RAMPDP_512X64_GL_M4_D2.v 63.4 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: RAMPDP_512X64_GL_M4_D2.v
`ifdef EMULATION
 `define SYNTHESIS
`endif
`ifndef SYNTHESIS
 `ifdef FAULT_INJECTION
  `define SIM_and_FAULT
 `endif
`endif
`ifndef SYNTHESIS
 `ifdef MONITOR
  `define SIM_and_MONITOR
 `endif
`endif
`ifndef SYNTHESIS
`timescale 10ps/1ps
`endif
`celldefine
module RAMPDP_512X64_GL_M4_D2 ( WE, CLK, IDDQ, SVOP_0, SVOP_1, SVOP_2, SVOP_3, SVOP_4, SVOP_5, SVOP_6, SVOP_7
,WD_63, WD_62, WD_61, WD_60, WD_59, WD_58, WD_57, WD_56, WD_55, WD_54, WD_53, WD_52, WD_51, WD_50, WD_49, WD_48, WD_47, WD_46, WD_45, WD_44, WD_43, WD_42, WD_41, WD_40, WD_39, WD_38, WD_37, WD_36, WD_35, WD_34, WD_33, WD_32, WD_31, WD_30, WD_29, WD_28, WD_27, WD_26, WD_25, WD_24, WD_23, WD_22, WD_21, WD_20, WD_19, WD_18, WD_17, WD_16, WD_15, WD_14, WD_13, WD_12, WD_11, WD_10, WD_9, WD_8, WD_7, WD_6, WD_5, WD_4, WD_3, WD_2, WD_1, WD_0,RD_63, RD_62, RD_61, RD_60, RD_59, RD_58, RD_57, RD_56, RD_55, RD_54, RD_53, RD_52, RD_51, RD_50, RD_49, RD_48, RD_47, RD_46, RD_45, RD_44, RD_43, RD_42, RD_41, RD_40, RD_39, RD_38, RD_37, RD_36, RD_35, RD_34, RD_33, RD_32, RD_31, RD_30, RD_29, RD_28, RD_27, RD_26, RD_25, RD_24, RD_23, RD_22, RD_21, RD_20, RD_19, RD_18, RD_17, RD_16, RD_15, RD_14, RD_13, RD_12, RD_11, RD_10, RD_9, RD_8, RD_7, RD_6, RD_5, RD_4, RD_3, RD_2, RD_1, RD_0, RE
, RADR_8, RADR_7, RADR_6, RADR_5, RADR_4, RADR_3, RADR_2, RADR_1, RADR_0, WADR_8, WADR_7, WADR_6, WADR_5, WADR_4, WADR_3, WADR_2, WADR_1, WADR_0, SLEEP_EN_7, SLEEP_EN_6, SLEEP_EN_5, SLEEP_EN_4, SLEEP_EN_3, SLEEP_EN_2, SLEEP_EN_1, SLEEP_EN_0, RET_EN
);
// nvProps NoBus SLEEP_EN_
`ifndef RAM_INTERFACE
`ifndef SYNTHESIS
// Physical ram size defined as localparam
parameter phy_rows = 128;
parameter phy_cols = 256;
parameter phy_rcols_pos = 256'b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
`endif //SYNTHESIS
`endif //RAM_INTERFACE
// Test mode control ports
input IDDQ;
// Clock port
input CLK;
// SVOP ports
input SVOP_0, SVOP_1, SVOP_2, SVOP_3, SVOP_4, SVOP_5, SVOP_6, SVOP_7;
// Write data ports
input WD_63, WD_62, WD_61, WD_60, WD_59, WD_58, WD_57, WD_56, WD_55, WD_54, WD_53, WD_52, WD_51, WD_50, WD_49, WD_48, WD_47, WD_46, WD_45, WD_44, WD_43, WD_42, WD_41, WD_40, WD_39, WD_38, WD_37, WD_36, WD_35, WD_34, WD_33, WD_32, WD_31, WD_30, WD_29, WD_28, WD_27, WD_26, WD_25, WD_24, WD_23, WD_22, WD_21, WD_20, WD_19, WD_18, WD_17, WD_16, WD_15, WD_14, WD_13, WD_12, WD_11, WD_10, WD_9, WD_8, WD_7, WD_6, WD_5, WD_4, WD_3, WD_2, WD_1, WD_0;
// Read data ports
output RD_63, RD_62, RD_61, RD_60, RD_59, RD_58, RD_57, RD_56, RD_55, RD_54, RD_53, RD_52, RD_51, RD_50, RD_49, RD_48, RD_47, RD_46, RD_45, RD_44, RD_43, RD_42, RD_41, RD_40, RD_39, RD_38, RD_37, RD_36, RD_35, RD_34, RD_33, RD_32, RD_31, RD_30, RD_29, RD_28, RD_27, RD_26, RD_25, RD_24, RD_23, RD_22, RD_21, RD_20, RD_19, RD_18, RD_17, RD_16, RD_15, RD_14, RD_13, RD_12, RD_11, RD_10, RD_9, RD_8, RD_7, RD_6, RD_5, RD_4, RD_3, RD_2, RD_1, RD_0;
// Read enable ports
input RE;
// Write enable ports
input WE;
// Read address ports
input RADR_8, RADR_7, RADR_6, RADR_5, RADR_4, RADR_3, RADR_2, RADR_1, RADR_0;
// Write address ports
input WADR_8, WADR_7, WADR_6, WADR_5, WADR_4, WADR_3, WADR_2, WADR_1, WADR_0;
// PG Zone enables
input SLEEP_EN_0, SLEEP_EN_1, SLEEP_EN_2, SLEEP_EN_3, SLEEP_EN_4, SLEEP_EN_5, SLEEP_EN_6, SLEEP_EN_7, RET_EN;
`ifndef RAM_INTERFACE
wire VDD = 1'b1;
wire GND = 1'b0;
// Combine the sleep enable pins into one bus
 wire [7:0] SLEEP_EN = {SLEEP_EN_7, SLEEP_EN_6, SLEEP_EN_5, SLEEP_EN_4, SLEEP_EN_3, SLEEP_EN_2, SLEEP_EN_1, SLEEP_EN_0};
// Signal to clamp the outputs when the VDD is power gated off.
