NV_NVDLA_BDMA_cq.v 20.6 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_BDMA_cq.v
`define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1
`include "simulate_x_tick.vh"
module NV_NVDLA_BDMA_cq (
      nvdla_core_clk
    , nvdla_core_rstn
    , ld2st_wr_prdy
    , ld2st_wr_idle
    , ld2st_wr_pvld
    , ld2st_wr_pd
    , ld2st_rd_prdy
    , ld2st_rd_pvld
    , ld2st_rd_pd
    , pwrbus_ram_pd
    );
// spyglass disable_block W401 -- clock is not input to module
input nvdla_core_clk;
input nvdla_core_rstn;
output ld2st_wr_prdy;
output ld2st_wr_idle;
input ld2st_wr_pvld;
input [160:0] ld2st_wr_pd;
input ld2st_rd_prdy;
output ld2st_rd_pvld;
output [160:0] ld2st_rd_pd;
input [31:0] pwrbus_ram_pd;
// Master Clock Gating (SLCG)
//
// We gate the clock(s) when idle or stalled.
// This allows us to turn off numerous miscellaneous flops
// that don't get gated during synthesis for one reason or another.
//
// We gate write side and read side separately.
// If the fifo is synchronous, we also gate the ram separately, but if
// -master_clk_gated_unified or -status_reg/-status_logic_reg is specified,
// then we use one clk gate for write, ram, and read.
//
wire nvdla_core_clk_mgated_enable; // assigned by code at end of this module
wire nvdla_core_clk_mgated; // used only in synchronous fifos
NV_CLK_gate_power nvdla_core_clk_mgate( .clk(nvdla_core_clk), .reset_(nvdla_core_rstn), .clk_en(nvdla_core_clk_mgated_enable), .clk_gated(nvdla_core_clk_mgated) );
//
// WRITE SIDE
//
wire wr_reserving;
reg ld2st_wr_pvld_in; // registered ld2st_wr_pvld
reg wr_busy_in; // inputs being held this cycle?
assign ld2st_wr_prdy = !wr_busy_in;
wire ld2st_wr_busy_next; // fwd: fifo busy next?
// factor for better timing with distant ld2st_wr_pvld signal
wire wr_busy_in_next_wr_req_eq_1 = ld2st_wr_busy_next;
wire wr_busy_in_next_wr_req_eq_0 = (ld2st_wr_pvld_in && ld2st_wr_busy_next) && !wr_reserving;
wire wr_busy_in_next = (ld2st_wr_pvld? wr_busy_in_next_wr_req_eq_1 : wr_busy_in_next_wr_req_eq_0)
                               ;
wire wr_busy_in_int;
always @( posedge nvdla_core_clk or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        ld2st_wr_pvld_in <= 1'b0;
        wr_busy_in <= 1'b0;
    end else begin
        wr_busy_in <= wr_busy_in_next;
        if ( !wr_busy_in_int ) begin
            ld2st_wr_pvld_in <= ld2st_wr_pvld && !wr_busy_in;
        end
//synopsys translate_off
            else if ( wr_busy_in_int ) begin
        end else begin
            ld2st_wr_pvld_in <= `x_or_0;
        end
//synopsys translate_on
    end
end
reg ld2st_wr_busy_int; // copy for internal use
assign wr_reserving = ld2st_wr_pvld_in && !ld2st_wr_busy_int; // reserving write space?
wire wr_popping; // fwd: write side sees pop?
reg [4:0] ld2st_wr_count; // write-side count
wire [4:0] wr_count_next_wr_popping = wr_reserving ? ld2st_wr_count : (ld2st_wr_count - 1'd1); // spyglass disable W164a W484
wire [4:0] wr_count_next_no_wr_popping = wr_reserving ? (ld2st_wr_count + 1'd1) : ld2st_wr_count; // spyglass disable W164a W484
wire [4:0] wr_count_next = wr_popping ? wr_count_next_wr_popping :
                                               wr_count_next_no_wr_popping;
wire wr_count_next_no_wr_popping_is_20 = ( wr_count_next_no_wr_popping == 5'd20 );
wire wr_count_next_is_20 = wr_popping ? 1'b0 :
                                          wr_count_next_no_wr_popping_is_20;
wire [4:0] wr_limit_muxed; // muxed with simulation/emulation overrides
wire [4:0] wr_limit_reg = wr_limit_muxed;
// VCS coverage off
assign ld2st_wr_busy_next = wr_count_next_is_20 || // busy next cycle?
