMP_INSN_P (insn)
5307 5308 5309 5310
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    flush_hash_table ();

5311 5312 5313 5314 5315 5316 5317 5318 5319
  /* Don't cse over a call to setjmp; on some machines (eg VAX)
     the regs restored by the longjmp come from a later time
     than the setjmp.  */
  if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
    {
      flush_hash_table ();
      goto done;
    }

Richard Kenner committed
5320 5321 5322 5323 5324 5325 5326 5327 5328
  /* Make sure registers mentioned in destinations
     are safe for use in an expression to be inserted.
     This removes from the hash table
     any invalid entry that refers to one of these registers.

     We don't care about the return value from mention_regs because
     we are going to hash the SET_DEST values unconditionally.  */

  for (i = 0; i < n_sets; i++)
5329 5330 5331 5332 5333
    {
      if (sets[i].rtl)
	{
	  rtx x = SET_DEST (sets[i].rtl);

5334
	  if (!REG_P (x))
5335 5336 5337 5338 5339 5340
	    mention_regs (x);
	  else
	    {
	      /* We used to rely on all references to a register becoming
		 inaccessible when a register changes to a new quantity,
		 since that changes the hash code.  However, that is not
5341
		 safe, since after HASH_SIZE new quantities we get a
5342 5343 5344 5345 5346 5347 5348 5349
		 hash 'collision' of a register with its own invalid
		 entries.  And since SUBREGs have been changed not to
		 change their hash code with the hash code of the register,
		 it wouldn't work any longer at all.  So we have to check
		 for any invalid references lying around now.
		 This code is similar to the REG case in mention_regs,
		 but it knows that reg_tick has been incremented, and
		 it leaves reg_in_table as -1 .  */
5350
	      unsigned int regno = REGNO (x);
5351
	      unsigned int endregno = END_REGNO (x);
5352
	      unsigned int i;
5353 5354 5355

	      for (i = regno; i < endregno; i++)
		{
5356
		  if (REG_IN_TABLE (i) >= 0)
5357 5358
		    {
		      remove_invalid_refs (i);
5359
		      REG_IN_TABLE (i) = -1;
5360 5361 5362 5363 5364
		    }
		}
	    }
	}
    }
Richard Kenner committed
5365 5366

  /* We may have just removed some of the src_elt's from the hash table.
5367 5368
     So replace each one with the current head of the same class.
     Also check if destination addresses have been removed.  */
Richard Kenner committed
5369 5370 5371 5372

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
5373 5374 5375
	if (sets[i].dest_addr_elt
	    && sets[i].dest_addr_elt->first_same_value == 0)
	  {
5376
	    /* The elt was removed, which means this destination is not
5377 5378 5379 5380
	       valid after this instruction.  */
	    sets[i].rtl = NULL_RTX;
	  }
	else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
Richard Kenner committed
5381 5382 5383
	  /* If elt was removed, find current head of same class,
	     or 0 if nothing remains of that class.  */
	  {
5384
	    struct table_elt *elt = sets[i].src_elt;
Richard Kenner committed
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399

	    while (elt && elt->prev_same_value)
	      elt = elt->prev_same_value;

	    while (elt && elt->first_same_value == 0)
	      elt = elt->next_same_value;
	    sets[i].src_elt = elt ? elt->first_same_value : 0;
	  }
      }

  /* Now insert the destinations into their equivalence classes.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
5400 5401
	rtx dest = SET_DEST (sets[i].rtl);
	struct table_elt *elt;
Richard Kenner committed
5402 5403 5404 5405 5406

	/* Don't record value if we are not supposed to risk allocating
	   floating-point values in registers that might be wider than
	   memory.  */
	if ((flag_float_store
5407
	     && MEM_P (dest)
5408
	     && FLOAT_MODE_P (GET_MODE (dest)))
5409 5410 5411 5412
	    /* Don't record BLKmode values, because we don't know the
	       size of it, and can't be sure that other BLKmode values
	       have the same or smaller size.  */
	    || GET_MODE (dest) == BLKmode
Richard Kenner committed
5413 5414
	    /* If we didn't put a REG_EQUAL value or a source into the hash
	       table, there is no point is recording DEST.  */
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	    || sets[i].src_elt == 0
	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
	       or SIGN_EXTEND, don't record DEST since it can cause
	       some tracking to be wrong.

	       ??? Think about this more later.  */
	    || (GET_CODE (dest) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (dest))
		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
Richard Kenner committed
5426 5427 5428 5429 5430 5431 5432 5433
	  continue;

	/* STRICT_LOW_PART isn't part of the value BEING set,
	   and neither is the SUBREG inside it.
	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = SUBREG_REG (XEXP (dest, 0));

5434
	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
Richard Kenner committed
5435 5436
	  /* Registers must also be inserted into chains for quantities.  */
	  if (insert_regs (dest, sets[i].src_elt, 1))
5437 5438 5439 5440 5441 5442
	    {
	      /* If `insert_regs' changes something, the hash code must be
		 recalculated.  */
	      rehash_using_reg (dest);
	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
	    }
Richard Kenner committed
5443

5444 5445
	elt = insert (dest, sets[i].src_elt,
		      sets[i].dest_hash, GET_MODE (dest));
5446

5447
	elt->in_memory = (MEM_P (sets[i].inner_dest)
5448
			  && !MEM_READONLY_P (sets[i].inner_dest));
5449

5450 5451 5452 5453
	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
	   narrower than M2, and both M1 and M2 are the same number of words,
	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
	   make that equivalence as well.
Richard Kenner committed
5454

5455 5456
	   However, BAR may have equivalences for which gen_lowpart
	   will produce a simpler value than gen_lowpart applied to
Richard Kenner committed
5457
	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5458
	   BAR's equivalences.  If we don't get a simplified form, make
Richard Kenner committed
5459 5460 5461 5462 5463 5464 5465
	   the SUBREG.  It will not be used in an equivalence, but will
	   cause two similar assignments to be detected.

	   Note the loop below will find SUBREG_REG (DEST) since we have
	   already entered SRC and DEST of the SET in the table.  */

	if (GET_CODE (dest) == SUBREG
5466 5467
	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
		 / UNITS_PER_WORD)
5468
		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
Richard Kenner committed
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	    && (GET_MODE_SIZE (GET_MODE (dest))
		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && sets[i].src_elt != 0)
	  {
	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
	    struct table_elt *elt, *classp = 0;

	    for (elt = sets[i].src_elt->first_same_value; elt;
		 elt = elt->next_same_value)
	      {
		rtx new_src = 0;
Richard Kenner committed
5480
		unsigned src_hash;
Richard Kenner committed
5481
		struct table_elt *src_elt;
5482
		int byte = 0;
Richard Kenner committed
5483 5484

		/* Ignore invalid entries.  */
5485
		if (!REG_P (elt->exp)
5486
		    && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
Richard Kenner committed
5487 5488
		  continue;

