bitmap.c 34 KB
Newer Older
Richard Kenner committed
1
/* Functions to support general ended bitmaps.
2
   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005
3
   Free Software Foundation, Inc.
Richard Kenner committed
4

5
This file is part of GCC.
Richard Kenner committed
6

7 8 9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Richard Kenner committed
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
16 17

You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING.  If not, write to the Free
Kelley Cook committed
19 20
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */
Richard Kenner committed
21 22

#include "config.h"
23
#include "system.h"
24 25
#include "coretypes.h"
#include "tm.h"
Richard Kenner committed
26 27 28
#include "rtl.h"
#include "flags.h"
#include "obstack.h"
29
#include "ggc.h"
30
#include "bitmap.h"
Richard Kenner committed
31 32

/* Global data */
33 34 35 36
bitmap_element bitmap_zero_bits;  /* An element of all zero bits.  */
bitmap_obstack bitmap_default_obstack;    /* The default bitmap obstack.  */
static GTY((deletable)) bitmap_element *bitmap_ggc_free; /* Freelist of
							    GC'd elements.  */
Richard Kenner committed
37

38 39 40 41 42
static void bitmap_elem_to_freelist (bitmap, bitmap_element *);
static void bitmap_element_free (bitmap, bitmap_element *);
static bitmap_element *bitmap_element_allocate (bitmap);
static int bitmap_element_zerop (bitmap_element *);
static void bitmap_element_link (bitmap, bitmap_element *);
43
static bitmap_element *bitmap_elt_insert_after (bitmap, bitmap_element *, unsigned int);
44
static void bitmap_elt_clear_from (bitmap, bitmap_element *);
45
static bitmap_element *bitmap_find_bit (bitmap, unsigned int);
Richard Kenner committed
46

47

48
/* Add ELEM to the appropriate freelist.  */
49
static inline void
50
bitmap_elem_to_freelist (bitmap head, bitmap_element *elt)
51
{
52 53
  bitmap_obstack *bit_obstack = head->obstack;
  
54
  elt->next = NULL;
55
  if (bit_obstack)
56
    {
57
      elt->prev = bit_obstack->elements;
58
      bit_obstack->elements = elt;
59 60 61
    }
  else
    {
62
      elt->prev = bitmap_ggc_free;
63 64 65 66
      bitmap_ggc_free = elt;
    }
}

67 68
/* Free a bitmap element.  Since these are allocated off the
   bitmap_obstack, "free" actually means "put onto the freelist".  */
Richard Kenner committed
69

70
static inline void
71
bitmap_element_free (bitmap head, bitmap_element *elt)
Richard Kenner committed
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
{
  bitmap_element *next = elt->next;
  bitmap_element *prev = elt->prev;

  if (prev)
    prev->next = next;

  if (next)
    next->prev = prev;

  if (head->first == elt)
    head->first = next;

  /* Since the first thing we try is to insert before current,
     make current the next entry in preference to the previous.  */
  if (head->current == elt)
88 89 90 91
    {
      head->current = next != 0 ? next : prev;
      if (head->current)
	head->indx = head->current->indx;
92 93
      else 
	head->indx = 0;
94
    }
95
  bitmap_elem_to_freelist (head, elt);
Richard Kenner committed
96 97 98 99
}

/* Allocate a bitmap element.  The bits are cleared, but nothing else is.  */

100
static inline bitmap_element *
101
bitmap_element_allocate (bitmap head)
Richard Kenner committed
102 103
{
  bitmap_element *element;
104 105 106
  bitmap_obstack *bit_obstack = head->obstack;
      
  if (bit_obstack)
107
    {
108 109 110
      element = bit_obstack->elements;
      
      if (element)
111 112 113 114 115 116 117 118 119 120
	/* Use up the inner list first before looking at the next
	   element of the outer list.  */
	if (element->next)
	  {
	    bit_obstack->elements = element->next;
	    bit_obstack->elements->prev = element->prev;
	  }
	else
	  /*  Inner list was just a singleton.  */
	  bit_obstack->elements = element->prev;
121
      else
122
	element = XOBNEW (&bit_obstack->obstack, bitmap_element);
123 124 125
    }
  else
    {
126 127
      element = bitmap_ggc_free;
      if (element)
128 129 130 131 132 133 134 135 136 137
	/* Use up the inner list first before looking at the next
	   element of the outer list.  */
	if (element->next)
	  {
	    bitmap_ggc_free = element->next;
	    bitmap_ggc_free->prev = element->prev;
	  }
	else
	  /*  Inner list was just a singleton.  */
	  bitmap_ggc_free = element->prev;
138
      else
139
	element = GGC_NEW (bitmap_element);
140
    }
Richard Kenner committed
141

142
  memset (element->bits, 0, sizeof (element->bits));
Richard Kenner committed
143 144 145 146

  return element;
}

147
/* Remove ELT and all following elements from bitmap HEAD.  */
148 149

void
150 151
bitmap_elt_clear_from (bitmap head, bitmap_element *elt)
{
152 153 154 155
  bitmap_element *prev;
  bitmap_obstack *bit_obstack = head->obstack;

  if (!elt) return;
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  prev = elt->prev;
  if (prev)
    {
      prev->next = NULL;
      if (head->current->indx > prev->indx)
	{
	  head->current = prev;
	  head->indx = prev->indx;
	}
    } 
  else
    {
      head->first = NULL;
      head->current = NULL;
      head->indx = 0;
    }