 wire clamp_rd = SLEEP_EN[7] ;
// State point clobering signals
// X-out state points when their power goes out
    wire clobber_x;
`ifndef SYNTHESIS
`ifdef DISABLE_REPAIR_X
    wire check_x = (RET_EN ^ (^SLEEP_EN[7:0]) ^ SVOP_0 ^ SVOP_1 ^ SVOP_2 ^ SVOP_3 ^ SVOP_4 ^ SVOP_5 ^ SVOP_6 ^ SVOP_7);
`else
    wire check_x = (RET_EN ^ (^SLEEP_EN[7:0]) ^ SVOP_0 ^ SVOP_1 ^ SVOP_2 ^ SVOP_3 ^ SVOP_4 ^ SVOP_5 ^ SVOP_6 ^ SVOP_7 );
`endif
    assign clobber_x = ((check_x === 1'bx) || (check_x === 1'bz))?1'b1:1'b0;
    wire clobber_array = (~RET_EN & (|SLEEP_EN[3:0])) | clobber_x;
    wire clobber_flops = (|SLEEP_EN[7:4]) | clobber_x ;
`else //SYNTHESIS
    wire clobber_array = 1'b0;
    wire clobber_flops = 1'b0;
    assign clobber_x = 1'b0;
`endif //SYNTHESIS 
// Output valid signal
// Outputs are unknown in non-retention mode if VDDM is powered up , but VDD is not
    wire outvalid;
 assign outvalid = ~(clobber_x | (~RET_EN & (|SLEEP_EN[3:0]) & (|(~SLEEP_EN[7:4]))));
//assemble & rename wires
// Extend the MSB's of the read/write addresses to cover all the flop inputs
// The number of address flops is fixed. Also combine all the individual *_* bits into one bus
 wire [8:0] RA = {RADR_8, RADR_7, RADR_6, RADR_5, RADR_4, RADR_3, RADR_2, RADR_1, RADR_0};
 wire [8:0] WA = {WADR_8, WADR_7, WADR_6, WADR_5, WADR_4, WADR_3, WADR_2, WADR_1, WADR_0};
// Combine all the write data input bits
 wire [63:0] WD = {WD_63, WD_62, WD_61, WD_60, WD_59, WD_58, WD_57, WD_56, WD_55, WD_54, WD_53, WD_52, WD_51, WD_50, WD_49, WD_48, WD_47, WD_46, WD_45, WD_44, WD_43, WD_42, WD_41, WD_40, WD_39, WD_38, WD_37, WD_36, WD_35, WD_34, WD_33, WD_32, WD_31, WD_30, WD_29, WD_28, WD_27, WD_26, WD_25, WD_24, WD_23, WD_22, WD_21, WD_20, WD_19, WD_18, WD_17, WD_16, WD_15, WD_14, WD_13, WD_12, WD_11, WD_10, WD_9, WD_8, WD_7, WD_6, WD_5, WD_4, WD_3, WD_2, WD_1, WD_0};
 wire [63:0] RD;
// Expand the read data bus into individual output bits
// assign {RD_63, RD_62, RD_61, RD_60, RD_59, RD_58, RD_57, RD_56, RD_55, RD_54, RD_53, RD_52, RD_51, RD_50, RD_49, RD_48, RD_47, RD_46, RD_45, RD_44, RD_43, RD_42, RD_41, RD_40, RD_39, RD_38, RD_37, RD_36, RD_35, RD_34, RD_33, RD_32, RD_31, RD_30, RD_29, RD_28, RD_27, RD_26, RD_25, RD_24, RD_23, RD_22, RD_21, RD_20, RD_19, RD_18, RD_17, RD_16, RD_15, RD_14, RD_13, RD_12, RD_11, RD_10, RD_9, RD_8, RD_7, RD_6, RD_5, RD_4, RD_3, RD_2, RD_1, RD_0} = (outvalid) ? RD : 64'bx;
// Do the read data swizzing based on the number of words and bits.
`ifndef SYNTHESIS
 assign {RD_63, RD_62, RD_61, RD_60, RD_59, RD_58, RD_57, RD_56, RD_55, RD_54, RD_53, RD_52, RD_51, RD_50, RD_49, RD_48, RD_47, RD_46, RD_45, RD_44, RD_43, RD_42, RD_41, RD_40, RD_39, RD_38, RD_37, RD_36, RD_35, RD_34, RD_33, RD_32, RD_31, RD_30, RD_29, RD_28, RD_27, RD_26, RD_25, RD_24, RD_23, RD_22, RD_21, RD_20, RD_19, RD_18, RD_17, RD_16, RD_15, RD_14, RD_13, RD_12, RD_11, RD_10, RD_9, RD_8, RD_7, RD_6, RD_5, RD_4, RD_3, RD_2, RD_1, RD_0} = (outvalid) ? RD & ~{64{clamp_rd}} : 64'bx;
`else
 assign {RD_63, RD_62, RD_61, RD_60, RD_59, RD_58, RD_57, RD_56, RD_55, RD_54, RD_53, RD_52, RD_51, RD_50, RD_49, RD_48, RD_47, RD_46, RD_45, RD_44, RD_43, RD_42, RD_41, RD_40, RD_39, RD_38, RD_37, RD_36, RD_35, RD_34, RD_33, RD_32, RD_31, RD_30, RD_29, RD_28, RD_27, RD_26, RD_25, RD_24, RD_23, RD_22, RD_21, RD_20, RD_19, RD_18, RD_17, RD_16, RD_15, RD_14, RD_13, RD_12, RD_11, RD_10, RD_9, RD_8, RD_7, RD_6, RD_5, RD_4, RD_3, RD_2, RD_1, RD_0} = RD & ~{64{clamp_rd}};
`endif
 wire [7:0] SVOP = {SVOP_7, SVOP_6, SVOP_5, SVOP_4, SVOP_3, SVOP_2, SVOP_1, SVOP_0};
`ifndef EMULATION
// Instantiate memory bank
// This block defines the core functionality of the rams.