5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
		/* We may have already been playing subreg games.  If the
		   mode is already correct for the destination, use it.  */
		if (GET_MODE (elt->exp) == new_mode)
		  new_src = elt->exp;
		else
		  {
		    /* Calculate big endian correction for the SUBREG_BYTE.
		       We have already checked that M1 (GET_MODE (dest))
		       is not narrower than M2 (new_mode).  */
		    if (BYTES_BIG_ENDIAN)
		      byte = (GET_MODE_SIZE (GET_MODE (dest))
			      - GET_MODE_SIZE (new_mode));

		    new_src = simplify_gen_subreg (new_mode, elt->exp,
					           GET_MODE (dest), byte);
		  }

5506 5507 5508 5509 5510 5511 5512 5513
		/* The call to simplify_gen_subreg fails if the value
		   is VOIDmode, yet we can't do any simplification, e.g.
		   for EXPR_LISTs denoting function call results.
		   It is invalid to construct a SUBREG with a VOIDmode
		   SUBREG_REG, hence a zero new_src means we can't do
		   this substitution.  */
		if (! new_src)
		  continue;
Richard Kenner committed
5514 5515 5516 5517 5518 5519 5520 5521 5522

		src_hash = HASH (new_src, new_mode);
		src_elt = lookup (new_src, src_hash, new_mode);

		/* Put the new source in the hash table is if isn't
		   already.  */
		if (src_elt == 0)
		  {
		    if (insert_regs (new_src, classp, 0))
5523 5524 5525 5526
		      {
			rehash_using_reg (new_src);
			src_hash = HASH (new_src, new_mode);
		      }
Richard Kenner committed
5527 5528 5529 5530
		    src_elt = insert (new_src, classp, src_hash, new_mode);
		    src_elt->in_memory = elt->in_memory;
		  }
		else if (classp && classp != src_elt->first_same_value)
5531
		  /* Show that two things that we've seen before are
Richard Kenner committed
5532 5533 5534 5535
		     actually the same.  */
		  merge_equiv_classes (src_elt, classp);

		classp = src_elt->first_same_value;
5536 5537
		/* Ignore invalid entries.  */
		while (classp
5538
		       && !REG_P (classp->exp)
5539
		       && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5540
		  classp = classp->next_same_value;
Richard Kenner committed
5541 5542 5543 5544
	      }
	  }
      }

5545 5546 5547 5548 5549 5550
  /* Special handling for (set REG0 REG1) where REG0 is the
     "cheapest", cheaper than REG1.  After cse, REG1 will probably not
     be used in the sequel, so (if easily done) change this insn to
     (set REG1 REG0) and replace REG1 with REG0 in the previous insn
     that computed their value.  Then REG1 will become a dead store
     and won't cloud the situation for later optimizations.
Richard Kenner committed
5551 5552 5553 5554 5555

     Do not make this change if REG1 is a hard register, because it will
     then be used in the sequel and we may be changing a two-operand insn
     into a three-operand insn.

Steven Bosscher committed
5556
     Also do not do this if we are operating on a copy of INSN.  */
Richard Kenner committed
5557

5558
  if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
Richard Kenner committed
5559
      && NEXT_INSN (PREV_INSN (insn)) == insn
5560
      && REG_P (SET_SRC (sets[0].rtl))
Richard Kenner committed
5561
      && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5562
      && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
Richard Kenner committed
5563
    {
5564 5565
      int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
      struct qty_table_elem *src_ent = &qty_table[src_q];
Richard Kenner committed
5566

Steven Bosscher committed
5567
      if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
Richard Kenner committed
5568
	{
5569 5570
	  /* Scan for the previous nonnote insn, but stop at a basic
	     block boundary.  */
5571 5572
	  rtx prev = insn;
	  rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5573 5574 5575 5576
	  do
	    {
	      prev = PREV_INSN (prev);
	    }
5577
	  while (prev != bb_head && NOTE_P (prev));
5578

5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
	  /* Do not swap the registers around if the previous instruction
	     attaches a REG_EQUIV note to REG1.

	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
	     from the pseudo that originally shadowed an incoming argument
	     to another register.  Some uses of REG_EQUIV might rely on it
	     being attached to REG1 rather than REG2.

	     This section previously turned the REG_EQUIV into a REG_EQUAL
	     note.  We cannot do that because REG_EQUIV may provide an
5589
	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
5590
	  if (NONJUMP_INSN_P (prev)
5591
	      && GET_CODE (PATTERN (prev)) == SET
5592 5593
	      && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5594 5595
	    {
	      rtx dest = SET_DEST (sets[0].rtl);
5596
	      rtx src = SET_SRC (sets[0].rtl);
5597
	      rtx note;
Richard Kenner committed
5598

5599 5600 5601
	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
	      validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
	      validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5602
	      apply_change_group ();
Richard Kenner committed
5603

5604 5605 5606 5607
	      /* If INSN has a REG_EQUAL note, and this note mentions
		 REG0, then we must delete it, because the value in
		 REG0 has changed.  If the note's value is REG1, we must
		 also delete it because that is now this insn's dest.  */
5608
	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5609 5610 5611
	      if (note != 0
		  && (reg_mentioned_p (dest, XEXP (note, 0))
		      || rtx_equal_p (src, XEXP (note, 0))))
5612 5613
		remove_note (insn, note);
	    }
Richard Kenner committed
5614 5615 5616
	}
    }

5617
done:;
Richard Kenner committed
5618 5619
}

5620
/* Remove from the hash table all expressions that reference memory.  */
Richard Kenner committed
5621

Richard Kenner committed
5622
static void
5623
invalidate_memory (void)
Richard Kenner committed
5624
{
5625 5626
  int i;
  struct table_elt *p, *next;
Richard Kenner committed
5627

5628
  for (i = 0; i < HASH_SIZE; i++)
5629 5630 5631 5632 5633 5634 5635 5636
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (p->in_memory)
	  remove_from_table (p, i);
      }
}

Richard Kenner committed
5637 5638 5639 5640 5641 5642 5643 5644
/* Perform invalidation on the basis of everything about an insn
   except for invalidating the actual places that are SET in it.
   This includes the places CLOBBERed, and anything that might
   alias with something that is SET or CLOBBERed.

   X is the pattern of the insn.  */

static void
5645
invalidate_from_clobbers (rtx x)
Richard Kenner committed
5646 5647 5648 5649
{
  if (GET_CODE (x) == CLOBBER)
    {
      rtx ref = XEXP (x, 0);
5650 5651
      if (ref)
	{
5652
	  if (REG_P (ref) || GET_CODE (ref) == SUBREG
5653
	      || MEM_P (ref))
5654 5655 5656 5657 5658
	    invalidate (ref, VOIDmode);
	  else if (GET_CODE (ref) == STRICT_LOW_PART
		   || GET_CODE (ref) == ZERO_EXTRACT)
	    invalidate (XEXP (ref, 0), GET_MODE (ref));
	}
Richard Kenner committed
5659 5660 5661
    }
  else if (GET_CODE (x) == PARALLEL)
    {
5662
      int i;
Richard Kenner committed
5663 5664
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
5665
	  rtx y = XVECEXP (x, 0, i);
Richard Kenner committed
5666 5667 5668
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx ref = XEXP (y, 0);
5669
	      if (REG_P (ref) || GET_CODE (ref) == SUBREG
5670
		  || MEM_P (ref))
5671 5672 5673 5674
		invalidate (ref, VOIDmode);
	      else if (GET_CODE (ref) == STRICT_LOW_PART
		       || GET_CODE (ref) == ZERO_EXTRACT)
		invalidate (XEXP (ref, 0), GET_MODE (ref));
Richard Kenner committed
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
	    }
	}
    }
}

/* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
   and replace any registers in them with either an equivalent constant
   or the canonical form of the register.  If we are inside an address,
   only do this if the address remains valid.