  /* Put the entire list onto the free list in one operation. */ 
  if (bit_obstack)
176
    {
177 178 179 180 181 182 183
      elt->prev = bit_obstack->elements; 
      bit_obstack->elements = elt;
    }
  else
    {
      elt->prev = bitmap_ggc_free;
      bitmap_ggc_free = elt;
184 185 186 187 188
    }
}

/* Clear a bitmap by freeing the linked list.  */

189
inline void
190
bitmap_clear (bitmap head)
191
{
192 193
  if (head->first)
    bitmap_elt_clear_from (head, head->first);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
}

/* Initialize a bitmap obstack.  If BIT_OBSTACK is NULL, initialize
   the default bitmap obstack.  */

void
bitmap_obstack_initialize (bitmap_obstack *bit_obstack)
{
  if (!bit_obstack)
    bit_obstack = &bitmap_default_obstack;

#if !defined(__GNUC__) || (__GNUC__ < 2)
#define __alignof__(type) 0
#endif

  bit_obstack->elements = NULL;
  bit_obstack->heads = NULL;
  obstack_specify_allocation (&bit_obstack->obstack, OBSTACK_CHUNK_SIZE,
			      __alignof__ (bitmap_element),
			      obstack_chunk_alloc,
			      obstack_chunk_free);
215 216
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/* Release the memory from a bitmap obstack.  If BIT_OBSTACK is NULL,
   release the default bitmap obstack.  */

void
bitmap_obstack_release (bitmap_obstack *bit_obstack)
{
  if (!bit_obstack)
    bit_obstack = &bitmap_default_obstack;
  
  bit_obstack->elements = NULL;
  bit_obstack->heads = NULL;
  obstack_free (&bit_obstack->obstack, NULL);
}

/* Create a new bitmap on an obstack.  If BIT_OBSTACK is NULL, create
   it on the default bitmap obstack.  */

bitmap
bitmap_obstack_alloc (bitmap_obstack *bit_obstack)
{
  bitmap map;

  if (!bit_obstack)
    bit_obstack = &bitmap_default_obstack;
  map = bit_obstack->heads;
  if (map)
    bit_obstack->heads = (void *)map->first;
  else
    map = XOBNEW (&bit_obstack->obstack, bitmap_head);
  bitmap_initialize (map, bit_obstack);

  return map;
}

/* Create a new GCd bitmap.  */

bitmap
bitmap_gc_alloc (void)
{
  bitmap map;

  map = GGC_NEW (struct bitmap_head_def);
  bitmap_initialize (map, NULL);

  return map;
}

/* Release an obstack allocated bitmap.  */

void
bitmap_obstack_free (bitmap map)
{
269 270 271 272 273 274
  if (map)
    {
      bitmap_clear (map);
      map->first = (void *)map->obstack->heads;
      map->obstack->heads = map;
    }
275 276 277
}


Richard Kenner committed
278 279
/* Return nonzero if all bits in an element are zero.  */

280
static inline int
281
bitmap_element_zerop (bitmap_element *element)
Richard Kenner committed
282 283 284 285
{
#if BITMAP_ELEMENT_WORDS == 2
  return (element->bits[0] | element->bits[1]) == 0;
#else
286
  unsigned i;
Richard Kenner committed
287 288 289 290 291 292 293 294 295 296 297

  for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
    if (element->bits[i] != 0)
      return 0;

  return 1;
#endif
}

/* Link the bitmap element into the current bitmap linked list.  */

298
static inline void
299
bitmap_element_link (bitmap head, bitmap_element *element)
Richard Kenner committed
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
{
  unsigned int indx = element->indx;
  bitmap_element *ptr;

  /* If this is the first and only element, set it in.  */
  if (head->first == 0)
    {
      element->next = element->prev = 0;
      head->first = element;
    }

  /* If this index is less than that of the current element, it goes someplace
     before the current element.  */
  else if (indx < head->indx)
    {
      for (ptr = head->current;
	   ptr->prev != 0 && ptr->prev->indx > indx;
	   ptr = ptr->prev)
	;

      if (ptr->prev)
	ptr->prev->next = element;
      else
	head->first = element;

      element->prev = ptr->prev;
      element->next = ptr;
      ptr->prev = element;
    }

  /* Otherwise, it must go someplace after the current element.  */
  else
    {
      for (ptr = head->current;
	   ptr->next != 0 && ptr->next->indx < indx;
	   ptr = ptr->next)
	;

      if (ptr->next)
	ptr->next->prev = element;

      element->next = ptr->next;
      element->prev = ptr;
      ptr->next = element;
    }

  /* Set up so this is the first element searched.  */
  head->current = element;
  head->indx = indx;
}
350 351 352 353 354 355

/* Insert a new uninitialized element into bitmap HEAD after element
   ELT.  If ELT is NULL, insert the element at the start.  Return the
   new element.  */

static bitmap_element *
356
bitmap_elt_insert_after (bitmap head, bitmap_element *elt, unsigned int indx)
357 358
{
  bitmap_element *node = bitmap_element_allocate (head);
359
  node->indx = indx;
360 361 362 363

  if (!elt)
    {
      if (!head->current)
364 365 366 367
	{
	  head->current = node;
	  head->indx = indx;
	}
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
      node->next = head->first;
      if (node->next)
	node->next->prev = node;
      head->first = node;
      node->prev = NULL;
    }
  else
    {
      gcc_assert (head->current);
      node->next = elt->next;
      if (node->next)
	node->next->prev = node;
      elt->next = node;
      node->prev = elt;
    }
  return node;
}
Richard Kenner committed
385

