NV_NVDLA_MCIF_READ_IG_bpt.v 17 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_MCIF_READ_IG_bpt.v
// ================================================================
// NVDLA Open Source Project
// 
// Copyright(c 2016 - 2017 NVIDIA Corporation.  Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with 
// this distribution for more information.
// ================================================================
`include "simulate_x_tick.vh"
module NV_NVDLA_MCIF_READ_IG_bpt (
   nvdla_core_clk //|< i
  ,nvdla_core_rstn //|< i
  ,dma2bpt_cdt_lat_fifo_pop //|< i
  ,dma2bpt_req_pd //|< i
  ,dma2bpt_req_valid //|< i
  ,dma2bpt_req_ready //|> o
  ,bpt2arb_req_pd //|> o
  ,bpt2arb_req_valid //|> o
  ,bpt2arb_req_ready //|< i
  ,tieoff_axid //|< i
  ,tieoff_lat_fifo_depth //|< i
  );
input nvdla_core_clk;
input nvdla_core_rstn;
input dma2bpt_req_valid;
output dma2bpt_req_ready;
input [47 -1:0] dma2bpt_req_pd;
input dma2bpt_cdt_lat_fifo_pop;
output bpt2arb_req_valid;
input bpt2arb_req_ready;
output [32 +11 -1:0] bpt2arb_req_pd;
input [3:0] tieoff_axid;
input [8:0] tieoff_lat_fifo_depth;
reg [15 -1:0] count_req;
reg [15 -1:0] req_num;
wire lat_fifo_stall_enable;
reg lat_adv;
reg [10:0] lat_cnt_ext;
reg [10:0] lat_cnt_mod;
reg [10:0] lat_cnt_new;
reg [10:0] lat_cnt_nxt;
reg [8:0] lat_cnt_cur;
reg [8:0] lat_count_cnt;
reg [0:0] lat_count_dec;
wire [2:0] lat_count_inc;
wire [8:0] lat_fifo_free_slot;
wire mon_lat_fifo_free_slot_c;
reg [32 -1:0] out_addr;
wire [2:0] out_size;
reg [2:0] out_size_tmp;
wire [1:0] beat_size;
wire bpt2arb_accept;
wire [32 -1:0] bpt2arb_addr;
wire [3:0] bpt2arb_axid;
wire bpt2arb_ftran;
wire bpt2arb_ltran;
wire bpt2arb_odd;
wire [2:0] bpt2arb_size;
wire bpt2arb_swizzle;
wire [0 -1:0] stt_offset;
wire [0 -1:0] end_offset;
wire [0 -1:0] size_offset;
wire [0 -1:0] ftran_size_tmp;
wire [0 -1:0] ltran_size_tmp;
wire mon_end_offset_c;
wire [2:0] ftran_size;
wire [2:0] ltran_size;
wire [15 -1:0] mtran_num;
wire [32 -1:0] in_addr;
wire [47 -1:0] in_pd;
wire [47 -1:0] in_pd_p;
wire in_rdy;
wire in_rdy_p;
wire [15 -1:0] in_size;
wire in_vld;
wire in_vld_p;
wire [47 -1:0] in_vld_pd;
wire is_ftran;
wire is_ltran;
wire is_mtran;
wire is_single_tran;
wire mon_out_beats_c;
wire out_inc;
wire out_odd;
wire out_swizzle;
wire req_enable;
wire req_rdy;
wire req_vld;
NV_NVDLA_MCIF_READ_IG_BPT_pipe_p1 pipe_p1 (
   .nvdla_core_clk (nvdla_core_clk) //|< i
  ,.nvdla_core_rstn (nvdla_core_rstn) //|< i
  ,.dma2bpt_req_pd (dma2bpt_req_pd) //|< i
  ,.dma2bpt_req_valid (dma2bpt_req_valid) //|< i
  ,.dma2bpt_req_ready (dma2bpt_req_ready) //|> o
  ,.in_pd_p (in_pd_p) //|> w
  ,.in_vld_p (in_vld_p) //|> w
  ,.in_rdy_p (in_rdy_p) //|< w
  );
NV_NVDLA_MCIF_READ_IG_BPT_pipe_p2 pipe_p2 (
   .nvdla_core_clk (nvdla_core_clk) //|< i
  ,.nvdla_core_rstn (nvdla_core_rstn) //|< i
  ,.in_pd_p (in_pd_p) //|< w
  ,.in_vld_p (in_vld_p) //|< w
  ,.in_rdy_p (in_rdy_p) //|> w
  ,.in_pd (in_pd) //|> w
  ,.in_vld (in_vld) //|> w
  ,.in_rdy (in_rdy) //|< w
  );