 RAM_BANK_RAMPDP_512X64_GL_M4_D2 ITOP ( WE, CLK, IDDQ, SVOP, WD, RD, RE, RA, WA
, SLEEP_EN
, RET_EN, clobber_array , clobber_flops
);
`ifndef SYNTHESIS
// Tasks for initializing the arrays
//VCS coverage off
always @(clobber_array) begin : clobber_array_block
    integer i;
    if (clobber_array) begin
     for (i=0; i<512; i=i+1) begin
       mem_wr_raw(i, {64{1'bx}});
  end
    end
end
always @(clobber_flops) begin
  if (clobber_flops) begin
      ITOP.RE_LATB <= 1'bx;
      ITOP.RE_FF <= 1'bx;
      ITOP.WE_LATB <= 1'bx;
      ITOP.WE_FF <= 1'bx;
      ITOP.RADR <= 9'bx;
      ITOP.WADR <= 9'bx;
      ITOP.WAFF <= 9'bx;
      ITOP.WDQ_pr <= 64'bx;
      ITOP.dout <= 64'bx;
  end
end
//VCS coverage on
//VCS coverage off
task mem_wr_raw;
  input [8:0] addr;
  input [63:0] data;
  begin
    if (addr[1:0] == 2'b00)
        ITOP.iow0.mem_wr_raw_subbank(addr[8:2], data);
    else if (addr[1:0] == 2'b01)
        ITOP.iow1.mem_wr_raw_subbank(addr[8:2], data);
    else if (addr[1:0] == 2'b10)
        ITOP.iow2.mem_wr_raw_subbank(addr[8:2], data);
    else if (addr[1:0] == 2'b11)
        ITOP.iow3.mem_wr_raw_subbank(addr[8:2], data);
  end
endtask
// Ramgen function for writing the arrays
task mem_write;
  input [8:0] addr;
  input [63:0] data;
  begin
    ITOP.mem_write_bank(addr,data);
  end
endtask
// Ramgen function for reading the arrays
function [63:0] mem_read;
input [8:0] addr;
  begin
        mem_read = ITOP.mem_read_bank(addr);
  end
endfunction
// Random only generates 32 bit value.
// If nbits > 32, call it multiple times
// Old random fill fills all memory locations with same random value
task mem_fill_random;
 reg [63:0] val;
 integer i;
 begin
  for (i=0; i<512; i=i+1) begin
      val = {$random, $random};
      mem_wr_raw(i, val);
  end
 end
endtask
// Fill the memory with a given bit value
task mem_fill_value;
    input fill_bit;
 reg [63:0] val;
    integer i;
    begin
        val = {64{fill_bit}};
        for (i=0; i<512; i=i+1) begin
      mem_wr_raw(i, val);
        end
    end
endtask
// read logical address and feed into salat
task force_rd;
input [8:0] addr;
 reg [63:0] rd;
 `ifdef USE_RAMINIT_LIBS
 reg raminit_active, raminit_argcheck, raminit_debug, raminit_enable, raminit_random, raminit_invert,
     raminit_val, raminit_waitclock, raminit_use_force;
 real raminit_delay_ns, raminit_waitclock_check_ns;
 initial
 begin
   raminit_active = 0; // default is inactive (plusarg to active the ram init functionality)
   raminit_argcheck = 0; // default is no plusargs check (apart from raminit_active and raminit_argcheck)
   raminit_debug = 0; // default is no debug messages
   raminit_enable = 0; // default is no init (variable indicating if the ram init functionality is enabled for this instance)
   raminit_random = 0; // default is no random init
   raminit_invert = 0; // default is not to invert the init value
   raminit_val = 0; // default init value is zero
   raminit_waitclock = 0; // default is not to wait to clock to be non-X
   raminit_use_force = 1; // default is to use force/release
   raminit_delay_ns = `ifdef NV_TOP_RESET_ON_DELAY (`NV_TOP_RESET_ON_DELAY+2) `else 3 `endif; // default is 2ns after nv_top_reset_ goes low or ram clock is not X
   raminit_waitclock_check_ns = `ifdef NV_TOP_RESET_OFF_DELAY (`NV_TOP_RESET_OFF_DELAY) `else 0 `endif; // default is when nv_top_reset_ goes high
   $value$plusargs("raminit_active=%d", raminit_active);
   $value$plusargs("raminit_argcheck=%d", raminit_argcheck);
   if (raminit_argcheck)
   begin
// The following variables are not usually used as plusargs, but instead set through add_inst_array calls or the init_inst_file.