                          (wr_limit_reg != 5'd0 && // check ld2st_wr_limit if != 0
                           wr_count_next >= wr_limit_reg) ;
// VCS coverage on
assign wr_busy_in_int = ld2st_wr_pvld_in && ld2st_wr_busy_int;
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        ld2st_wr_busy_int <= 1'b0;
        ld2st_wr_count <= 5'd0;
    end else begin
 ld2st_wr_busy_int <= ld2st_wr_busy_next;
 if ( wr_reserving ^ wr_popping ) begin
     ld2st_wr_count <= wr_count_next;
        end
//synopsys translate_off
            else if ( !(wr_reserving ^ wr_popping) ) begin
        end else begin
            ld2st_wr_count <= {5{`x_or_0}};
        end
//synopsys translate_on
    end
end
wire wr_pushing = wr_reserving; // data pushed same cycle as ld2st_wr_pvld_in
//
// RAM
//
reg [4:0] ld2st_wr_adr; // current write address
// spyglass disable_block W484
// next ld2st_wr_adr if wr_pushing=1
wire [4:0] wr_adr_next = (ld2st_wr_adr == 5'd19) ? 5'd0 : (ld2st_wr_adr + 1'd1); // spyglass disable W484
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        ld2st_wr_adr <= 5'd0;
    end else begin
        if ( wr_pushing ) begin
            ld2st_wr_adr <= wr_adr_next;
        end
    end
end
// spyglass enable_block W484
wire rd_popping;
reg [4:0] ld2st_rd_adr; // read address this cycle
wire ram_we = wr_pushing && (ld2st_wr_count > 5'd0 || !rd_popping); // note: write occurs next cycle
wire ram_iwe = !wr_busy_in && ld2st_wr_pvld;
wire [160:0] ld2st_rd_pd_p; // read data out of ram
wire [31 : 0] pwrbus_ram_pd;
// Adding parameter for fifogen to disable wr/rd contention assertion in ramgen.
// Fifogen handles this by ignoring the data on the ram data out for that cycle.
NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 ram (
      .clk( nvdla_core_clk )
    , .clk_mgated( nvdla_core_clk_mgated )
    , .pwrbus_ram_pd ( pwrbus_ram_pd )
    , .di ( ld2st_wr_pd )
    , .iwe ( ram_iwe )
    , .we ( ram_we )
    , .wa ( ld2st_wr_adr )
    , .ra ( (ld2st_wr_count == 0) ? 5'd20 : ld2st_rd_adr )
    , .dout ( ld2st_rd_pd_p )
    );
wire [4:0] rd_adr_next_popping = (ld2st_rd_adr == 5'd19) ? 5'd0 : (ld2st_rd_adr + 1'd1); // spyglass disable W484
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        ld2st_rd_adr <= 5'd0;
    end else begin
        if ( rd_popping ) begin
     ld2st_rd_adr <= rd_adr_next_popping;
        end
//synopsys translate_off
            else if ( !rd_popping ) begin
        end else begin
            ld2st_rd_adr <= {5{`x_or_0}};
        end
//synopsys translate_on
    end
end
//
// SYNCHRONOUS BOUNDARY
//
assign wr_popping = rd_popping; // let it be seen immediately
wire rd_pushing = wr_pushing; // let it be seen immediately
//
// READ SIDE
//
wire ld2st_rd_pvld_p; // data out of fifo is valid
reg ld2st_rd_pvld_int; // internal copy of ld2st_rd_pvld
assign ld2st_rd_pvld = ld2st_rd_pvld_int;
assign rd_popping = ld2st_rd_pvld_p && !(ld2st_rd_pvld_int && !ld2st_rd_prdy);
reg [4:0] ld2st_rd_count_p; // read-side fifo count
// spyglass disable_block W164a W484
wire [4:0] rd_count_p_next_rd_popping = rd_pushing ? ld2st_rd_count_p :
                                                                (ld2st_rd_count_p - 1'd1);
wire [4:0] rd_count_p_next_no_rd_popping = rd_pushing ? (ld2st_rd_count_p + 1'd1) :
                                                                    ld2st_rd_count_p;
// spyglass enable_block W164a W484
wire [4:0] rd_count_p_next = rd_popping ? rd_count_p_next_rd_popping :
                                                     rd_count_p_next_no_rd_popping;