386
/* Copy a bitmap to another bitmap.  */
Richard Kenner committed
387 388

void
389
bitmap_copy (bitmap to, bitmap from)
Richard Kenner committed
390 391 392 393 394
{
  bitmap_element *from_ptr, *to_ptr = 0;

  bitmap_clear (to);

395
  /* Copy elements in forward direction one at a time.  */
Richard Kenner committed
396 397
  for (from_ptr = from->first; from_ptr; from_ptr = from_ptr->next)
    {
398
      bitmap_element *to_elt = bitmap_element_allocate (to);
Richard Kenner committed
399 400

      to_elt->indx = from_ptr->indx;
401
      memcpy (to_elt->bits, from_ptr->bits, sizeof (to_elt->bits));
Richard Kenner committed
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

      /* Here we have a special case of bitmap_element_link, for the case
	 where we know the links are being entered in sequence.  */
      if (to_ptr == 0)
	{
	  to->first = to->current = to_elt;
	  to->indx = from_ptr->indx;
	  to_elt->next = to_elt->prev = 0;
	}
      else
	{
	  to_elt->prev = to_ptr;
	  to_elt->next = 0;
	  to_ptr->next = to_elt;
	}

      to_ptr = to_elt;
    }
}

/* Find a bitmap element that would hold a bitmap's bit.
   Update the `current' field even if we can't find an element that
   would hold the bitmap's bit to make eventual allocation
   faster.  */

427
static inline bitmap_element *
428
bitmap_find_bit (bitmap head, unsigned int bit)
Richard Kenner committed
429 430
{
  bitmap_element *element;
431
  unsigned int indx = bit / BITMAP_ELEMENT_ALL_BITS;
Richard Kenner committed
432

433 434 435
  if (head->current == 0
      || head->indx == indx)
    return head->current;
Richard Kenner committed
436

437 438 439 440 441 442 443 444 445 446 447
  if (head->indx < indx)
    /* INDX is beyond head->indx.  Search from head->current
       forward.  */
    for (element = head->current;
	 element->next != 0 && element->indx < indx;
	 element = element->next)
      ;

  else if (head->indx / 2 < indx)
    /* INDX is less than head->indx and closer to head->indx than to
       0.  Search from head->current backward.  */
Richard Kenner committed
448 449 450 451 452 453
    for (element = head->current;
	 element->prev != 0 && element->indx > indx;
	 element = element->prev)
      ;

  else
454 455 456
    /* INDX is less than head->indx and closer to 0 than to
       head->indx.  Search from head->first forward.  */
    for (element = head->first;
Richard Kenner committed
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	 element->next != 0 && element->indx < indx;
	 element = element->next)
      ;

  /* `element' is the nearest to the one we want.  If it's not the one we
     want, the one we want doesn't exist.  */
  head->current = element;
  head->indx = element->indx;
  if (element != 0 && element->indx != indx)
    element = 0;

  return element;
}

/* Clear a single bit in a bitmap.  */

void
474
bitmap_clear_bit (bitmap head, int bit)
Richard Kenner committed
475 476 477 478 479
{
  bitmap_element *ptr = bitmap_find_bit (head, bit);

  if (ptr != 0)
    {
480 481 482
      unsigned bit_num  = bit % BITMAP_WORD_BITS;
      unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
      ptr->bits[word_num] &= ~ (((BITMAP_WORD) 1) << bit_num);
Richard Kenner committed
483

484
      /* If we cleared the entire word, free up the element.  */
Richard Kenner committed
485 486 487 488 489 490 491 492
      if (bitmap_element_zerop (ptr))
	bitmap_element_free (head, ptr);
    }
}

/* Set a single bit in a bitmap.  */

void
493
bitmap_set_bit (bitmap head, int bit)
Richard Kenner committed
494 495
{
  bitmap_element *ptr = bitmap_find_bit (head, bit);
496 497 498
  unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
  unsigned bit_num  = bit % BITMAP_WORD_BITS;
  BITMAP_WORD bit_val = ((BITMAP_WORD) 1) << bit_num;
Richard Kenner committed
499 500 501

  if (ptr == 0)
    {
502
      ptr = bitmap_element_allocate (head);
Richard Kenner committed
503 504 505 506 507 508 509
      ptr->indx = bit / BITMAP_ELEMENT_ALL_BITS;
      ptr->bits[word_num] = bit_val;
      bitmap_element_link (head, ptr);
    }
  else
    ptr->bits[word_num] |= bit_val;
}
510

Richard Kenner committed
511 512 513
/* Return whether a bit is set within a bitmap.  */

int
514
bitmap_bit_p (bitmap head, int bit)
Richard Kenner committed
515 516 517 518 519 520 521 522 523
{
  bitmap_element *ptr;
  unsigned bit_num;
  unsigned word_num;

  ptr = bitmap_find_bit (head, bit);
  if (ptr == 0)
    return 0;

524 525
  bit_num = bit % BITMAP_WORD_BITS;
  word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
Richard Kenner committed
526

527
  return (ptr->bits[word_num] >> bit_num) & 1;
Richard Kenner committed
528 529
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
#if GCC_VERSION < 3400
/* Table of number of set bits in a character, indexed by value of char.  */
static unsigned char popcount_table[] = 
{
    0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,
};

static unsigned long
bitmap_popcount (BITMAP_WORD a)
{
  unsigned long ret = 0;
  unsigned i;