     $value$plusargs("raminit_debug=%d", raminit_debug);
     $value$plusargs("raminit_enable=%d", raminit_enable);
     $value$plusargs("raminit_random=%d", raminit_random);
     $value$plusargs("raminit_invert=%d", raminit_invert);
     $value$plusargs("raminit_val=%d", raminit_val);
     $value$plusargs("raminit_waitclock=%d", raminit_waitclock);
     $value$plusargs("raminit_delay_ns=%f", raminit_delay_ns);
     $value$plusargs("raminit_waitclock_check_ns=%f", raminit_waitclock_check_ns);
     $value$plusargs("raminit_use_force=%d", raminit_use_force);
   end
   `ifdef INST_CHECK
   `INST_CHECK(ram_inst_check0,raminit_active,raminit_debug,raminit_enable,raminit_random,raminit_val,raminit_invert,raminit_waitclock,raminit_delay_ns,raminit_waitclock_check_ns);
   `endif
   if (!raminit_active) raminit_enable = 0;
   else if (raminit_enable)
   begin
     if (raminit_random) raminit_val = `ifdef NO_PLI 1'b0 `else $RollPLI(0,1) `endif;
     if (raminit_invert) raminit_val = ~raminit_val;
   end
   if (raminit_debug)
   begin
     $display("%m: raminit_active              = %d", raminit_active);
     $display("%m: raminit_argcheck            = %d", raminit_argcheck);
     $display("%m: raminit_debug               = %d", raminit_debug);
     $display("%m: raminit_enable              = %d", raminit_enable);
     $display("%m: raminit_random              = %d", raminit_random);
     $display("%m: raminit_invert              = %d", raminit_invert);
     $display("%m: raminit_val                 = %d", raminit_val);
     $display("%m: raminit_waitclock           = %d", raminit_waitclock);
     $display("%m: raminit_delay_ns            = %f ns", raminit_delay_ns);
     $display("%m: raminit_waitclock_check_ns  = %f ns", raminit_waitclock_check_ns);
     $display("%m: raminit_use_force           = %d", raminit_use_force);
   end
 end
 `endif
 `ifdef USE_RAMINIT_LIBS
// init rd
 task init_rd_regs;
 begin
   #0; // wait for raminit variables to be set
   if (raminit_enable)
   begin : raminit_val_blk
     reg [64-1:0] raminit_fullval;
     if (raminit_random) raminit_fullval = `ifdef NO_PLI {64 {1'b1}} `else { $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}) } `endif ;
     else raminit_fullval = {64 {raminit_val}};
     if (raminit_invert) raminit_fullval = ~raminit_fullval;
     if (raminit_use_force) force rd = raminit_fullval;
     if (raminit_waitclock) wait ( !== 1'bx);
     #(raminit_delay_ns*100);
     `ifdef INST_WAITCLOCK_CHECK
     `INST_WAITCLOCK_CHECK(waitclock_inst_check0,raminit_waitclock,raminit_waitclock_check_ns,100)
     `endif
     if (raminit_use_force) release rd;
     rd = raminit_fullval;
   end
 end
 endtask
 initial begin init_rd_regs(); end
 `ifdef RAMINIT_TRIGGER
 always @(`RAMINIT_TRIGGER) init_rd_regs();
 `endif
 `endif // `ifdef USE_RAMINIT_LIBS
 begin
        if (addr[1:0] == 2'b00)
            rd = ITOP.iow0.mem_read_raw_subbank(addr[8:2]);
        else if (addr[1:0] == 2'b01)
            rd = ITOP.iow1.mem_read_raw_subbank(addr[8:2]);
        else if (addr[1:0] == 2'b10)
            rd = ITOP.iow2.mem_read_raw_subbank(addr[8:2]);
        else if (addr[1:0] == 2'b11)
            rd = ITOP.iow3.mem_read_raw_subbank(addr[8:2]);
  ITOP.dout = rd;
 end
endtask
`ifdef MEM_PHYS_INFO
//function for physical array read row, takes physical address
function [255:0] mem_phys_read_padr;
input [6:0] addr;
 reg [255:0] rd_row;
 `ifdef USE_RAMINIT_LIBS
// init rd_row
 task init_rd_row_regs;
 begin
   #0; // wait for raminit variables to be set
   if (raminit_enable)
   begin : raminit_val_blk
     reg [256-1:0] raminit_fullval;
     if (raminit_random) raminit_fullval = `ifdef NO_PLI {256 {1'b1}} `else { $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}) } `endif ;
     else raminit_fullval = {256 {raminit_val}};
     if (raminit_invert) raminit_fullval = ~raminit_fullval;
     if (raminit_use_force) force rd_row = raminit_fullval;
     if (raminit_waitclock) wait ( !== 1'bx);
     #(raminit_delay_ns*100);
     `ifdef INST_WAITCLOCK_CHECK
     `INST_WAITCLOCK_CHECK(waitclock_inst_check1,raminit_waitclock,raminit_waitclock_check_ns,100)
     `endif
     if (raminit_use_force) release rd_row;
     rd_row = raminit_fullval;
   end
 end
 endtask
 initial begin init_rd_row_regs(); end
 `ifdef RAMINIT_TRIGGER
 always @(`RAMINIT_TRIGGER) init_rd_row_regs();
 `endif
 `endif // `ifdef USE_RAMINIT_LIBS
 reg [63:0] rd[3:0];
 integer i;
 begin
        rd[0] = ITOP.iow0.mem_read_raw_subbank(addr);
        rd[1] = ITOP.iow1.mem_read_raw_subbank(addr);