   OBJECT is 0 except when within a MEM in which case it is the MEM.

   Return the replacement for X.  */

static rtx
5690
cse_process_notes_1 (rtx x, rtx object, bool *changed)
Richard Kenner committed
5691 5692
{
  enum rtx_code code = GET_CODE (x);
5693
  const char *fmt = GET_RTX_FORMAT (code);
Richard Kenner committed
5694 5695 5696 5697 5698 5699 5700 5701 5702
  int i;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
5703
    case CONST_FIXED:
5704
    case CONST_VECTOR:
Richard Kenner committed
5705 5706 5707 5708 5709 5710
    case PC:
    case CC0:
    case LO_SUM:
      return x;

    case MEM:
5711
      validate_change (x, &XEXP (x, 0),
5712
		       cse_process_notes (XEXP (x, 0), x, changed), 0);
Richard Kenner committed
5713 5714 5715 5716 5717
      return x;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL)
5718
	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
Richard Kenner committed
5719
      if (XEXP (x, 1))
5720
	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
Richard Kenner committed
5721 5722
      return x;

5723 5724
    case SIGN_EXTEND:
    case ZERO_EXTEND:
5725
    case SUBREG:
5726
      {
5727
	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
5728 5729
	/* We don't substitute VOIDmode constants into these rtx,
	   since they would impede folding.  */
5730 5731
	if (GET_MODE (new_rtx) != VOIDmode)
	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
5732 5733 5734
	return x;
      }

Richard Kenner committed
5735
    case REG:
5736
      i = REG_QTY (REGNO (x));
Richard Kenner committed
5737 5738

      /* Return a constant or a constant register.  */
5739
      if (REGNO_QTY_VALID_P (REGNO (x)))
Richard Kenner committed
5740
	{
5741 5742 5743 5744
	  struct qty_table_elem *ent = &qty_table[i];

	  if (ent->const_rtx != NULL_RTX
	      && (CONSTANT_P (ent->const_rtx)
5745
		  || REG_P (ent->const_rtx)))
5746
	    {
5747 5748 5749
	      rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
	      if (new_rtx)
		return copy_rtx (new_rtx);
5750
	    }
Richard Kenner committed
5751 5752 5753
	}

      /* Otherwise, canonicalize this register.  */
5754
      return canon_reg (x, NULL_RTX);
5755

5756 5757
    default:
      break;
Richard Kenner committed
5758 5759 5760 5761 5762
    }

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    if (fmt[i] == 'e')
      validate_change (object, &XEXP (x, i),
5763
		       cse_process_notes (XEXP (x, i), object, changed), 0);
Richard Kenner committed
5764 5765 5766

  return x;
}
5767 5768 5769 5770

static rtx
cse_process_notes (rtx x, rtx object, bool *changed)
{
5771 5772
  rtx new_rtx = cse_process_notes_1 (x, object, changed);
  if (new_rtx != x)
5773
    *changed = true;
5774
  return new_rtx;
5775 5776
}

Richard Kenner committed
5777

5778
/* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
Richard Kenner committed
5779

5780 5781 5782 5783 5784 5785 5786 5787 5788
   DATA is a pointer to a struct cse_basic_block_data, that is used to
   describe the path.
   It is filled with a queue of basic blocks, starting with FIRST_BB
   and following a trace through the CFG.
  
   If all paths starting at FIRST_BB have been followed, or no new path
   starting at FIRST_BB can be constructed, this function returns FALSE.
   Otherwise, DATA->path is filled and the function returns TRUE indicating
   that a path to follow was found.
Richard Kenner committed
5789

5790
   If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5791
   block in the path will be FIRST_BB.  */
Richard Kenner committed
5792

5793 5794 5795
static bool
cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
	       int follow_jumps)
Richard Kenner committed
5796
{
5797 5798 5799 5800 5801
  basic_block bb;
  edge e;
  int path_size;
 
  SET_BIT (cse_visited_basic_blocks, first_bb->index);
Richard Kenner committed
5802

5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
  /* See if there is a previous path.  */
  path_size = data->path_size;

  /* There is a previous path.  Make sure it started with FIRST_BB.  */
  if (path_size)
    gcc_assert (data->path[0].bb == first_bb);

  /* There was only one basic block in the last path.  Clear the path and
     return, so that paths starting at another basic block can be tried.  */
  if (path_size == 1)
    {
      path_size = 0;
      goto done;
    }

  /* If the path was empty from the beginning, construct a new path.  */
  if (path_size == 0)
    data->path[path_size++].bb = first_bb;
  else
Richard Kenner committed
5822
    {
5823 5824 5825 5826 5827 5828
      /* Otherwise, path_size must be equal to or greater than 2, because
	 a previous path exists that is at least two basic blocks long.

	 Update the previous branch path, if any.  If the last branch was
	 previously along the branch edge, take the fallthrough edge now.  */
      while (path_size >= 2)
Richard Kenner committed
5829
	{
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
	  basic_block last_bb_in_path, previous_bb_in_path;
	  edge e;

	  --path_size;
	  last_bb_in_path = data->path[path_size].bb;
	  previous_bb_in_path = data->path[path_size - 1].bb;

	  /* If we previously followed a path along the branch edge, try
	     the fallthru edge now.  */
	  if (EDGE_COUNT (previous_bb_in_path->succs) == 2
	      && any_condjump_p (BB_END (previous_bb_in_path))
	      && (e = find_edge (previous_bb_in_path, last_bb_in_path))
	      && e == BRANCH_EDGE (previous_bb_in_path))
	    {
	      bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
	      if (bb != EXIT_BLOCK_PTR
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
		  && single_pred_p (bb)
		  /* We used to assert here that we would only see blocks
		     that we have not visited yet.  But we may end up
		     visiting basic blocks twice if the CFG has changed
		     in this run of cse_main, because when the CFG changes
		     the topological sort of the CFG also changes.  A basic
		     blocks that previously had more than two predecessors
		     may now have a single predecessor, and become part of
		     a path that starts at another basic block.