  /* Just do this the table way for now  */
  for (i = 0; i < BITMAP_WORD_BITS; i+= 8)
    ret += popcount_table[(a >> i) & 0xff];
  return ret;
}
#endif
/* Count the number of bits set in the bitmap, and return it.  */

unsigned long
bitmap_count_bits (bitmap a)
{
  unsigned long count = 0;
  bitmap_element *elt;
  unsigned ix;

  for (elt = a->first; elt; elt = elt->next)
    {
      for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
	{
#if GCC_VERSION >= 3400
 	  /* Note that popcountl matches BITMAP_WORD in type, so the actual size
	 of BITMAP_WORD is not material.  */
	  count += __builtin_popcountl (elt->bits[ix]);
#else
	  count += bitmap_popcount (elt->bits[ix]);	  
#endif
	}
    }
  return count;
}
      


583 584
/* Return the bit number of the first set bit in the bitmap.  The
   bitmap must be non-empty.  */
585

586
unsigned
587
bitmap_first_set_bit (bitmap a)
588
{
589 590
  bitmap_element *elt = a->first;
  unsigned bit_no;
591
  BITMAP_WORD word;
592 593 594 595 596 597 598 599 600 601
  unsigned ix;
  
  gcc_assert (elt);
  bit_no = elt->indx * BITMAP_ELEMENT_ALL_BITS;
  for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
    {
      word = elt->bits[ix];
      if (word)
	goto found_bit;
    }
602
  gcc_unreachable ();
603 604
 found_bit:
  bit_no += ix * BITMAP_WORD_BITS;
605

606 607 608
#if GCC_VERSION >= 3004
  gcc_assert (sizeof(long) == sizeof (word));
  bit_no += __builtin_ctzl (word);
609
#else
610 611 612
  /* Binary search for the first set bit.  */
#if BITMAP_WORD_BITS > 64
#error "Fill out the table."
613
#endif
614 615 616
#if BITMAP_WORD_BITS > 32
  if (!(word & 0xffffffff))
    word >>= 32, bit_no += 32;
617
#endif
618 619 620 621 622 623 624 625 626 627 628 629
  if (!(word & 0xffff))
    word >>= 16, bit_no += 16;
  if (!(word & 0xff))
    word >>= 8, bit_no += 8;
  if (!(word & 0xf))
    word >>= 4, bit_no += 4;
  if (!(word & 0x3))
    word >>= 2, bit_no += 2;
  if (!(word & 0x1))
    word >>= 1, bit_no += 1;
  
 gcc_assert (word & 1);
630
#endif
631
 return bit_no;
632 633
}

Richard Kenner committed
634

635
/* DST = A & B.  */
636 637 638

void
bitmap_and (bitmap dst, bitmap a, bitmap b)
Richard Kenner committed
639
{
640 641 642 643
  bitmap_element *dst_elt = dst->first;
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *dst_prev = NULL;
644

645 646 647 648 649 650 651 652
  gcc_assert (dst != a && dst != b);

  if (a == b)
    {
      bitmap_copy (dst, a);
      return;
    }

653 654 655 656 657 658 659 660 661 662 663 664 665
  while (a_elt && b_elt)
    {
      if (a_elt->indx < b_elt->indx)
	a_elt = a_elt->next;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
	{
	  /* Matching elts, generate A & B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  if (!dst_elt)
666 667 668
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
	  else 
	    dst_elt->indx = a_elt->indx;
669 670 671
	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    {
	      BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix];
Richard Kenner committed
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	      dst_elt->bits[ix] = r;
	      ior |= r;
	    }
	  if (ior)
	    {
	      dst_prev = dst_elt;
	      dst_elt = dst_elt->next;
	    }
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	}
    }
  bitmap_elt_clear_from (dst, dst_elt);
  gcc_assert (!dst->current == !dst->first);
  if (dst->current)
    dst->indx = dst->current->indx;
}

/* A &= B.  */

void
bitmap_and_into (bitmap a, bitmap b)
{
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *next;
Richard Kenner committed
699

700 701 702
  if (a == b) 
    return;

703
  while (a_elt && b_elt)
Richard Kenner committed
704
    {
705 706 707 708 709 710 711 712 713
      if (a_elt->indx < b_elt->indx)
	{
	  next = a_elt->next;
	  bitmap_element_free (a, a_elt);
	  a_elt = next;
	}
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
Richard Kenner committed
714
	{
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	  /* Matching elts, generate A &= B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    {
	      BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix];

	      a_elt->bits[ix] = r;
	      ior |= r;
	    }
	  next = a_elt->next;
	  if (!ior)
	    bitmap_element_free (a, a_elt);
	  a_elt = next;
	  b_elt = b_elt->next;
Richard Kenner committed
731
	}
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    }
  bitmap_elt_clear_from (a, a_elt);
  gcc_assert (!a->current == !a->first);
  gcc_assert (!a->current || a->indx == a->current->indx);
}

/* DST = A & ~B  */

void
bitmap_and_compl (bitmap dst, bitmap a, bitmap b)
{
  bitmap_element *dst_elt = dst->first;
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *dst_prev = NULL;

748
  gcc_assert (dst != a && dst != b);
749
  
750 751 752 753 754 755
  if (a == b)
    {
      bitmap_clear (dst);
      return;
    }