assign in_rdy = req_rdy & is_ltran;
assign in_vld_pd = {47{in_vld}} & in_pd;
assign in_addr[32 -1:0] = in_vld_pd[32 -1:0];
assign in_size[15 -1:0] = in_vld_pd[47 -1:32];
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
// VCS coverage off
  wire cond_zzz_assert_always_1x = (in_addr[3 -1:0] == 0);
  nv_assert_always #(0,0,"lower LSB should always be 0") zzz_assert_always_1x (.clk(nvdla_core_clk), .reset_(`ASSERT_RESET), .test_expr(cond_zzz_assert_always_1x)); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
assign ftran_size[2:0] = 3'b0;
assign ltran_size[2:0] = 3'b0;
assign mtran_num = in_size - 1;
//================
// check the empty entry of lat.fifo
//================
wire [2:0] slot_needed = 3'b1;
assign lat_fifo_stall_enable = (tieoff_lat_fifo_depth!=0);
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    lat_count_dec <= 1'b0;
  end else begin
    lat_count_dec <= dma2bpt_cdt_lat_fifo_pop;
  end
end
assign lat_count_inc = (bpt2arb_accept && lat_fifo_stall_enable ) ? slot_needed : 0;
always @(
  lat_count_inc
  or lat_count_dec
  ) begin
  lat_adv = lat_count_inc[2:0] != {{2{1'b0}}, lat_count_dec[0:0]};
end
// lat cnt logic
always @(
  lat_cnt_cur
  or lat_count_inc
  or lat_count_dec
  or lat_adv
  ) begin
// VCS sop_coverage_off start
  lat_cnt_ext[10:0] = {1'b0, 1'b0, lat_cnt_cur};
  lat_cnt_mod[10:0] = lat_cnt_cur + lat_count_inc[2:0] - lat_count_dec[0:0]; // spyglass disable W164b
  lat_cnt_new[10:0] = (lat_adv)? lat_cnt_mod[10:0] : lat_cnt_ext[10:0];
  lat_cnt_nxt[10:0] = lat_cnt_new[10:0];
// VCS sop_coverage_off end
//| &End;
end
// lat flops
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    lat_cnt_cur[8:0] <= 0;
  end else begin
  lat_cnt_cur[8:0] <= lat_cnt_nxt[8:0];
  end
end
// lat output logic
always @(
  lat_cnt_cur
  ) begin
  lat_count_cnt[8:0] = lat_cnt_cur[8:0];
end
// lat asserts
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
// VCS coverage off
  nv_assert_never #(0,0,"never: counter underflow below <und_cnt>") zzz_assert_never_2x (nvdla_core_clk, `ASSERT_RESET, (lat_cnt_nxt < 0)); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
assign {mon_lat_fifo_free_slot_c,lat_fifo_free_slot[8:0]} = tieoff_lat_fifo_depth - lat_count_cnt;
assign req_enable = (!lat_fifo_stall_enable) || ({{6{1'b0}}, slot_needed} <= lat_fifo_free_slot);
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
// VCS coverage off
  nv_assert_never #(0,0,"should not over flow") zzz_assert_never_3x (nvdla_core_clk, `ASSERT_RESET, mon_lat_fifo_free_slot_c); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
//================
// bsp out: swizzle
//================
assign out_swizzle = 1'b0;
assign out_odd = 1'b0;
//================
// bsp out: size
//================
assign out_size = 3'h0;
//================
// bpt2arb: addr
//================
always @(posedge nvdla_core_clk) begin
    if (bpt2arb_accept) begin
        if (is_ftran) begin
            out_addr <= in_addr + (1 <<3);
        end else begin
            out_addr <= out_addr + (1<<3);