		     We still want to visit each basic block only once, so
		     halt the path here if we have already visited BB.  */
		  && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
		{
		  SET_BIT (cse_visited_basic_blocks, bb->index);
		  data->path[path_size++].bb = bb;
		  break;
		}
	    }

	  data->path[path_size].bb = NULL;
	}

      /* If only one block remains in the path, bail.  */
      if (path_size == 1)
	{
	  path_size = 0;
	  goto done;
Richard Kenner committed
5874 5875 5876
	}
    }

5877 5878
  /* Extend the path if possible.  */
  if (follow_jumps)
Richard Kenner committed
5879
    {
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
      bb = data->path[path_size - 1].bb;
      while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
	{
	  if (single_succ_p (bb))
	    e = single_succ_edge (bb);
	  else if (EDGE_COUNT (bb->succs) == 2
		   && any_condjump_p (BB_END (bb)))
	    {
	      /* First try to follow the branch.  If that doesn't lead
		 to a useful path, follow the fallthru edge.  */
	      e = BRANCH_EDGE (bb);
	      if (!single_pred_p (e->dest))
		e = FALLTHRU_EDGE (bb);
	    }
	  else
	    e = NULL;
Richard Kenner committed
5896

5897
	  if (e && e->dest != EXIT_BLOCK_PTR
5898 5899 5900 5901
	      && single_pred_p (e->dest)
	      /* Avoid visiting basic blocks twice.  The large comment
		 above explains why this can happen.  */
	      && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
	    {
	      basic_block bb2 = e->dest;
	      SET_BIT (cse_visited_basic_blocks, bb2->index);
	      data->path[path_size++].bb = bb2;
	      bb = bb2;
	    }
	  else
	    bb = NULL;
	}
    }

done:
  data->path_size = path_size;
  return path_size != 0;
}

/* Dump the path in DATA to file F.  NSETS is the number of sets
   in the path.  */

static void
cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
{
  int path_entry;

  fprintf (f, ";; Following path with %d sets: ", nsets);
  for (path_entry = 0; path_entry < data->path_size; path_entry++)
    fprintf (f, "%d ", (data->path[path_entry].bb)->index);
  fputc ('\n', dump_file);
  fflush (f);
}


5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
/* Return true if BB has exception handling successor edges.  */

static bool
have_eh_succ_edges (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->flags & EDGE_EH)
      return true;

  return false;
}


5950
/* Scan to the end of the path described by DATA.  Return an estimate of
5951
   the total number of SETs of all insns in the path.  */
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964

static void
cse_prescan_path (struct cse_basic_block_data *data)
{
  int nsets = 0;
  int path_size = data->path_size;
  int path_entry;

  /* Scan to end of each basic block in the path.  */
  for (path_entry = 0; path_entry < path_size; path_entry++) 
    {
      basic_block bb;
      rtx insn;
5965

5966
      bb = data->path[path_entry].bb;
Richard Kenner committed
5967

5968
      FOR_BB_INSNS (bb, insn)
Richard Kenner committed
5969
	{
5970 5971
	  if (!INSN_P (insn))
	    continue;
5972

5973 5974 5975 5976 5977 5978
	  /* A PARALLEL can have lots of SETs in it,
	     especially if it is really an ASM_OPERANDS.  */
	  if (GET_CODE (PATTERN (insn)) == PARALLEL)
	    nsets += XVECLEN (PATTERN (insn), 0);
	  else
	    nsets += 1;
Richard Kenner committed
5979
	}
5980 5981 5982 5983 5984 5985
    }

  data->nsets = nsets;
}

/* Process a single extended basic block described by EBB_DATA.  */
Richard Kenner committed
5986

5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
static void
cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
{
  int path_size = ebb_data->path_size;
  int path_entry;
  int num_insns = 0;

  /* Allocate the space needed by qty_table.  */
  qty_table = XNEWVEC (struct qty_table_elem, max_qty);

  new_basic_block ();
5998 5999
  cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
  cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6000 6001 6002
  for (path_entry = 0; path_entry < path_size; path_entry++)
    {
      basic_block bb;
6003
      rtx insn;
6004 6005

      bb = ebb_data->path[path_entry].bb;
6006 6007 6008 6009 6010

      /* Invalidate recorded information for eh regs if there is an EH
	 edge pointing to that bb.  */
      if (bb_has_eh_pred (bb))
	{
6011
	  df_ref *def_rec;
6012 6013 6014

	  for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
	    {
6015
	      df_ref def = *def_rec;
6016 6017 6018 6019 6020
	      if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
		invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
	    }
	}

6021
      FOR_BB_INSNS (bb, insn)
Richard Kenner committed
6022
	{
6023
	  optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
	  /* If we have processed 1,000 insns, flush the hash table to
	     avoid extreme quadratic behavior.  We must not include NOTEs
	     in the count since there may be more of them when generating
	     debugging information.  If we clear the table at different
	     times, code generated with -g -O might be different than code
	     generated with -O but not -g.

	     FIXME: This is a real kludge and needs to be done some other
		    way.  */
	  if (INSN_P (insn)
	      && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
	    {
	      flush_hash_table ();
	      num_insns = 0;
	    }
Richard Kenner committed
6039

6040
	  if (INSN_P (insn))
Richard Kenner committed
6041
	    {
6042 6043 6044
	      /* Process notes first so we have all notes in canonical forms
		 when looking for duplicate operations.  */
	      if (REG_NOTES (insn))
6045 6046 6047 6048 6049 6050 6051
		{
		  bool changed = false;
		  REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
						        NULL_RTX, &changed);
		  if (changed)
		    df_notes_rescan (insn);
		}
6052

Steven Bosscher committed
6053
	      cse_insn (insn);
6054 6055 6056

	      /* If we haven't already found an insn where we added a LABEL_REF,
		 check this one.  */
6057
	      if (INSN_P (insn) && !recorded_label_ref
6058 6059
		  && for_each_rtx (&PATTERN (insn), check_for_label_ref,
				   (void *) insn))
6060
		recorded_label_ref = true;
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087

#ifdef HAVE_cc0
	      /* If the previous insn set CC0 and this insn no longer
		 references CC0, delete the previous insn.  Here we use
		 fact that nothing expects CC0 to be valid over an insn,
		 which is true until the final pass.  */
	      {
		rtx prev_insn, tem;

		prev_insn = PREV_INSN (insn);
		if (prev_insn && NONJUMP_INSN_P (prev_insn)
		    && (tem = single_set (prev_insn)) != 0
		    && SET_DEST (tem) == cc0_rtx
		    && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
		  delete_insn (prev_insn);
	      }

	      /* If this insn is not the last insn in the basic block,
		 it will be PREV_INSN(insn) in the next iteration.  If
		 we recorded any CC0-related information for this insn,
		 remember it.  */
	      if (insn != BB_END (bb))
		{
		  prev_insn_cc0 = this_insn_cc0;
		  prev_insn_cc0_mode = this_insn_cc0_mode;
		}
#endif
6088 6089
	    }
	}
Richard Kenner committed
6090

6091 6092 6093 6094
      /* With non-call exceptions, we are not always able to update
	 the CFG properly inside cse_insn.  So clean up possibly
	 redundant EH edges here.  */
      if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6095
	cse_cfg_altered |= purge_dead_edges (bb);
6096

6097 6098 6099 6100 6101 6102 6103 6104 6105
      /* If we changed a conditional jump, we may have terminated
	 the path we are following.  Check that by verifying that
	 the edge we would take still exists.  If the edge does
	 not exist anymore, purge the remainder of the path.
	 Note that this will cause us to return to the caller.  */
      if (path_entry < path_size - 1)
	{
	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
	  if (!find_edge (bb, next_bb))
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
	    {
	      do
		{
		  path_size--;