756 757 758
  while (a_elt)
    {
      if (!b_elt || a_elt->indx < b_elt->indx)
Richard Kenner committed
759
	{
760
	  /* Copy a_elt.  */
761
	  if (!dst_elt)
762 763 764
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
	  else
	    dst_elt->indx = a_elt->indx;
765 766 767 768
	  memcpy (dst_elt->bits, a_elt->bits, sizeof (dst_elt->bits));
	  dst_prev = dst_elt;
	  dst_elt = dst_elt->next;
	  a_elt = a_elt->next;
Richard Kenner committed
769
	}
770 771
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
Richard Kenner committed
772 773
      else
	{
774 775 776 777 778
	  /* Matching elts, generate A & ~B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  if (!dst_elt)
779 780 781
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
	  else 
	    dst_elt->indx = a_elt->indx;
782 783 784 785 786 787 788 789 790 791 792 793 794 795
	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    {
	      BITMAP_WORD r = a_elt->bits[ix] & ~b_elt->bits[ix];

	      dst_elt->bits[ix] = r;
	      ior |= r;
	    }
	  if (ior)
	    {
	      dst_prev = dst_elt;
	      dst_elt = dst_elt->next;
	    }
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
Richard Kenner committed
796
	}
797 798 799 800 801 802 803
    }
  bitmap_elt_clear_from (dst, dst_elt);
  gcc_assert (!dst->current == !dst->first);
  if (dst->current)
    dst->indx = dst->current->indx;
}

804
/* A &= ~B. Returns true if A changes */
Richard Kenner committed
805

806
bool
807 808 809 810 811
bitmap_and_compl_into (bitmap a, bitmap b)
{
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *next;
812
  BITMAP_WORD changed = 0;
813

814 815 816 817 818 819 820 821 822 823 824
  if (a == b)
    {
      if (bitmap_empty_p (a))
	return false;
      else
	{
	  bitmap_clear (a);
	  return true;
	}
    }

825 826 827 828 829 830 831
  while (a_elt && b_elt)
    {
      if (a_elt->indx < b_elt->indx)
	a_elt = a_elt->next;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
832
	{
833 834 835 836 837 838
	  /* Matching elts, generate A &= ~B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    {
839 840
	      BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix];
	      BITMAP_WORD r = a_elt->bits[ix] ^ cleared;
841 842

	      a_elt->bits[ix] = r;
843
	      changed |= cleared;
844 845 846 847 848 849 850
	      ior |= r;
	    }
	  next = a_elt->next;
	  if (!ior)
	    bitmap_element_free (a, a_elt);
	  a_elt = next;
	  b_elt = b_elt->next;
851
	}
852 853 854
    }
  gcc_assert (!a->current == !a->first);
  gcc_assert (!a->current || a->indx == a->current->indx);
855
  return changed != 0;
856 857
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/* Clear COUNT bits from START in HEAD.  */
void
bitmap_clear_range (bitmap head, unsigned int start, unsigned int count)
{
  unsigned int first_index = start / BITMAP_ELEMENT_ALL_BITS;
  unsigned int end_bit_plus1 = start + count;
  unsigned int end_bit = end_bit_plus1 - 1;
  unsigned int last_index = (end_bit) / BITMAP_ELEMENT_ALL_BITS;
  bitmap_element *elt = bitmap_find_bit (head, start);

  /* If bitmap_find_bit returns zero, the current is the closest block
     to the result.  If the current is less than first index, find the
     next one.  Otherwise, just set elt to be current.  */
  if (!elt)
    { 
      if (head->current)
	{
	  if (head->indx < first_index)
	    {
	      elt = head->current->next;
	      if (!elt)
		return;
	    }
	  else 
	    elt = head->current;
	}
      else
	return;
    }

  while (elt && (elt->indx <= last_index))
    {
      bitmap_element * next_elt = elt->next;
      unsigned elt_start_bit = (elt->indx) * BITMAP_ELEMENT_ALL_BITS;
      unsigned elt_end_bit_plus1 = elt_start_bit + BITMAP_ELEMENT_ALL_BITS;


      if (elt_start_bit >= start && elt_end_bit_plus1 <= end_bit_plus1)
	/* Get rid of the entire elt and go to the next one.  */
	bitmap_element_free (head, elt);
      else 
	{
	  /* Going to have to knock out some bits in this elt.  */
	  unsigned int first_word_to_mod; 
	  BITMAP_WORD first_mask; 
	  unsigned int last_word_to_mod;
	  BITMAP_WORD last_mask;
	  unsigned int i;
	  bool clear = true;

	  if (elt_start_bit <= start)
	    {
	      /* The first bit to turn off is somewhere inside this
		 elt.  */
	      first_word_to_mod = (start - elt_start_bit) / BITMAP_WORD_BITS;

	      /* This mask should have 1s in all bits >= start position. */
	      first_mask = 
		(((BITMAP_WORD) 1) << ((start % BITMAP_WORD_BITS))) - 1;
	      first_mask = ~first_mask;
	    }
	  else
	    {
	      /* The first bit to turn off is below this start of this elt.  */
	      first_word_to_mod = 0;
	      first_mask = 0;
	      first_mask = ~first_mask;
	    }	      
	    
	  if (elt_end_bit_plus1 <= end_bit_plus1)
	    {
	      /* The last bit to turn off is beyond this elt.  */
	      last_word_to_mod = BITMAP_ELEMENT_WORDS - 1;
	      last_mask = 0;
	      last_mask = ~last_mask;
	    }
	  else
	    {
	      /* The last bit to turn off is inside to this elt.  */
	      last_word_to_mod = 
		(end_bit_plus1 - elt_start_bit) / BITMAP_WORD_BITS;