assign ld2st_rd_pvld_p = ld2st_rd_count_p != 0 || rd_pushing;
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        ld2st_rd_count_p <= 5'd0;
    end else begin
        if ( rd_pushing || rd_popping ) begin
     ld2st_rd_count_p <= rd_count_p_next;
        end
//synopsys translate_off
            else if ( !(rd_pushing || rd_popping ) ) begin
        end else begin
            ld2st_rd_count_p <= {5{`x_or_0}};
        end
//synopsys translate_on
    end
end
reg [160:0] ld2st_rd_pd; // output data register
wire rd_req_next = (ld2st_rd_pvld_p || (ld2st_rd_pvld_int && !ld2st_rd_prdy)) ;
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        ld2st_rd_pvld_int <= 1'b0;
    end else begin
        ld2st_rd_pvld_int <= rd_req_next;
    end
end
always @( posedge nvdla_core_clk_mgated ) begin
    if ( (rd_popping) ) begin
        ld2st_rd_pd <= ld2st_rd_pd_p;
    end
//synopsys translate_off
        else if ( !((rd_popping)) ) begin
    end else begin
        ld2st_rd_pd <= {161{`x_or_0}};
    end
//synopsys translate_on
end
//
// Read-side Idle Calculation
//
wire rd_idle = !ld2st_rd_pvld_int && !rd_pushing && ld2st_rd_count_p == 0;
//
// Write-Side Idle Calculation
//
wire ld2st_wr_idle_d0 = !ld2st_wr_pvld_in && rd_idle && !wr_pushing && ld2st_wr_count == 0;
wire ld2st_wr_idle = ld2st_wr_idle_d0;
// Master Clock Gating (SLCG) Enables
//
// plusarg for disabling this stuff:
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0;
`endif
`endif
// synopsys translate_on
assign nvdla_core_clk_mgated_enable = ((wr_reserving || wr_pushing || wr_popping || (ld2st_wr_pvld_in && !ld2st_wr_busy_int) || (ld2st_wr_busy_int != ld2st_wr_busy_next)) || (rd_pushing || rd_popping || (ld2st_rd_pvld_int && ld2st_rd_prdy)) || (wr_pushing))
                               `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED
                               || 1'b1
                               `endif
// synopsys translate_off
          `ifndef SYNTH_LEVEL1_COMPILE
          `ifndef SYNTHESIS
                               || master_clk_gating_disabled
          `endif
          `endif
// synopsys translate_on
                               ;
// Simulation and Emulation Overrides of wr_limit(s)
//
`ifdef EMU
`ifdef EMU_FIFO_CFG
// Emulation Global Config Override
//
assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_BDMA_cq_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_BDMA_cq_wr_limit : 5'd0;
`else
// No Global Override for Emulation
//
assign wr_limit_muxed = 5'd0;
`endif // EMU_FIFO_CFG
`else // !EMU
`ifdef SYNTH_LEVEL1_COMPILE
// No Override for GCS Compiles
//
assign wr_limit_muxed = 5'd0;
`else
`ifdef SYNTHESIS
// No Override for RTL Synthesis
//
assign wr_limit_muxed = 5'd0;
`else
// RTL Simulation Plusarg Override
// VCS coverage off
reg wr_limit_override;
reg [4:0] wr_limit_override_value;
assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 5'd0;
`ifdef NV_ARCHPRO
event reinit;
initial begin
    $display("fifogen reinit initial block %m");
    -> reinit;
end
`endif
`ifdef NV_ARCHPRO
always @( reinit ) begin
`else
initial begin
`endif
    wr_limit_override = 0;
    wr_limit_override_value = 0; // to keep viva happy with dangles
    if ( $test$plusargs( "NV_NVDLA_BDMA_cq_wr_limit" ) ) begin
        wr_limit_override = 1;
        $value$plusargs( "NV_NVDLA_BDMA_cq_wr_limit=%d", wr_limit_override_value);
    end
end
// VCS coverage on
`endif
`endif
`endif
//
// Histogram of fifo depth (from write side's perspective)
//
// NOTE: it will reference `SIMTOP.perfmon_enabled, so that
// has to at least be defined, though not initialized.