		  /* If we truncate the path, we must also reset the
		     visited bit on the remaining blocks in the path,
		     or we will never visit them at all.  */
		  RESET_BIT (cse_visited_basic_blocks,
			     ebb_data->path[path_size].bb->index);
		  ebb_data->path[path_size].bb = NULL;
		}
	      while (path_size - 1 != path_entry);
	      ebb_data->path_size = path_size;
	    }
Richard Kenner committed
6121 6122
	}

6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
      /* If this is a conditional jump insn, record any known
	 equivalences due to the condition being tested.  */
      insn = BB_END (bb);
      if (path_entry < path_size - 1
	  && JUMP_P (insn)
	  && single_set (insn)
	  && any_condjump_p (insn))
	{
	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
	  bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
	  record_jump_equiv (insn, taken);
	}
6135 6136 6137 6138 6139 6140

#ifdef HAVE_cc0
      /* Clear the CC0-tracking related insns, they can't provide
	 useful information across basic block boundaries.  */
      prev_insn_cc0 = 0;
#endif
6141
    }
Richard Kenner committed
6142

6143
  gcc_assert (next_qty <= max_qty);
Richard Kenner committed
6144

6145
  free (qty_table);
Richard Kenner committed
6146
}
6147

Richard Kenner committed
6148 6149 6150 6151 6152

/* Perform cse on the instructions of a function.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.

6153 6154 6155 6156
   Return 2 if jump optimizations should be redone due to simplifications
   in conditional jump instructions.
   Return 1 if the CFG should be cleaned up because it has been modified.
   Return 0 otherwise.  */
Richard Kenner committed
6157 6158

int
6159
cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
Richard Kenner committed
6160
{
6161 6162
  struct cse_basic_block_data ebb_data;
  basic_block bb;
6163
  int *rc_order = XNEWVEC (int, last_basic_block);
6164
  int i, n_blocks;
Richard Kenner committed
6165

6166 6167 6168 6169 6170
  df_set_flags (DF_LR_RUN_DCE);
  df_analyze ();
  df_set_flags (DF_DEFER_INSN_RESCAN);

  reg_scan (get_insns (), max_reg_num ());
6171 6172
  init_cse_reg_info (nregs);

6173 6174
  ebb_data.path = XNEWVEC (struct branch_path,
			   PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6175

6176 6177 6178
  cse_cfg_altered = false;
  cse_jumps_altered = false;
  recorded_label_ref = false;
Richard Kenner committed
6179
  constant_pool_entries_cost = 0;
6180
  constant_pool_entries_regcost = 0;
6181 6182
  ebb_data.path_size = 0;
  ebb_data.nsets = 0;
6183
  rtl_hooks = cse_rtl_hooks;
Richard Kenner committed
6184 6185

  init_recog ();
6186
  init_alias_analysis ();
Richard Kenner committed
6187

6188
  reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
Richard Kenner committed
6189

6190 6191 6192
  /* Set up the table of already visited basic blocks.  */
  cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
  sbitmap_zero (cse_visited_basic_blocks);
Richard Kenner committed
6193

6194
  /* Loop over basic blocks in reverse completion order (RPO),
6195
     excluding the ENTRY and EXIT blocks.  */
6196
  n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6197 6198
  i = 0;
  while (i < n_blocks)
Richard Kenner committed
6199
    {
6200
      /* Find the first block in the RPO queue that we have not yet
6201 6202
	 processed before.  */
      do
6203
	{
6204
	  bb = BASIC_BLOCK (rc_order[i++]);
6205
	}
6206 6207
      while (TEST_BIT (cse_visited_basic_blocks, bb->index)
	     && i < n_blocks);
Richard Kenner committed
6208

6209 6210
      /* Find all paths starting with BB, and process them.  */
      while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
Richard Kenner committed
6211
	{
6212 6213
	  /* Pre-scan the path.  */
	  cse_prescan_path (&ebb_data);
Richard Kenner committed
6214

6215 6216 6217
	  /* If this basic block has no sets, skip it.  */
	  if (ebb_data.nsets == 0)
	    continue;
Richard Kenner committed
6218

6219
	  /* Get a reasonable estimate for the maximum number of qty's
6220 6221 6222
	     needed for this path.  For this, we take the number of sets
	     and multiply that by MAX_RECOG_OPERANDS.  */
	  max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
Richard Kenner committed
6223

6224 6225 6226
	  /* Dump the path we're about to process.  */
	  if (dump_file)
	    cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6227

6228
	  cse_extended_basic_block (&ebb_data);
Richard Kenner committed
6229 6230 6231
	}
    }

6232 6233 6234 6235 6236
  /* Clean up.  */
  end_alias_analysis ();
  free (reg_eqv_table);
  free (ebb_data.path);
  sbitmap_free (cse_visited_basic_blocks);
6237
  free (rc_order);
6238
  rtl_hooks = general_rtl_hooks;
6239

6240 6241 6242 6243 6244 6245
  if (cse_jumps_altered || recorded_label_ref)
    return 2;
  else if (cse_cfg_altered)
    return 1;
  else
    return 0;
Richard Kenner committed
6246 6247
}

6248 6249 6250
/* Called via for_each_rtx to see if an insn is using a LABEL_REF for
   which there isn't a REG_LABEL_OPERAND note.
   Return one if so.  DATA is the insn.  */
6251 6252

static int
6253
check_for_label_ref (rtx *rtl, void *data)
6254 6255 6256
{
  rtx insn = (rtx) data;

6257 6258 6259 6260
  /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
     note for it, we must rerun jump since it needs to place the note.  If
     this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
     don't do this since no REG_LABEL_OPERAND will be added.  */
6261
  return (GET_CODE (*rtl) == LABEL_REF
6262
	  && ! LABEL_REF_NONLOCAL_P (*rtl)
6263 6264
	  && (!JUMP_P (insn)
	      || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6265
	  && LABEL_P (XEXP (*rtl, 0))
6266
	  && INSN_UID (XEXP (*rtl, 0)) != 0
6267
	  && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6268 6269
}

Richard Kenner committed
6270 6271
/* Count the number of times registers are used (not set) in X.
   COUNTS is an array in which we accumulate the count, INCR is how much
6272 6273 6274 6275 6276 6277 6278
   we count each register usage.