	      /* The last mask should have 1s below the end bit.  */
	      last_mask = 
		(((BITMAP_WORD) 1) << (((end_bit_plus1) % BITMAP_WORD_BITS))) - 1;
	    }


	  if (first_word_to_mod == last_word_to_mod)
	    {
	      BITMAP_WORD mask = first_mask & last_mask;
	      elt->bits[first_word_to_mod] &= ~mask;
	    }
	  else
	    {
	      elt->bits[first_word_to_mod] &= ~first_mask;
	      for (i = first_word_to_mod + 1; i < last_word_to_mod; i++)
		elt->bits[i] = 0;
	      elt->bits[last_word_to_mod] &= ~last_mask;
	    }
	  for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
	    if (elt->bits[i])
	      {
		clear = false;
		break;
	      }
	  /* Check to see if there are any bits left.  */
	  if (clear)
	    bitmap_element_free (head, elt);
	}
      elt = next_elt;
    }
  
  if (elt)
    {
      head->current = elt;
      head->indx = head->current->indx;
    }
}

/* A = ~A & B. */

void
bitmap_compl_and_into (bitmap a, bitmap b)
{
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *a_prev = NULL;
  bitmap_element *next;

  gcc_assert (a != b);

  if (bitmap_empty_p (a))
    {
      bitmap_copy (a, b);
      return;
    }
  if (bitmap_empty_p (b))
    {
      bitmap_clear (a);
      return;
    }

  while (a_elt || b_elt)
    {
      if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
	{
	  /* A is before B.  Remove A */
	  next = a_elt->next;
	  a_prev = a_elt->prev;
	  bitmap_element_free (a, a_elt);
	  a_elt = next;
	}
      else if (!a_elt || b_elt->indx < a_elt->indx)
	{
	  /* B is before A.  Copy B. */
	  next = bitmap_elt_insert_after (a, a_prev, b_elt->indx);
	  memcpy (next->bits, b_elt->bits, sizeof (next->bits));
	  a_prev = next;
	  b_elt = b_elt->next;
	}
      else
	{
	  /* Matching elts, generate A = ~A & B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    {
	      BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix];
	      BITMAP_WORD r = b_elt->bits[ix] ^ cleared;

	      a_elt->bits[ix] = r;
	      ior |= r;
	    }
	  next = a_elt->next;
	  if (!ior)
	    bitmap_element_free (a, a_elt);
	  else
	    a_prev = a_elt;
	  a_elt = next;
	  b_elt = b_elt->next;
	}
    }
  gcc_assert (!a->current == !a->first);
  gcc_assert (!a->current || a->indx == a->current->indx);
  return;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/* DST = A | B.  Return true if DST changes.  */

bool
bitmap_ior (bitmap dst, bitmap a, bitmap b)
{
  bitmap_element *dst_elt = dst->first;
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *dst_prev = NULL;
  bool changed = false;  

1058 1059
  gcc_assert (dst != a && dst != b);

1060 1061 1062
  while (a_elt || b_elt)
    {
      if (a_elt && b_elt && a_elt->indx == b_elt->indx)
1063
	{
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	  /* Matching elts, generate A | B.  */
	  unsigned ix;
	      
	  if (!changed && dst_elt && dst_elt->indx == a_elt->indx)
	    {
	      for (ix = BITMAP_ELEMENT_WORDS; ix--;)
		{
		  BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];

		  if (r != dst_elt->bits[ix])
		    {
		      dst_elt->bits[ix] = r;
		      changed = true;
		    }
		}
	    }
	  else
	    {
	      changed = true;
	      if (!dst_elt)
1084 1085 1086
		dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
	      else 
		dst_elt->indx = a_elt->indx;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	      for (ix = BITMAP_ELEMENT_WORDS; ix--;)
		{
		  BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];
		  
		  dst_elt->bits[ix] = r;
		}
	    }
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	  dst_prev = dst_elt;
	  dst_elt = dst_elt->next;
1098 1099
	}
      else
Richard Kenner committed
1100
	{
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	  /* Copy a single element.  */
	  bitmap_element *src;

	  if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
	    {
	      src = a_elt;
	      a_elt = a_elt->next;
	    }
	  else
	    {
	      src = b_elt;
	      b_elt = b_elt->next;
	    }

	  if (!changed && dst_elt && dst_elt->indx == src->indx)
	    {
	      unsigned ix;
	      
	      for (ix = BITMAP_ELEMENT_WORDS; ix--;)
		if (src->bits[ix] != dst_elt->bits[ix])
		  {
		    dst_elt->bits[ix] = src->bits[ix];
		    changed = true;
		  }
	    }
	  else
	    {
	      changed = true;
	      if (!dst_elt)
1130 1131 1132
		dst_elt = bitmap_elt_insert_after (dst, dst_prev, src->indx);
	      else 
		dst_elt->indx = src->indx;
1133 1134 1135 1136 1137
	      memcpy (dst_elt->bits, src->bits, sizeof (dst_elt->bits));
	    }
	  
	  dst_prev = dst_elt;
	  dst_elt = dst_elt->next;
Richard Kenner committed
1138
	}
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    }

  if (dst_elt)
    {
      changed = true;
      bitmap_elt_clear_from (dst, dst_elt);
    }
  gcc_assert (!dst->current == !dst->first);
  if (dst->current)
    dst->indx = dst->current->indx;
  return changed;
}
Richard Kenner committed
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/* A |= B.  Return true if A changes.  */

bool
bitmap_ior_into (bitmap a, bitmap b)
{
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *a_prev = NULL;
  bool changed = false;