        rd[2] = ITOP.iow2.mem_read_raw_subbank(addr);
        rd[3] = ITOP.iow3.mem_read_raw_subbank(addr);
        for (i=0; i<=63; i=i+1) begin
            rd_row[i*4+0] = rd[0][i];
            rd_row[i*4+1] = rd[1][i];
            rd_row[i*4+2] = rd[2][i];
            rd_row[i*4+3] = rd[3][i];
  end
  mem_phys_read_padr = rd_row;
 end
endfunction
//function for physical array read row, takes logical address
function [255:0] mem_phys_read_ladr;
input [8:0] addr;
    reg [6:0] paddr;
 reg [255:0] rd_row;
 `ifdef USE_RAMINIT_LIBS
// init rd_row
 task init_rd_row_regs;
 begin
   #0; // wait for raminit variables to be set
   if (raminit_enable)
   begin : raminit_val_blk
     reg [256-1:0] raminit_fullval;
     if (raminit_random) raminit_fullval = `ifdef NO_PLI {256 {1'b1}} `else { $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}) } `endif ;
     else raminit_fullval = {256 {raminit_val}};
     if (raminit_invert) raminit_fullval = ~raminit_fullval;
     if (raminit_use_force) force rd_row = raminit_fullval;
     if (raminit_waitclock) wait ( !== 1'bx);
     #(raminit_delay_ns*100);
     `ifdef INST_WAITCLOCK_CHECK
     `INST_WAITCLOCK_CHECK(waitclock_inst_check2,raminit_waitclock,raminit_waitclock_check_ns,100)
     `endif
     if (raminit_use_force) release rd_row;
     rd_row = raminit_fullval;
   end
 end
 endtask
 initial begin init_rd_row_regs(); end
 `ifdef RAMINIT_TRIGGER
 always @(`RAMINIT_TRIGGER) init_rd_row_regs();
 `endif
 `endif // `ifdef USE_RAMINIT_LIBS
 reg [63:0] rd[3:0];
 integer i;
 begin
        paddr = (addr >> 2);
        rd[0] = ITOP.iow0.mem_read_raw_subbank(paddr);
        rd[1] = ITOP.iow1.mem_read_raw_subbank(paddr);
        rd[2] = ITOP.iow2.mem_read_raw_subbank(paddr);
        rd[3] = ITOP.iow3.mem_read_raw_subbank(paddr);
        for (i=0; i<=63; i=i+1) begin
            rd_row[i*4+0] = rd[0][i];
            rd_row[i*4+1] = rd[1][i];
            rd_row[i*4+2] = rd[2][i];
            rd_row[i*4+3] = rd[3][i];
  end
  mem_phys_read_ladr = rd_row;
 end
endfunction
//function for physical array read row with column masking, takes logical address
function [255:0] mem_phys_read_pmasked;
input [8:0] addr;
   reg [255:0] rd_row;
   `ifdef USE_RAMINIT_LIBS
// init rd_row
   task init_rd_row_regs;
   begin
     #0; // wait for raminit variables to be set
     if (raminit_enable)
     begin : raminit_val_blk
       reg [256-1:0] raminit_fullval;
       if (raminit_random) raminit_fullval = `ifdef NO_PLI {256 {1'b1}} `else { $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}), $RollPLI(0,{32{1'b1}}) } `endif ;
       else raminit_fullval = {256 {raminit_val}};
       if (raminit_invert) raminit_fullval = ~raminit_fullval;
       if (raminit_use_force) force rd_row = raminit_fullval;
       if (raminit_waitclock) wait ( !== 1'bx);
       #(raminit_delay_ns*100);
       `ifdef INST_WAITCLOCK_CHECK
       `INST_WAITCLOCK_CHECK(waitclock_inst_check3,raminit_waitclock,raminit_waitclock_check_ns,100)
       `endif
       if (raminit_use_force) release rd_row;
       rd_row = raminit_fullval;
     end
   end
   endtask
   initial begin init_rd_row_regs(); end
   `ifdef RAMINIT_TRIGGER
   always @(`RAMINIT_TRIGGER) init_rd_row_regs();
   `endif
   `endif // `ifdef USE_RAMINIT_LIBS
   reg [63:0] rd[3 : 0];
   integer i;
   begin
        rd[0] = (addr[1:0] === 0) ? ITOP.iow0.mem_read_raw_subbank(addr[8:2]) : 64'bx;
        rd[1] = (addr[1:0] === 1) ? ITOP.iow1.mem_read_raw_subbank(addr[8:2]) : 64'bx;
        rd[2] = (addr[1:0] === 2) ? ITOP.iow2.mem_read_raw_subbank(addr[8:2]) : 64'bx;
        rd[3] = (addr[1:0] === 3) ? ITOP.iow3.mem_read_raw_subbank(addr[8:2]) : 64'bx;
        for (i=0; i<=63; i=i+1) begin
            rd_row[i*4+0] = rd[0][i];
            rd_row[i*4+1] = rd[1][i];
            rd_row[i*4+2] = rd[2][i];
            rd_row[i*4+3] = rd[3][i];
        end
        mem_phys_read_pmasked = rd_row;
    end
endfunction
//Task for physical array write row, takes physical address
task mem_phys_write;
input [6:0] addr;
input [255:0] data;
 reg [63:0] wr[3:0];
 integer i;
 begin
        for (i=0; i<=63; i=i+1) begin
            wr[0][i] = data[i*4+0];
            wr[1][i] = data[i*4+1];
            wr[2][i] = data[i*4+2];
            wr[3][i] = data[i*4+3];
  end
        ITOP.iow0.mem_wr_raw_subbank(addr,wr[0]);
        ITOP.iow1.mem_wr_raw_subbank(addr,wr[1]);
        ITOP.iow2.mem_wr_raw_subbank(addr,wr[2]);
        ITOP.iow3.mem_wr_raw_subbank(addr,wr[3]);
 end
endtask
// Function to return a physical address given a logical address input.