   Don't count a usage of DEST, which is the SET_DEST of a SET which
   contains X in its SET_SRC.  This is because such a SET does not
   modify the liveness of DEST.
   DEST is set to pc_rtx for a trapping insn, which means that we must count
   uses of a SET_DEST regardless because the insn can't be deleted here.  */
Richard Kenner committed
6279 6280

static void
6281
count_reg_usage (rtx x, int *counts, rtx dest, int incr)
Richard Kenner committed
6282
{
6283
  enum rtx_code code;
6284
  rtx note;
6285
  const char *fmt;
Richard Kenner committed
6286 6287
  int i, j;

6288 6289 6290 6291
  if (x == 0)
    return;

  switch (code = GET_CODE (x))
Richard Kenner committed
6292 6293
    {
    case REG:
6294 6295
      if (x != dest)
	counts[REGNO (x)] += incr;
Richard Kenner committed
6296 6297 6298 6299 6300 6301 6302
      return;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
6303
    case CONST_FIXED:
6304
    case CONST_VECTOR:
Richard Kenner committed
6305 6306
    case SYMBOL_REF:
    case LABEL_REF:
6307 6308
      return;

6309
    case CLOBBER:
6310 6311
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
6312
      if (MEM_P (XEXP (x, 0)))
6313
	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
Richard Kenner committed
6314 6315 6316 6317
      return;

    case SET:
      /* Unless we are setting a REG, count everything in SET_DEST.  */
6318
      if (!REG_P (SET_DEST (x)))
6319 6320 6321 6322
	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
      count_reg_usage (SET_SRC (x), counts,
		       dest ? dest : SET_DEST (x),
		       incr);
Richard Kenner committed
6323 6324
      return;

6325
    case CALL_INSN:
Richard Kenner committed
6326 6327
    case INSN:
    case JUMP_INSN:
6328 6329 6330 6331 6332 6333 6334
    /* We expect dest to be NULL_RTX here.  If the insn may trap, mark
       this fact by setting DEST to pc_rtx.  */
      if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
	dest = pc_rtx;
      if (code == CALL_INSN)
	count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
      count_reg_usage (PATTERN (x), counts, dest, incr);
Richard Kenner committed
6335 6336 6337 6338

      /* Things used in a REG_EQUAL note aren't dead since loop may try to
	 use them.  */

6339 6340
      note = find_reg_equal_equiv_note (x);
      if (note)
6341 6342 6343 6344 6345 6346 6347 6348
	{
	  rtx eqv = XEXP (note, 0);

	  if (GET_CODE (eqv) == EXPR_LIST)
	  /* This REG_EQUAL note describes the result of a function call.
	     Process all the arguments.  */
	    do
	      {
6349
		count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6350 6351 6352 6353
		eqv = XEXP (eqv, 1);
	      }
	    while (eqv && GET_CODE (eqv) == EXPR_LIST);
	  else
6354
	    count_reg_usage (eqv, counts, dest, incr);
6355
	}
Richard Kenner committed
6356 6357
      return;

6358 6359 6360 6361 6362 6363
    case EXPR_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL
	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
	     involving registers in the address.  */
	  || GET_CODE (XEXP (x, 0)) == CLOBBER)
6364
	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6365

6366
      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6367 6368
      return;

6369
    case ASM_OPERANDS:
6370 6371 6372 6373
      /* If the asm is volatile, then this insn cannot be deleted,
	 and so the inputs *must* be live.  */
      if (MEM_VOLATILE_P (x))
	dest = NULL_RTX;
6374 6375
      /* Iterate over just the inputs, not the constraints as well.  */
      for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6376
	count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6377 6378
      return;

Richard Kenner committed
6379
    case INSN_LIST:
6380
      gcc_unreachable ();
6381

6382 6383
    default:
      break;
Richard Kenner committed
6384 6385 6386 6387 6388 6389
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
6390
	count_reg_usage (XEXP (x, i), counts, dest, incr);
Richard Kenner committed
6391 6392
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6393
	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
Richard Kenner committed
6394 6395 6396
    }
}

6397 6398
/* Return true if set is live.  */
static bool
6399 6400
set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0.  */
	    int *counts)
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
{
#ifdef HAVE_cc0
  rtx tem;
#endif

  if (set_noop_p (set))
    ;

#ifdef HAVE_cc0
  else if (GET_CODE (SET_DEST (set)) == CC0
	   && !side_effects_p (SET_SRC (set))
	   && ((tem = next_nonnote_insn (insn)) == 0
	       || !INSN_P (tem)
	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
    return false;
#endif
6417
  else if (!REG_P (SET_DEST (set))
6418 6419
	   || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
	   || counts[REGNO (SET_DEST (set))] != 0
6420
	   || side_effects_p (SET_SRC (set)))
6421 6422 6423 6424 6425 6426 6427
    return true;
  return false;
}

/* Return true if insn is live.  */

static bool
6428
insn_live_p (rtx insn, int *counts)
6429 6430
{
  int i;
6431
  if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6432 6433
    return true;
  else if (GET_CODE (PATTERN (insn)) == SET)
6434
    return set_live_p (PATTERN (insn), insn, counts);
6435
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6436 6437 6438 6439
    {
      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	{
	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6440

6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
	  if (GET_CODE (elt) == SET)
	    {
	      if (set_live_p (elt, insn, counts))
		return true;
	    }
	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
	    return true;
	}
      return false;
    }
6451 6452 6453 6454
  else
    return true;
}

Richard Kenner committed
6455 6456 6457
/* Scan all the insns and delete any that are dead; i.e., they store a register
   that is never used or they copy a register to itself.

6458 6459 6460 6461
   This is used to remove insns made obviously dead by cse, loop or other
   optimizations.  It improves the heuristics in loop since it won't try to
   move dead invariants out of loops or make givs for dead quantities.  The
   remaining passes of the compilation are also sped up.  */
Richard Kenner committed
6462

6463
int
6464
delete_trivially_dead_insns (rtx insns, int nreg)
Richard Kenner committed
6465
{
6466
  int *counts;
6467
  rtx insn, prev;
6468
  int ndead = 0;
Richard Kenner committed
6469

6470
  timevar_push (TV_DELETE_TRIVIALLY_DEAD);
Richard Kenner committed
6471
  /* First count the number of times each register is used.  */
6472
  counts = XCNEWVEC (int, nreg);
6473 6474
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
6475
      count_reg_usage (insn, counts, NULL_RTX, 1);
Richard Kenner committed
6476

6477 6478 6479
  /* Go from the last insn to the first and delete insns that only set unused
     registers or copy a register to itself.  As we delete an insn, remove
     usage counts for registers it uses.
6480

6481 6482 6483
     The first jump optimization pass may leave a real insn as the last
     insn in the function.   We must not skip that insn or we may end
     up deleting code that is not really dead.  */
6484
  for (insn = get_last_insn (); insn; insn = prev)
6485 6486
    {
      int live_insn = 0;
Richard Kenner committed
6487

6488 6489 6490
      prev = PREV_INSN (insn);
      if (!INSN_P (insn))
	continue;
Richard Kenner committed
6491

Steven Bosscher committed
6492
      live_insn = insn_live_p (insn, counts);
Richard Kenner committed
6493

6494 6495
      /* If this is a dead insn, delete it and show registers in it aren't
	 being used.  */
Richard Kenner committed
6496

6497
      if (! live_insn && dbg_cnt (delete_trivial_dead))
6498
	{
6499
	  count_reg_usage (insn, counts, NULL_RTX, -1);
6500 6501 6502
	  delete_insn_and_edges (insn);
	  ndead++;
	}
Kazu Hirata committed
6503
    }
6504

6505
  if (dump_file && ndead)
6506 6507
    fprintf (dump_file, "Deleted %i trivially dead insns\n",
	     ndead);
6508 6509
  /* Clean up.  */
  free (counts);
6510 6511
  timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
  return ndead;
Richard Kenner committed
6512
}
6513 6514 6515 6516 6517 6518 6519 6520 6521