1162 1163 1164
  if (a == b)
    return false;

1165 1166 1167 1168 1169
  while (b_elt)
    {
      if (!a_elt || b_elt->indx < a_elt->indx)
	{
	  /* Copy b_elt.  */
1170
	  bitmap_element *dst = bitmap_elt_insert_after (a, a_prev, b_elt->indx);
1171 1172 1173 1174 1175 1176
	  memcpy (dst->bits, b_elt->bits, sizeof (dst->bits));
	  a_prev = dst;
	  b_elt = b_elt->next;
	  changed = true;
	}
      else if (a_elt->indx < b_elt->indx)
Richard Kenner committed
1177
	{
1178 1179
	  a_prev = a_elt;
	  a_elt = a_elt->next;
1180 1181 1182
	}
      else
	{
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	  /* Matching elts, generate A |= B.  */
	  unsigned ix;

	  if (changed)
	    for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	      {
		BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];
		
		a_elt->bits[ix] = r;
	      }
	  else
	    for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	      {
		BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];

		if (a_elt->bits[ix] != r)
		  {
		    changed = true;
		    a_elt->bits[ix] = r;
		  }
	      }
	  b_elt = b_elt->next;
	  a_prev = a_elt;
	  a_elt = a_elt->next;
Richard Kenner committed
1207 1208
	}
    }
1209 1210 1211 1212 1213 1214 1215
  gcc_assert (!a->current == !a->first);
  if (a->current)
    a->indx = a->current->indx;
  return changed;
}

/* DST = A ^ B  */
Richard Kenner committed
1216

1217 1218 1219 1220 1221 1222 1223 1224
void
bitmap_xor (bitmap dst, bitmap a, bitmap b)
{
  bitmap_element *dst_elt = dst->first;
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *dst_prev = NULL;

1225 1226 1227 1228 1229 1230 1231
  gcc_assert (dst != a && dst != b);
  if (a == b)
    {
      bitmap_clear (dst);
      return;
    }

1232
  while (a_elt || b_elt)
Richard Kenner committed
1233
    {
1234
      if (a_elt && b_elt && a_elt->indx == b_elt->indx)
1235
	{
1236 1237 1238 1239 1240
	  /* Matching elts, generate A ^ B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  if (!dst_elt)
1241 1242 1243
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
	  else
	    dst_elt->indx = a_elt->indx;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    {
	      BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix];

	      ior |= r;
	      dst_elt->bits[ix] = r;
	    }
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	  if (ior)
	    {
	      dst_prev = dst_elt;
	      dst_elt = dst_elt->next;
	    }
1258 1259 1260
	}
      else
	{
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	  /* Copy a single element.  */
	  bitmap_element *src;

	  if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
	    {
	      src = a_elt;
	      a_elt = a_elt->next;
	    }
	  else
	    {
	      src = b_elt;
	      b_elt = b_elt->next;
	    }

	  if (!dst_elt)
1276 1277 1278
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, src->indx);
	  else 
	    dst_elt->indx = src->indx;
1279 1280 1281
	  memcpy (dst_elt->bits, src->bits, sizeof (dst_elt->bits));
	  dst_prev = dst_elt;
	  dst_elt = dst_elt->next;
1282
	}
Richard Kenner committed
1283
    }
1284 1285 1286 1287 1288
  bitmap_elt_clear_from (dst, dst_elt);
  gcc_assert (!dst->current == !dst->first);
  if (dst->current)
    dst->indx = dst->current->indx;
}
Richard Kenner committed
1289

1290
/* A ^= B */
1291

1292 1293 1294 1295 1296 1297 1298
void
bitmap_xor_into (bitmap a, bitmap b)
{
  bitmap_element *a_elt = a->first;
  bitmap_element *b_elt = b->first;
  bitmap_element *a_prev = NULL;

1299 1300 1301 1302 1303 1304
  if (a == b)
    {
      bitmap_clear (a);
      return;
    }

1305 1306 1307 1308 1309
  while (b_elt)
    {
      if (!a_elt || b_elt->indx < a_elt->indx)
	{
	  /* Copy b_elt.  */
1310
	  bitmap_element *dst = bitmap_elt_insert_after (a, a_prev, b_elt->indx);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	  memcpy (dst->bits, b_elt->bits, sizeof (dst->bits));
	  a_prev = dst;
	  b_elt = b_elt->next;
	}
      else if (a_elt->indx < b_elt->indx)
	{
	  a_prev = a_elt;
	  a_elt = a_elt->next;
	}
      else
	{
	  /* Matching elts, generate A ^= B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;
	  bitmap_element *next = a_elt->next;

	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    {
	      BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix];

	      ior |= r;
	      a_elt->bits[ix] = r;
	    }
	  b_elt = b_elt->next;
	  if (ior)
	    a_prev = a_elt;
	  else
	    bitmap_element_free (a, a_elt);
	  a_elt = next;
	}
    }
  gcc_assert (!a->current == !a->first);
  if (a->current)
    a->indx = a->current->indx;
1345 1346
}

1347 1348 1349
/* Return true if two bitmaps are identical.
   We do not bother with a check for pointer equality, as that never
   occurs in practice.  */
1350