// tbgen testbenches have it already and various
// ways to turn it on and off.
//
`ifdef PERFMON_HISTOGRAM
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
perfmon_histogram perfmon (
      .clk ( nvdla_core_clk )
    , .max ( {27'd0, (wr_limit_reg == 5'd0) ? 5'd20 : wr_limit_reg} )
    , .curr ( {27'd0, ld2st_wr_count} )
    );
`endif
`endif
// synopsys translate_on
`endif
// spyglass disable_block W164a W164b W116 W484 W504
`ifdef SPYGLASS
`else
`ifdef FV_ASSERT_ON
`else
// synopsys translate_off
`endif
`ifdef ASSERT_ON
`ifdef SPYGLASS
wire disable_assert_plusarg = 1'b0;
`else
`ifdef FV_ASSERT_ON
wire disable_assert_plusarg = 1'b0;
`else
wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS");
`endif
`endif
wire assert_enabled = 1'b1 && !disable_assert_plusarg;
`endif
`ifdef FV_ASSERT_ON
`else
// synopsys translate_on
`endif
`ifdef ASSERT_ON
//synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
always @(assert_enabled) begin
    if ( assert_enabled === 1'b0 ) begin
        $display("Asserts are disabled for %m");
    end
end
`endif
`endif
//synopsys translate_on
`endif
`endif
// spyglass enable_block W164a W164b W116 W484 W504
//The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH
// define is set. This is to aid fifogen team search for fifogen fifo
// instance and module names in a given design.
`ifdef FIFOGEN_MODULE_SEARCH
NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y());
`endif
// spyglass enable_block W401 -- clock is not input to module
// synopsys dc_script_begin
// set_boundary_optimization find(design, "NV_NVDLA_BDMA_cq") true
// synopsys dc_script_end
endmodule // NV_NVDLA_BDMA_cq
//
// Flop-Based RAM (with internal wr_reg)
//
module NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 (
      clk
    , clk_mgated
    , pwrbus_ram_pd
    , di
    , iwe
    , we
    , wa
    , ra
    , dout
    );
input clk; // write clock
input clk_mgated; // write clock mgated
input [31 : 0] pwrbus_ram_pd;
input [160:0] di;
input iwe;
input we;
input [4:0] wa;
input [4:0] ra;
output [160:0] dout;
`ifndef FPGA
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_0 (.A(pwrbus_ram_pd[0]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_1 (.A(pwrbus_ram_pd[1]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_2 (.A(pwrbus_ram_pd[2]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_3 (.A(pwrbus_ram_pd[3]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_4 (.A(pwrbus_ram_pd[4]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_5 (.A(pwrbus_ram_pd[5]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_6 (.A(pwrbus_ram_pd[6]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_7 (.A(pwrbus_ram_pd[7]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_8 (.A(pwrbus_ram_pd[8]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_9 (.A(pwrbus_ram_pd[9]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_10 (.A(pwrbus_ram_pd[10]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_11 (.A(pwrbus_ram_pd[11]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_12 (.A(pwrbus_ram_pd[12]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_13 (.A(pwrbus_ram_pd[13]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_14 (.A(pwrbus_ram_pd[14]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_15 (.A(pwrbus_ram_pd[15]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_16 (.A(pwrbus_ram_pd[16]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_17 (.A(pwrbus_ram_pd[17]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_18 (.A(pwrbus_ram_pd[18]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_19 (.A(pwrbus_ram_pd[19]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_20 (.A(pwrbus_ram_pd[20]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_21 (.A(pwrbus_ram_pd[21]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_22 (.A(pwrbus_ram_pd[22]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_23 (.A(pwrbus_ram_pd[23]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_24 (.A(pwrbus_ram_pd[24]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_25 (.A(pwrbus_ram_pd[25]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_26 (.A(pwrbus_ram_pd[26]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_27 (.A(pwrbus_ram_pd[27]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_28 (.A(pwrbus_ram_pd[28]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_29 (.A(pwrbus_ram_pd[29]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_30 (.A(pwrbus_ram_pd[30]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_31 (.A(pwrbus_ram_pd[31]));
`endif
reg [160:0] di_d; // -wr_reg
always @( posedge clk ) begin
    if ( iwe ) begin
        di_d <= di; // -wr_reg
    end
end
`ifdef EMU
wire [160:0] dout_p;
// we use an emulation ram here to save flops on the emulation board
// so that the monstrous chip can fit :-)
//
reg [4:0] Wa0_vmw;
reg we0_vmw;
reg [160:0] Di0_vmw;
always @( posedge clk ) begin
    Wa0_vmw <= wa;
    we0_vmw <= we;
    Di0_vmw <= di_d;
end
vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 emu_ram (
     .Wa0( Wa0_vmw )
   , .we0( we0_vmw )
   , .Di0( Di0_vmw )
   , .Ra0( ra )
   , .Do0( dout_p )
   );
assign dout = (ra == 20) ? di_d : dout_p;
`else
reg [160:0] ram_ff0;
reg [160:0] ram_ff1;
reg [160:0] ram_ff2;
reg [160:0] ram_ff3;
reg [160:0] ram_ff4;
reg [160:0] ram_ff5;
reg [160:0] ram_ff6;
reg [160:0] ram_ff7;
reg [160:0] ram_ff8;
reg [160:0] ram_ff9;
reg [160:0] ram_ff10;
reg [160:0] ram_ff11;
reg [160:0] ram_ff12;
reg [160:0] ram_ff13;
reg [160:0] ram_ff14;
reg [160:0] ram_ff15;
reg [160:0] ram_ff16;
reg [160:0] ram_ff17;
reg [160:0] ram_ff18;
reg [160:0] ram_ff19;
always @( posedge clk_mgated ) begin
    if ( we && wa == 5'd0 ) begin
 ram_ff0 <= di_d;
    end
    if ( we && wa == 5'd1 ) begin
 ram_ff1 <= di_d;
    end
    if ( we && wa == 5'd2 ) begin
 ram_ff2 <= di_d;
    end
    if ( we && wa == 5'd3 ) begin
 ram_ff3 <= di_d;
    end
    if ( we && wa == 5'd4 ) begin
 ram_ff4 <= di_d;
    end
    if ( we && wa == 5'd5 ) begin
 ram_ff5 <= di_d;
    end
    if ( we && wa == 5'd6 ) begin
 ram_ff6 <= di_d;
    end
    if ( we && wa == 5'd7 ) begin
 ram_ff7 <= di_d;
    end
    if ( we && wa == 5'd8 ) begin
 ram_ff8 <= di_d;
    end
    if ( we && wa == 5'd9 ) begin
 ram_ff9 <= di_d;
    end
    if ( we && wa == 5'd10 ) begin
 ram_ff10 <= di_d;
    end
    if ( we && wa == 5'd11 ) begin
 ram_ff11 <= di_d;
    end
    if ( we && wa == 5'd12 ) begin
 ram_ff12 <= di_d;
    end
    if ( we && wa == 5'd13 ) begin
 ram_ff13 <= di_d;
    end
    if ( we && wa == 5'd14 ) begin
 ram_ff14 <= di_d;
    end
    if ( we && wa == 5'd15 ) begin