/* This function is called via for_each_rtx.  The argument, NEWREG, is
   a condition code register with the desired mode.  If we are looking
   at the same register in a different mode, replace it with
   NEWREG.  */

static int
cse_change_cc_mode (rtx *loc, void *data)
{
6522
  struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6523 6524

  if (*loc
6525
      && REG_P (*loc)
6526 6527
      && REGNO (*loc) == REGNO (args->newreg)
      && GET_MODE (*loc) != GET_MODE (args->newreg))
6528
    {
6529 6530
      validate_change (args->insn, loc, args->newreg, 1);
      
6531 6532 6533 6534 6535 6536
      return -1;
    }
  return 0;
}

/* Change the mode of any reference to the register REGNO (NEWREG) to
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
   GET_MODE (NEWREG) in INSN.  */

static void
cse_change_cc_mode_insn (rtx insn, rtx newreg)
{
  struct change_cc_mode_args args;
  int success;

  if (!INSN_P (insn))
    return;

  args.insn = insn;
  args.newreg = newreg;
  
  for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
  for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
  
  /* If the following assertion was triggered, there is most probably
     something wrong with the cc_modes_compatible back end function.
     CC modes only can be considered compatible if the insn - with the mode
     replaced by any of the compatible modes - can still be recognized.  */
  success = apply_change_group ();
  gcc_assert (success);
}

/* Change the mode of any reference to the register REGNO (NEWREG) to
6563
   GET_MODE (NEWREG), starting at START.  Stop before END.  Stop at
6564
   any instruction which modifies NEWREG.  */
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575

static void
cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
{
  rtx insn;

  for (insn = start; insn != end; insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn))
	continue;

6576
      if (reg_set_p (newreg, insn))
6577 6578
	return;

6579
      cse_change_cc_mode_insn (insn, newreg);
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
    }
}

/* BB is a basic block which finishes with CC_REG as a condition code
   register which is set to CC_SRC.  Look through the successors of BB
   to find blocks which have a single predecessor (i.e., this one),
   and look through those blocks for an assignment to CC_REG which is
   equivalent to CC_SRC.  CAN_CHANGE_MODE indicates whether we are
   permitted to change the mode of CC_SRC to a compatible mode.  This
   returns VOIDmode if no equivalent assignments were found.
   Otherwise it returns the mode which CC_SRC should wind up with.
6591 6592 6593
   ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
   but is passed unmodified down to recursive calls in order to prevent
   endless recursion.
6594 6595 6596 6597 6598 6599

   The main complexity in this function is handling the mode issues.
   We may have more than one duplicate which we can eliminate, and we
   try to find a mode which will work for multiple duplicates.  */

static enum machine_mode
6600 6601
cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
	      bool can_change_mode)
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
{
  bool found_equiv;
  enum machine_mode mode;
  unsigned int insn_count;
  edge e;
  rtx insns[2];
  enum machine_mode modes[2];
  rtx last_insns[2];
  unsigned int i;
  rtx newreg;
6612
  edge_iterator ei;
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622

  /* We expect to have two successors.  Look at both before picking
     the final mode for the comparison.  If we have more successors
     (i.e., some sort of table jump, although that seems unlikely),
     then we require all beyond the first two to use the same
     mode.  */

  found_equiv = false;
  mode = GET_MODE (cc_src);
  insn_count = 0;
6623
  FOR_EACH_EDGE (e, ei, bb->succs)
6624 6625 6626 6627 6628 6629 6630
    {
      rtx insn;
      rtx end;

      if (e->flags & EDGE_COMPLEX)
	continue;

6631
      if (EDGE_COUNT (e->dest->preds) != 1
6632 6633 6634
	  || e->dest == EXIT_BLOCK_PTR
	  /* Avoid endless recursion on unreachable blocks.  */
	  || e->dest == orig_bb)
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
	continue;

      end = NEXT_INSN (BB_END (e->dest));
      for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
	{
	  rtx set;

	  if (! INSN_P (insn))
	    continue;

	  /* If CC_SRC is modified, we have to stop looking for
	     something which uses it.  */
	  if (modified_in_p (cc_src, insn))
	    break;

	  /* Check whether INSN sets CC_REG to CC_SRC.  */
	  set = single_set (insn);
	  if (set
6653
	      && REG_P (SET_DEST (set))
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
	    {
	      bool found;
	      enum machine_mode set_mode;
	      enum machine_mode comp_mode;

	      found = false;
	      set_mode = GET_MODE (SET_SRC (set));
	      comp_mode = set_mode;
	      if (rtx_equal_p (cc_src, SET_SRC (set)))
		found = true;
	      else if (GET_CODE (cc_src) == COMPARE
		       && GET_CODE (SET_SRC (set)) == COMPARE
6667
		       && mode != set_mode
6668 6669 6670 6671 6672 6673
		       && rtx_equal_p (XEXP (cc_src, 0),
				       XEXP (SET_SRC (set), 0))
		       && rtx_equal_p (XEXP (cc_src, 1),
				       XEXP (SET_SRC (set), 1)))
			   
		{
6674
		  comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6675 6676 6677 6678 6679 6680 6681 6682
		  if (comp_mode != VOIDmode
		      && (can_change_mode || comp_mode == mode))
		    found = true;
		}

	      if (found)
		{
		  found_equiv = true;
6683
		  if (insn_count < ARRAY_SIZE (insns))
6684 6685 6686 6687 6688 6689
		    {
		      insns[insn_count] = insn;
		      modes[insn_count] = set_mode;
		      last_insns[insn_count] = end;
		      ++insn_count;

6690 6691
		      if (mode != comp_mode)
			{
6692
			  gcc_assert (can_change_mode);
6693
			  mode = comp_mode;
6694 6695

			  /* The modified insn will be re-recognized later.  */
6696 6697
			  PUT_MODE (cc_src, mode);
			}
6698 6699 6700 6701
		    }
		  else
		    {
		      if (set_mode != mode)
6702 6703 6704 6705 6706 6707 6708
			{
			  /* We found a matching expression in the
			     wrong mode, but we don't have room to
			     store it in the array.  Punt.  This case
			     should be rare.  */
			  break;
			}
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
		      /* INSN sets CC_REG to a value equal to CC_SRC
			 with the right mode.  We can simply delete
			 it.  */
		      delete_insn (insn);
		    }

		  /* We found an instruction to delete.  Keep looking,
		     in the hopes of finding a three-way jump.  */
		  continue;
		}

	      /* We found an instruction which sets the condition
		 code, so don't look any farther.  */
	      break;
	    }

	  /* If INSN sets CC_REG in some other way, don't look any
	     farther.  */
	  if (reg_set_p (cc_reg, insn))
	    break;
	}

      /* If we fell off the bottom of the block, we can keep looking
	 through successors.  We pass CAN_CHANGE_MODE as false because
	 we aren't prepared to handle compatibility between the
	 further blocks and this block.  */
      if (insn == end)
	{
6737 6738
	  enum machine_mode submode;

6739
	  submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
6740 6741
	  if (submode != VOIDmode)
	    {
6742
	      gcc_assert (submode == mode);
6743 6744 6745
	      found_equiv = true;
	      can_change_mode = false;
	    }
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
	}
    }

  if (! found_equiv)
    return VOIDmode;