1351
bool
1352
bitmap_equal_p (bitmap a, bitmap b)
1353
{
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  bitmap_element *a_elt;
  bitmap_element *b_elt;
  unsigned ix;
  
  for (a_elt = a->first, b_elt = b->first;
       a_elt && b_elt;
       a_elt = a_elt->next, b_elt = b_elt->next)
    {
      if (a_elt->indx != b_elt->indx)
	return false;
      for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	if (a_elt->bits[ix] != b_elt->bits[ix])
	  return false;
    }
  return !a_elt && !b_elt;
}

/* Return true if A AND B is not empty.  */

bool
bitmap_intersect_p (bitmap a, bitmap b)
{
  bitmap_element *a_elt;
  bitmap_element *b_elt;
  unsigned ix;
  
  for (a_elt = a->first, b_elt = b->first;
       a_elt && b_elt;)
    {
      if (a_elt->indx < b_elt->indx)
	a_elt = a_elt->next;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
	{
	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    if (a_elt->bits[ix] & b_elt->bits[ix])
	      return true;
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	}
    }
  return false;
}
1398

1399
/* Return true if A AND NOT B is not empty.  */
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
bool
bitmap_intersect_compl_p (bitmap a, bitmap b)
{
  bitmap_element *a_elt;
  bitmap_element *b_elt;
  unsigned ix;
  for (a_elt = a->first, b_elt = b->first;
       a_elt && b_elt;)
    {
      if (a_elt->indx < b_elt->indx)
	return true;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
	{
	  for (ix = BITMAP_ELEMENT_WORDS; ix--;)
	    if (a_elt->bits[ix] & ~b_elt->bits[ix])
	      return true;
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	}
    }
  return a_elt != NULL;
Richard Kenner committed
1424
}
1425

Richard Kenner committed
1426

1427
/* DST = A | (FROM1 & ~FROM2).  Return true if DST changes.  */
Richard Kenner committed
1428

1429
bool
1430
bitmap_ior_and_compl (bitmap dst, bitmap a, bitmap from1, bitmap from2)
Richard Kenner committed
1431 1432
{
  bitmap_head tmp;
1433
  bool changed;
1434 1435

  bitmap_initialize (&tmp, &bitmap_default_obstack);
1436
  bitmap_and_compl (&tmp, from1, from2);
1437
  changed = bitmap_ior (dst, a, &tmp);
Richard Kenner committed
1438
  bitmap_clear (&tmp);
1439

1440
  return changed;
Richard Kenner committed
1441
}
1442

1443
/* A |= (FROM1 & ~FROM2).  Return true if A changes.  */
1444 1445

bool
1446
bitmap_ior_and_compl_into (bitmap a, bitmap from1, bitmap from2)
1447 1448
{
  bitmap_head tmp;
1449 1450
  bool changed;
  
1451
  bitmap_initialize (&tmp, &bitmap_default_obstack);
1452 1453
  bitmap_and_compl (&tmp, from1, from2);
  changed = bitmap_ior_into (a, &tmp);
1454 1455 1456 1457
  bitmap_clear (&tmp);

  return changed;
}
Richard Kenner committed
1458 1459 1460 1461

/* Debugging function to print out the contents of a bitmap.  */

void
1462
debug_bitmap_file (FILE *file, bitmap head)
Richard Kenner committed
1463 1464 1465
{
  bitmap_element *ptr;

1466
  fprintf (file, "\nfirst = %p current = %p indx = %u\n",
1467
	   (void *) head->first, (void *) head->current, head->indx);
Richard Kenner committed
1468 1469 1470

  for (ptr = head->first; ptr; ptr = ptr->next)
    {
1471
      unsigned int i, j, col = 26;
Richard Kenner committed
1472

1473
      fprintf (file, "\t%p next = %p prev = %p indx = %u\n\t\tbits = {",
1474
	       (void*) ptr, (void*) ptr->next, (void*) ptr->prev, ptr->indx);
Richard Kenner committed
1475 1476

      for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
1477
	for (j = 0; j < BITMAP_WORD_BITS; j++)
1478
	  if ((ptr->bits[i] >> j) & 1)
Richard Kenner committed
1479 1480 1481 1482 1483 1484 1485 1486
	    {
	      if (col > 70)
		{
		  fprintf (file, "\n\t\t\t");
		  col = 24;
		}

	      fprintf (file, " %u", (ptr->indx * BITMAP_ELEMENT_ALL_BITS
1487
				     + i * BITMAP_WORD_BITS + j));
Richard Kenner committed
1488 1489 1490 1491 1492 1493
	      col += 4;
	    }

      fprintf (file, " }\n");
    }
}
1494

Richard Kenner committed
1495 1496 1497 1498
/* Function to be called from the debugger to print the contents
   of a bitmap.  */

void
1499
debug_bitmap (bitmap head)
Richard Kenner committed
1500
{
1501
  debug_bitmap_file (stdout, head);
Richard Kenner committed
1502
}
1503

1504
/* Function to print out the contents of a bitmap.  Unlike debug_bitmap_file,
1505 1506 1507
   it does not print anything but the bits.  */

void
1508
bitmap_print (FILE *file, bitmap head, const char *prefix, const char *suffix)
1509
{
1510
  const char *comma = "";
1511
  unsigned i;
1512
  bitmap_iterator bi;
1513 1514

  fputs (prefix, file);
1515 1516 1517 1518 1519
  EXECUTE_IF_SET_IN_BITMAP (head, 0, i, bi)
    {
      fprintf (file, "%s%d", comma, i);
      comma = ", ";
    }
1520 1521
  fputs (suffix, file);
}
1522 1523

#include "gt-bitmap.h"