        end
    end
end
//================
// tran count
//================
always @(*) begin
  req_num = in_size;
end
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    count_req <= {15{1'b0}};
  end else begin
    if (bpt2arb_accept) begin
        if (is_ltran) begin
            count_req <= 0;
        end else begin
            count_req <= count_req + 1;
        end
    end
  end
end
assign is_ftran = (count_req==0);
assign is_mtran = (count_req>0 && count_req<req_num);
assign is_ltran = (count_req==req_num);
assign bpt2arb_addr = (is_ftran) ? in_addr : out_addr;
assign bpt2arb_size = out_size;
assign bpt2arb_swizzle = out_swizzle;
assign bpt2arb_odd = out_odd;
assign bpt2arb_ltran = is_ltran;
assign bpt2arb_ftran = is_ftran;
assign bpt2arb_axid = tieoff_axid[3:0];
assign req_rdy = req_enable & bpt2arb_req_ready;
assign req_vld = req_enable & in_vld;
assign bpt2arb_req_valid = req_vld;
assign bpt2arb_accept = bpt2arb_req_valid & req_rdy;
assign bpt2arb_req_pd[3:0] = bpt2arb_axid[3:0];
assign bpt2arb_req_pd[32 +3:4] = bpt2arb_addr[32 -1:0];
assign bpt2arb_req_pd[32 +6:32 +4] = bpt2arb_size[2:0];
assign bpt2arb_req_pd[32 +7] = bpt2arb_swizzle ;
assign bpt2arb_req_pd[32 +8] = bpt2arb_odd ;
assign bpt2arb_req_pd[32 +9] = bpt2arb_ltran ;
assign bpt2arb_req_pd[32 +10] = bpt2arb_ftran ;
endmodule // NV_NVDLA_MCIF_READ_IG_bpt
// **************************************************************************************************************
// Generated by ::pipe -m -bc -is in_pd_p (in_vld_p,in_rdy_p) <= dma2bpt_req_pd[47 -1:0] (dma2bpt_req_valid,dma2bpt_req_ready)
// **************************************************************************************************************
module NV_NVDLA_MCIF_READ_IG_BPT_pipe_p1 (
   nvdla_core_clk
  ,nvdla_core_rstn
  ,dma2bpt_req_pd
  ,dma2bpt_req_valid
  ,dma2bpt_req_ready
  ,in_pd_p
  ,in_vld_p
  ,in_rdy_p
  );
input nvdla_core_clk;
input nvdla_core_rstn;
input [47 -1:0] dma2bpt_req_pd;
input dma2bpt_req_valid;
output dma2bpt_req_ready;
output [47 -1:0] in_pd_p;
output in_vld_p;
input in_rdy_p;
//: my $mem = 47;
//: &eperl::pipe(" -wid $mem -is -do in_pd_p -vo in_vld_p -ri in_rdy_p  -di dma2bpt_req_pd -vi dma2bpt_req_valid -ro dma2bpt_req_ready ");
//| eperl: generated_beg (DO NOT EDIT BELOW)
// Reg
reg dma2bpt_req_ready;
reg skid_flop_dma2bpt_req_ready;
reg skid_flop_dma2bpt_req_valid;
reg [47-1:0] skid_flop_dma2bpt_req_pd;
reg pipe_skid_dma2bpt_req_valid;
reg [47-1:0] pipe_skid_dma2bpt_req_pd;
// Wire
wire skid_dma2bpt_req_valid;
wire [47-1:0] skid_dma2bpt_req_pd;
wire skid_dma2bpt_req_ready;
wire pipe_skid_dma2bpt_req_ready;
wire in_vld_p;
wire [47-1:0] in_pd_p;
// Code
// SKID READY
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
   if (!nvdla_core_rstn) begin
       dma2bpt_req_ready <= 1'b1;
       skid_flop_dma2bpt_req_ready <= 1'b1;
   end else begin
       dma2bpt_req_ready <= skid_dma2bpt_req_ready;
       skid_flop_dma2bpt_req_ready <= skid_dma2bpt_req_ready;
   end
end