  /* Now INSN_COUNT is the number of instructions we found which set
     CC_REG to a value equivalent to CC_SRC.  The instructions are in
     INSNS.  The modes used by those instructions are in MODES.  */

  newreg = NULL_RTX;
  for (i = 0; i < insn_count; ++i)
    {
      if (modes[i] != mode)
	{
	  /* We need to change the mode of CC_REG in INSNS[i] and
	     subsequent instructions.  */
	  if (! newreg)
	    {
	      if (GET_MODE (cc_reg) == mode)
		newreg = cc_reg;
	      else
		newreg = gen_rtx_REG (mode, REGNO (cc_reg));
	    }
	  cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
				    newreg);
	}

6774
      delete_insn_and_edges (insns[i]);
6775 6776 6777 6778 6779 6780 6781 6782
    }

  return mode;
}

/* If we have a fixed condition code register (or two), walk through
   the instructions and try to eliminate duplicate assignments.  */

6783
static void
6784 6785 6786 6787 6788 6789 6790 6791
cse_condition_code_reg (void)
{
  unsigned int cc_regno_1;
  unsigned int cc_regno_2;
  rtx cc_reg_1;
  rtx cc_reg_2;
  basic_block bb;

6792
  if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
    return;

  cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
  if (cc_regno_2 != INVALID_REGNUM)
    cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
  else
    cc_reg_2 = NULL_RTX;

  FOR_EACH_BB (bb)
    {
      rtx last_insn;
      rtx cc_reg;
      rtx insn;
      rtx cc_src_insn;
      rtx cc_src;
      enum machine_mode mode;
6809
      enum machine_mode orig_mode;
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820

      /* Look for blocks which end with a conditional jump based on a
	 condition code register.  Then look for the instruction which
	 sets the condition code register.  Then look through the
	 successor blocks for instructions which set the condition
	 code register to the same value.  There are other possible
	 uses of the condition code register, but these are by far the
	 most common and the ones which we are most likely to be able
	 to optimize.  */

      last_insn = BB_END (bb);
6821
      if (!JUMP_P (last_insn))
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
	continue;

      if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
	cc_reg = cc_reg_1;
      else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
	cc_reg = cc_reg_2;
      else
	continue;

      cc_src_insn = NULL_RTX;
      cc_src = NULL_RTX;
      for (insn = PREV_INSN (last_insn);
	   insn && insn != PREV_INSN (BB_HEAD (bb));
	   insn = PREV_INSN (insn))
	{
	  rtx set;

	  if (! INSN_P (insn))
	    continue;
	  set = single_set (insn);
	  if (set
6843
	      && REG_P (SET_DEST (set))
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
	    {
	      cc_src_insn = insn;
	      cc_src = SET_SRC (set);
	      break;
	    }
	  else if (reg_set_p (cc_reg, insn))
	    break;
	}

      if (! cc_src_insn)
	continue;

      if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
	continue;

      /* Now CC_REG is a condition code register used for a
	 conditional jump at the end of the block, and CC_SRC, in
	 CC_SRC_INSN, is the value to which that condition code
	 register is set, and CC_SRC is still meaningful at the end of
	 the basic block.  */

6866
      orig_mode = GET_MODE (cc_src);
6867
      mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
6868
      if (mode != VOIDmode)
6869
	{
6870
	  gcc_assert (mode == GET_MODE (cc_src));
6871
	  if (mode != orig_mode)
6872 6873 6874
	    {
	      rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));

6875
	      cse_change_cc_mode_insn (cc_src_insn, newreg);
6876 6877 6878 6879 6880 6881 6882

	      /* Do the same in the following insns that use the
		 current value of CC_REG within BB.  */
	      cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
					NEXT_INSN (last_insn),
					newreg);
	    }
6883 6884 6885
	}
    }
}
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896


/* Perform common subexpression elimination.  Nonzero value from
   `cse_main' means that jumps were simplified and some code may now
   be unreachable, so do jump optimization again.  */
static bool
gate_handle_cse (void)
{
  return optimize > 0;
}

6897
static unsigned int
6898 6899 6900
rest_of_handle_cse (void)
{
  int tem;
6901

6902
  if (dump_file)
6903
    dump_flow_info (dump_file, dump_flags);
6904

6905
  tem = cse_main (get_insns (), max_reg_num ());
6906 6907 6908 6909 6910

  /* If we are not running more CSE passes, then we are no longer
     expecting CSE to be run.  But always rerun it in a cheap mode.  */
  cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;

6911 6912 6913 6914 6915 6916 6917 6918
  if (tem == 2)
    {
      timevar_push (TV_JUMP);
      rebuild_jump_labels (get_insns ());
      cleanup_cfg (0);
      timevar_pop (TV_JUMP);
    }
  else if (tem == 1 || optimize > 1)
6919
    cleanup_cfg (0);
6920

6921
  return 0;
6922 6923
}

6924
struct rtl_opt_pass pass_cse =
6925
{
6926 6927
 {
  RTL_PASS,
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
  "cse1",                               /* name */
  gate_handle_cse,                      /* gate */   
  rest_of_handle_cse,			/* execute */       
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_CSE,                               /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
6939
  TODO_df_finish | TODO_verify_rtl_sharing |
6940
  TODO_dump_func |
6941 6942
  TODO_ggc_collect |
  TODO_verify_flow,                     /* todo_flags_finish */
6943
 }
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
};


static bool
gate_handle_cse2 (void)
{
  return optimize > 0 && flag_rerun_cse_after_loop;
}

/* Run second CSE pass after loop optimizations.  */
6954
static unsigned int
6955 6956 6957 6958 6959
rest_of_handle_cse2 (void)
{
  int tem;

  if (dump_file)
6960
    dump_flow_info (dump_file, dump_flags);
6961

6962
  tem = cse_main (get_insns (), max_reg_num ());
6963 6964 6965 6966 6967 6968 6969 6970 6971

  /* Run a pass to eliminate duplicated assignments to condition code
     registers.  We have to run this after bypass_jumps, because it
     makes it harder for that pass to determine whether a jump can be
     bypassed safely.  */
  cse_condition_code_reg ();

  delete_trivially_dead_insns (get_insns (), max_reg_num ());

6972
  if (tem == 2)
6973 6974 6975
    {
      timevar_push (TV_JUMP);
      rebuild_jump_labels (get_insns ());
6976
      cleanup_cfg (0);
6977 6978
      timevar_pop (TV_JUMP);
    }
6979 6980 6981
  else if (tem == 1)
    cleanup_cfg (0);

6982
  cse_not_expected = 1;
6983
  return 0;
6984 6985 6986
}


6987
struct rtl_opt_pass pass_cse2 =
6988
{
6989 6990
 {
  RTL_PASS,
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
  "cse2",                               /* name */
  gate_handle_cse2,                     /* gate */   
  rest_of_handle_cse2,			/* execute */       
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_CSE2,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
7002
  TODO_df_finish | TODO_verify_rtl_sharing |
7003
  TODO_dump_func |
7004
  TODO_ggc_collect |
7005 7006
  TODO_verify_flow                      /* todo_flags_finish */
 }
7007 7008
};