function [6:0] mem_log_to_phys_adr;
input [8:0] addr;
    begin
        mem_log_to_phys_adr = (addr >> 2) ;
    end
endfunction
`endif //MEM_PHYS_INFO
`ifdef MONITOR
// Monitor dump trigger
reg dump_monitor_result;
initial begin : init_monitor
  dump_monitor_result = 1'b0;
end
task monitor_on;
    begin
  ITOP.iow0.monitor_on = 1'b1;
  ITOP.iow1.monitor_on = 1'b1;
  ITOP.iow2.monitor_on = 1'b1;
  ITOP.iow3.monitor_on = 1'b1;
   end
endtask
task monitor_off;
    begin
  ITOP.iow0.monitor_on = 1'b0;
  ITOP.iow1.monitor_on = 1'b0;
  ITOP.iow2.monitor_on = 1'b0;
  ITOP.iow3.monitor_on = 1'b0;
        dump_monitor_result = 1'b1;
    end
endtask
// read bit_written monitor row by physical address from subarray
function [255:0] mon_bit_w;
input [6:0] addr;
 reg [255:0] mon_row;
 reg [63:0] mon_word[3:0];
 integer i;
 begin
// read all monitor words for a row
  mon_word[0] = ITOP.iow0.bit_written[addr];
  mon_word[1] = ITOP.iow1.bit_written[addr];
  mon_word[2] = ITOP.iow2.bit_written[addr];
  mon_word[3] = ITOP.iow3.bit_written[addr];
// combine all 4 words to a row
  for (i=0; i<=63; i=i+1) begin
   mon_row[i*4+0] = mon_word[0][i];
   mon_row[i*4+1] = mon_word[1][i];
   mon_row[i*4+2] = mon_word[2][i];
   mon_row[i*4+3] = mon_word[3][i];
  end
  mon_bit_w = mon_row;
 end
endfunction
// read bit_read monitor word by address from subarray
function [255:0] mon_bit_r;
input [6:0] addr;
 reg [255:0] mon_row;
 reg [63:0] mon_word[3:0];
 integer i;
 begin
// read all monitor words for a row
  mon_word[0] = ITOP.iow0.bit_read[addr];
  mon_word[1] = ITOP.iow1.bit_read[addr];
  mon_word[2] = ITOP.iow2.bit_read[addr];
  mon_word[3] = ITOP.iow3.bit_read[addr];
// combine all 4 words to a row
  for (i=0; i<=63; i=i+1) begin
   mon_row[i*4+0] = mon_word[0][i];
   mon_row[i*4+1] = mon_word[1][i];
   mon_row[i*4+2] = mon_word[2][i];
   mon_row[i*4+3] = mon_word[3][i];
  end
  mon_bit_r = mon_row;
 end
endfunction
// read word_written monitor row by physical address from subarray
function mon_word_w;
input [6:0] addr;
 reg mon_word[3:0];
 integer i;
 begin
// read all monitor words for a row
  mon_word[0] = ITOP.iow0.word_written[addr];
  mon_word[1] = ITOP.iow1.word_written[addr];
  mon_word[2] = ITOP.iow2.word_written[addr];
  mon_word[3] = ITOP.iow3.word_written[addr];
// combine all 4 words to a row
  mon_word_w = mon_word[0] | mon_word[1]| mon_word[2]| mon_word[3] ;
 end
endfunction
// read word_read monitor row by physical address from subarray
function mon_word_r;
input [6:0] addr;
 reg mon_word[3:0];
 integer i;
 begin
// read all monitor words for a row
  mon_word[0] = ITOP.iow0.word_read[addr];
  mon_word[1] = ITOP.iow1.word_read[addr];
  mon_word[2] = ITOP.iow2.word_read[addr];
  mon_word[3] = ITOP.iow3.word_read[addr];
// combine all 4 words to a row
  mon_word_r = mon_word[0] | mon_word[1]| mon_word[2]| mon_word[3] ;
 end
endfunction
always @(dump_monitor_result) begin : dump_monitor
 integer i;
 integer j;
 reg [255:0] tmp_row;
    reg tmp_bit;
 if (dump_monitor_result == 1'b1) begin
     $display("Exercised coverage summary:");
        $display("\t%m rows unwritten:");
        for(i=0;i<=128;i=i+1) begin
   tmp_bit = mon_word_w(i);
            if (tmp_bit !== 1) $display("\t\trow %d", i);
  end
        $display("\t%m rows unread:");
        for(i=0;i<=128;i=i+1) begin
   tmp_bit = mon_word_r(i);
            if (tmp_bit !== 1) $display("\t\trow %d", i);
  end
  $display("\t%m bits not written as 0:");
  for (i=0; i<128; i=i+1) begin
   tmp_row = mon_bit_w(i);
   for (j=0; j<256; j=j+1) begin
    if (tmp_row[j] !== 1'b0 && tmp_row[j] !== 1'bz) $display("\t\t[row,bit] [%d,%d]", i, j);