 ram_ff15 <= di_d;
    end
    if ( we && wa == 5'd16 ) begin
 ram_ff16 <= di_d;
    end
    if ( we && wa == 5'd17 ) begin
 ram_ff17 <= di_d;
    end
    if ( we && wa == 5'd18 ) begin
 ram_ff18 <= di_d;
    end
    if ( we && wa == 5'd19 ) begin
 ram_ff19 <= di_d;
    end
end
reg [160:0] dout;
always @(*) begin
    case( ra )
    5'd0: dout = ram_ff0;
    5'd1: dout = ram_ff1;
    5'd2: dout = ram_ff2;
    5'd3: dout = ram_ff3;
    5'd4: dout = ram_ff4;
    5'd5: dout = ram_ff5;
    5'd6: dout = ram_ff6;
    5'd7: dout = ram_ff7;
    5'd8: dout = ram_ff8;
    5'd9: dout = ram_ff9;
    5'd10: dout = ram_ff10;
    5'd11: dout = ram_ff11;
    5'd12: dout = ram_ff12;
    5'd13: dout = ram_ff13;
    5'd14: dout = ram_ff14;
    5'd15: dout = ram_ff15;
    5'd16: dout = ram_ff16;
    5'd17: dout = ram_ff17;
    5'd18: dout = ram_ff18;
    5'd19: dout = ram_ff19;
    5'd20: dout = di_d;
//VCS coverage off
    default: dout = {161{`x_or_0}};
//VCS coverage on
    endcase
end
`endif // EMU
endmodule // NV_NVDLA_BDMA_cq_flopram_rwsa_20x161
// emulation model of flopram guts
//
`ifdef EMU
module vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161 (
   Wa0, we0, Di0,
   Ra0, Do0
   );
input [4:0] Wa0;
input we0;
input [160:0] Di0;
input [4:0] Ra0;
output [160:0] Do0;
// Only visible during Spyglass to avoid blackboxes.
`ifdef SPYGLASS_FLOPRAM
assign Do0 = 161'd0;
wire dummy = 1'b0 | (|Wa0) | (|we0) | (|Di0) | (|Ra0);
`endif
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg [160:0] mem[19:0];
// expand mem for debug ease
`ifdef EMU_EXPAND_FLOPRAM_MEM
wire [160:0] Q0 = mem[0];
wire [160:0] Q1 = mem[1];
wire [160:0] Q2 = mem[2];
wire [160:0] Q3 = mem[3];
wire [160:0] Q4 = mem[4];
wire [160:0] Q5 = mem[5];
wire [160:0] Q6 = mem[6];
wire [160:0] Q7 = mem[7];
wire [160:0] Q8 = mem[8];
wire [160:0] Q9 = mem[9];
wire [160:0] Q10 = mem[10];
wire [160:0] Q11 = mem[11];
wire [160:0] Q12 = mem[12];
wire [160:0] Q13 = mem[13];
wire [160:0] Q14 = mem[14];
wire [160:0] Q15 = mem[15];
wire [160:0] Q16 = mem[16];
wire [160:0] Q17 = mem[17];
wire [160:0] Q18 = mem[18];
wire [160:0] Q19 = mem[19];
`endif
// asynchronous ram writes
always @(*) begin
  if ( we0 == 1'b1 ) begin
    #0.1;
    mem[Wa0] = Di0;
  end
end
assign Do0 = mem[Ra0];
`endif
`endif
// synopsys translate_on
// synopsys dc_script_begin
// synopsys dc_script_end
// g2c if { [find / -null_ok -subdesign vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161] != {} } { set_attr preserve 1 [find / -subdesign vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161] }
endmodule // vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161
//vmw: Memory vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161
//vmw: Address-size 5
//vmw: Data-size 161
//vmw: Sensitivity level 1
//vmw: Ports W R
//vmw: terminal we0 WriteEnable0
//vmw: terminal Wa0 address0
//vmw: terminal Di0[160:0] data0[160:0]
//vmw:
//vmw: terminal Ra0 address1
//vmw: terminal Do0[160:0] data1[160:0]
//vmw:
//qt: CELL vmw_NV_NVDLA_BDMA_cq_flopram_rwsa_20x161
//qt: TERMINAL we0 TYPE=WE POLARITY=H PORT=1
//qt: TERMINAL Wa0[%d] TYPE=ADDRESS DIR=W BIT=%1 PORT=1
//qt: TERMINAL Di0[%d] TYPE=DATA DIR=I BIT=%1 PORT=1
//qt:
//qt: TERMINAL Ra0[%d] TYPE=ADDRESS DIR=R BIT=%1 PORT=1
//qt: TERMINAL Do0[%d] TYPE=DATA DIR=O BIT=%1 PORT=1
//qt:
`endif // EMU