// SKID VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        skid_flop_dma2bpt_req_valid <= 1'b0;
    end else begin
        if (skid_flop_dma2bpt_req_ready) begin
            skid_flop_dma2bpt_req_valid <= dma2bpt_req_valid;
        end
   end
end
assign skid_dma2bpt_req_valid = (skid_flop_dma2bpt_req_ready) ? dma2bpt_req_valid : skid_flop_dma2bpt_req_valid;

// SKID DATA
always @(posedge nvdla_core_clk) begin
    if (skid_flop_dma2bpt_req_ready & dma2bpt_req_valid) begin
        skid_flop_dma2bpt_req_pd[47-1:0] <= dma2bpt_req_pd[47-1:0];
    end
end
assign skid_dma2bpt_req_pd[47-1:0] = (skid_flop_dma2bpt_req_ready) ? dma2bpt_req_pd[47-1:0] : skid_flop_dma2bpt_req_pd[47-1:0];


// PIPE READY
assign skid_dma2bpt_req_ready = pipe_skid_dma2bpt_req_ready || !pipe_skid_dma2bpt_req_valid;

// PIPE VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        pipe_skid_dma2bpt_req_valid <= 1'b0;
    end else begin
        if (skid_dma2bpt_req_ready) begin
            pipe_skid_dma2bpt_req_valid <= skid_dma2bpt_req_valid;
        end
    end
end

// PIPE DATA
always @(posedge nvdla_core_clk) begin
    if (skid_dma2bpt_req_ready && skid_dma2bpt_req_valid) begin
        pipe_skid_dma2bpt_req_pd[47-1:0] <= skid_dma2bpt_req_pd[47-1:0];
    end
end


// PIPE OUTPUT
assign pipe_skid_dma2bpt_req_ready = in_rdy_p;
assign in_vld_p = pipe_skid_dma2bpt_req_valid;
assign in_pd_p = pipe_skid_dma2bpt_req_pd;

//| eperl: generated_end (DO NOT EDIT ABOVE)
endmodule
// **************************************************************************************************************
// Generated by ::pipe -m -bc -is in_pd (in_vld,in_rdy) <= in_pd_p[47 -1:0] (in_vld_p,in_rdy_p)
// **************************************************************************************************************
module NV_NVDLA_MCIF_READ_IG_BPT_pipe_p2 (
   nvdla_core_clk
  ,nvdla_core_rstn
  ,in_pd_p
  ,in_vld_p
  ,in_rdy_p
  ,in_pd
  ,in_vld
  ,in_rdy
  );
input nvdla_core_clk;
input nvdla_core_rstn;
input [47 -1:0] in_pd_p;
input in_vld_p;
output in_rdy_p;
output [47 -1:0] in_pd;
output in_vld;
input in_rdy;
//: my $mem = 47;
//: &eperl::pipe(" -wid $mem -is -do in_pd -vo in_vld -ri in_rdy -di in_pd_p -vi in_vld_p -ro in_rdy_p ");
//| eperl: generated_beg (DO NOT EDIT BELOW)
// Reg
reg in_rdy_p;
reg skid_flop_in_rdy_p;
reg skid_flop_in_vld_p;
reg [47-1:0] skid_flop_in_pd_p;
reg pipe_skid_in_vld_p;
reg [47-1:0] pipe_skid_in_pd_p;
// Wire
wire skid_in_vld_p;
wire [47-1:0] skid_in_pd_p;
wire skid_in_rdy_p;
wire pipe_skid_in_rdy_p;
wire in_vld;
wire [47-1:0] in_pd;
// Code
// SKID READY
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
   if (!nvdla_core_rstn) begin
       in_rdy_p <= 1'b1;
       skid_flop_in_rdy_p <= 1'b1;
   end else begin
       in_rdy_p <= skid_in_rdy_p;
       skid_flop_in_rdy_p <= skid_in_rdy_p;
   end
end

// SKID VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        skid_flop_in_vld_p <= 1'b0;
    end else begin
        if (skid_flop_in_rdy_p) begin
            skid_flop_in_vld_p <= in_vld_p;
        end
   end
end
assign skid_in_vld_p = (skid_flop_in_rdy_p) ? in_vld_p : skid_flop_in_vld_p;

// SKID DATA
always @(posedge nvdla_core_clk) begin
    if (skid_flop_in_rdy_p & in_vld_p) begin
        skid_flop_in_pd_p[47-1:0] <= in_pd_p[47-1:0];
    end
end
assign skid_in_pd_p[47-1:0] = (skid_flop_in_rdy_p) ? in_pd_p[47-1:0] : skid_flop_in_pd_p[47-1:0];


// PIPE READY
assign skid_in_rdy_p = pipe_skid_in_rdy_p || !pipe_skid_in_vld_p;

// PIPE VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        pipe_skid_in_vld_p <= 1'b0;
    end else begin
        if (skid_in_rdy_p) begin
            pipe_skid_in_vld_p <= skid_in_vld_p;
        end
    end
end

// PIPE DATA
always @(posedge nvdla_core_clk) begin
    if (skid_in_rdy_p && skid_in_vld_p) begin
        pipe_skid_in_pd_p[47-1:0] <= skid_in_pd_p[47-1:0];
    end
end


// PIPE OUTPUT
assign pipe_skid_in_rdy_p = in_rdy;
assign in_vld = pipe_skid_in_vld_p;
assign in_pd = pipe_skid_in_pd_p;

//| eperl: generated_end (DO NOT EDIT ABOVE)
endmodule // NV_NVDLA_MCIF_READ_IG_BPT_pipe_p2