   end
  end
  $display("\t%m bits not written as 1:");
  for (i=0; i<128; i=i+1) begin
   tmp_row = mon_bit_w(i);
   for (j=0; j<256; j=j+1) begin
    if (tmp_row[j] !== 1'b1 && tmp_row[j] !== 1'bz) $display("\t\t[row,bit] [%d,%d]", i, j);
   end
  end
  $display("\t%m bits not read as 0:");
  for (i=0; i<128; i=i+1) begin
   tmp_row = mon_bit_r(i);
   for (j=0; j<256; j=j+1) begin
    if (tmp_row[j] !== 1'b0 && tmp_row[j] !== 1'bz) $display("\t\t[row,bit] [%d,%d]", i, j);
   end
  end
  $display("\t%m bits not read as 1:");
  for (i=0; i<128; i=i+1) begin
   tmp_row = mon_bit_r(i);
   for (j=0; j<256; j=j+1) begin
    if (tmp_row[j] !== 1'b1 && tmp_row[j] !== 1'bz) $display("\t\t[row,bit] [%d,%d]", i, j);
   end
  end
  dump_monitor_result = 1'b0;
 end
end
//VCS coverage on
`endif // MONITOR
`ifdef NV_RAM_EXPAND_ARRAY
wire [63:0] Q_0 = ITOP.iow0.arr[0];
wire [63:0] Q_1 = ITOP.iow1.arr[0];
wire [63:0] Q_2 = ITOP.iow2.arr[0];
wire [63:0] Q_3 = ITOP.iow3.arr[0];
wire [63:0] Q_4 = ITOP.iow0.arr[1];
wire [63:0] Q_5 = ITOP.iow1.arr[1];
wire [63:0] Q_6 = ITOP.iow2.arr[1];
wire [63:0] Q_7 = ITOP.iow3.arr[1];
wire [63:0] Q_8 = ITOP.iow0.arr[2];
wire [63:0] Q_9 = ITOP.iow1.arr[2];
wire [63:0] Q_10 = ITOP.iow2.arr[2];
wire [63:0] Q_11 = ITOP.iow3.arr[2];
wire [63:0] Q_12 = ITOP.iow0.arr[3];
wire [63:0] Q_13 = ITOP.iow1.arr[3];
wire [63:0] Q_14 = ITOP.iow2.arr[3];
wire [63:0] Q_15 = ITOP.iow3.arr[3];
wire [63:0] Q_16 = ITOP.iow0.arr[4];
wire [63:0] Q_17 = ITOP.iow1.arr[4];
wire [63:0] Q_18 = ITOP.iow2.arr[4];
wire [63:0] Q_19 = ITOP.iow3.arr[4];
wire [63:0] Q_20 = ITOP.iow0.arr[5];
wire [63:0] Q_21 = ITOP.iow1.arr[5];
wire [63:0] Q_22 = ITOP.iow2.arr[5];
wire [63:0] Q_23 = ITOP.iow3.arr[5];
wire [63:0] Q_24 = ITOP.iow0.arr[6];
wire [63:0] Q_25 = ITOP.iow1.arr[6];
wire [63:0] Q_26 = ITOP.iow2.arr[6];
wire [63:0] Q_27 = ITOP.iow3.arr[6];
wire [63:0] Q_28 = ITOP.iow0.arr[7];
wire [63:0] Q_29 = ITOP.iow1.arr[7];
wire [63:0] Q_30 = ITOP.iow2.arr[7];
wire [63:0] Q_31 = ITOP.iow3.arr[7];
wire [63:0] Q_32 = ITOP.iow0.arr[8];
wire [63:0] Q_33 = ITOP.iow1.arr[8];
wire [63:0] Q_34 = ITOP.iow2.arr[8];
wire [63:0] Q_35 = ITOP.iow3.arr[8];
wire [63:0] Q_36 = ITOP.iow0.arr[9];
wire [63:0] Q_37 = ITOP.iow1.arr[9];
wire [63:0] Q_38 = ITOP.iow2.arr[9];
wire [63:0] Q_39 = ITOP.iow3.arr[9];
wire [63:0] Q_40 = ITOP.iow0.arr[10];
wire [63:0] Q_41 = ITOP.iow1.arr[10];
wire [63:0] Q_42 = ITOP.iow2.arr[10];
wire [63:0] Q_43 = ITOP.iow3.arr[10];
wire [63:0] Q_44 = ITOP.iow0.arr[11];
wire [63:0] Q_45 = ITOP.iow1.arr[11];
wire [63:0] Q_46 = ITOP.iow2.arr[11];
wire [63:0] Q_47 = ITOP.iow3.arr[11];
wire [63:0] Q_48 = ITOP.iow0.arr[12];
wire [63:0] Q_49 = ITOP.iow1.arr[12];
wire [63:0] Q_50 = ITOP.iow2.arr[12];
wire [63:0] Q_51 = ITOP.iow3.arr[12];
wire [63:0] Q_52 = ITOP.iow0.arr[13];
wire [63:0] Q_53 = ITOP.iow1.arr[13];
wire [63:0] Q_54 = ITOP.iow2.arr[13];
wire [63:0] Q_55 = ITOP.iow3.arr[13];
wire [63:0] Q_56 = ITOP.iow0.arr[14];
wire [63:0] Q_57 = ITOP.iow1.arr[14];
wire [63:0] Q_58 = ITOP.iow2.arr[14];
wire [63:0] Q_59 = ITOP.iow3.arr[14];
wire [63:0] Q_60 = ITOP.iow0.arr[15];
wire [63:0] Q_61 = ITOP.iow1.arr[15];
wire [63:0] Q_62 = ITOP.iow2.arr[15];
wire [63:0] Q_63 = ITOP.iow3.arr[15];
wire [63:0] Q_64 = ITOP.iow0.arr[16];
wire [63:0] Q_65 = ITOP.iow1.arr[16];
wire [63:0] Q_66 = ITOP.iow2.arr[16];
wire [63:0] Q_67 = ITOP.iow3.arr[16];
wire [63:0] Q_68 = ITOP.iow0.arr[17];
wire [63:0] Q_69 = ITOP.iow1.arr[17];
wire [63:0] Q_70 = ITOP.iow2.arr[17];
wire [63:0] Q_71 = ITOP.iow3.arr[17];
wire [63:0] Q_72 = ITOP.iow0.arr[18];
wire [63:0] Q_73 = ITOP.iow1.arr[18];
wire [63:0] Q_74 = ITOP.iow2.arr[18];
wire [63:0] Q_75 = ITOP.iow3.arr[18];
wire [63:0] Q_76 = ITOP.iow0.arr[19];
wire [63:0] Q_77 = ITOP.iow1.arr[19];
wire [63:0] Q_78 = ITOP.iow2.arr[19];
wire [63:0] Q_79 = ITOP.iow3.arr[19];
wire [63:0] Q_80 = ITOP.iow0.arr[20];
wire [63:0] Q_81 = ITOP.iow1.arr[20];
wire [63:0] Q_82 = ITOP.iow2.arr[20];
wire [63:0] Q_83 = ITOP.iow3.arr[20];
wire [63:0] Q_84 = ITOP.iow0.arr[21];
wire [63:0] Q_85 = ITOP.iow1.arr[21];
wire [63:0] Q_86 = ITOP.iow2.arr[21];
wire [63:0] Q_87 = ITOP.iow3.arr[21];
wire [63:0] Q_88 = ITOP.iow0.arr[22];
wire [63:0] Q_89 = ITOP.iow1.arr[22];
wire [63:0] Q_90 = ITOP.iow2.arr[22];
wire [63:0] Q_91 = ITOP.iow3.arr[22];
wire [63:0] Q_92 = ITOP.iow0.arr[23];
wire [63:0] Q_93 = ITOP.iow1.arr[23];
wire [63:0] Q_94 = ITOP.iow2.arr[23];
wire [63:0] Q_95 = ITOP.iow3.arr[23];
wire [63:0] Q_96 = ITOP.iow0.arr[24];
wire [63:0] Q_97 = ITOP.iow1.arr[24];
wire [63:0] Q_98 = ITOP.iow2.arr[24];
wire [63:0] Q_99 = ITOP.iow3.arr[24];
wire [63:0] Q_100 = ITOP.iow0.arr[25];
wire [63:0] Q_101 = ITOP.iow1.arr[25];
wire [63:0] Q_102 = ITOP.iow2.arr[25];
wire [63:0] Q_103 = ITOP.iow3.arr[25];
wire [63:0] Q_104 = ITOP.iow0.arr[26];
wire [63:0] Q_105 = ITOP.iow1.arr[26];
wire [63:0] Q_106 = ITOP.iow2.arr[26];
wire [63:0] Q_107 = ITOP.iow3.arr[26];
wire [63:0] Q_108 = ITOP.iow0.arr[27];
wire [63:0] Q_109 = ITOP.iow1.arr[27];
wire [63:0] Q_110 = ITOP.iow2.arr[27];
wire [63:0] Q_111 = ITOP.iow3.arr[27];
wire [63:0] Q_112 = ITOP.iow0.arr[28];
wire [63:0] Q_113 = ITOP.iow1.arr[28];
wire [63:0] Q_114 = ITOP.iow2.arr[28];
wire [63:0] Q_115 = ITOP.iow3.arr[28];
wire [63:0] Q_116 = ITOP.iow0.arr[29];
wire [63:0] Q_117 = ITOP.iow1.arr[29];
wire [63:0] Q_118 = ITOP.iow2.arr[29];
wire [63:0] Q_119 = ITOP.iow3.arr[29];
wire [63:0] Q_120 = ITOP.iow0.arr[30];
wire [63:0] Q_121 = ITOP.iow1.arr[30];
wire [63:0] Q_122 = ITOP.iow2.arr[30];
wire [63:0] Q_123 = ITOP.iow3.arr[30];
wire [63:0] Q_124 = ITOP.iow0.arr[31];
wire [63:0] Q_125 = ITOP.iow1.arr[31];
wire [63:0] Q_126 = ITOP.iow2.arr[31];
wire [63:0] Q_127 = ITOP.iow3.arr[31];
wire [63:0] Q_128 = ITOP.iow0.arr[32];
wire [63:0] Q_129 = ITOP.iow1.arr[32];
wire [63:0] Q_130 = ITOP.iow2.arr[32];
wire [63:0] Q_131 = ITOP.iow3.arr[32];
wire [63:0] Q_132 = ITOP.iow0.arr[33];
wire [63:0] Q_133 = ITOP.iow1.arr[33];
wire [63:0] Q_134 = ITOP.iow2.arr[33];
wire [63:0] Q_135 = ITOP.iow3.arr[33];
wire [63:0] Q_136 = ITOP.iow0.arr[34];
wire [63:0] Q_137 = ITOP.iow1.arr[34];
wire [63:0] Q_138 = ITOP.iow2.arr[34];
wire [63:0] Q_139 = ITOP.iow3.arr[34];
wire [63:0] Q_140 = ITOP.iow0.arr[35];
wire [63:0] Q_141 = ITOP.iow1.arr[35];
wire [63:0] Q_142 = ITOP.iow2.arr[35];
wire [63:0] Q_143 = ITOP.iow3.arr[35];
wire [63:0] Q_144 = ITOP.iow0.arr[36];
wire [63:0] Q_145 = ITOP.iow1.arr[36];
wire [63:0] Q_146 = ITOP.iow2.arr[36];
wire [63:0] Q_147 = ITOP.iow3.arr[36];
wire [63:0] Q_148 = ITOP.iow0.arr[37];
wire [63:0] Q_149 = ITOP.iow1.arr[37];
wire [63:0] Q_150 = ITOP.iow2.arr[37];
wire [63:0] Q_151 = ITOP.iow3.arr[37];
wire [63:0] Q_152 = ITOP.iow0.arr[38];
wire [63:0] Q_153 = ITOP.iow1.arr[38];
wire [63:0] Q_154 = ITOP.iow2.arr[38];
wire [63:0] Q_155 = ITOP.iow3.arr[38];
wire [63:0] Q_156 = ITOP.iow0.arr[39];
wire [63:0] Q_157 = ITOP.iow1.arr[39];
wire [63:0] Q_158 = ITOP.iow2.arr[39];
wire [63:0] Q_159 = ITOP.iow3.arr[39];
wire [63:0] Q_160 = ITOP.iow0.arr[40];
wire [63:0] Q_161 = ITOP.iow1.arr[40];
wire [63:0] Q_162 = ITOP.iow2.arr[40];
wire [63:0] Q_163 = ITOP.iow3.arr[40];
wire [63:0] Q_164 = ITOP.iow0.arr[41];
wire [63:0] Q_165 = ITOP.iow1.arr[41];
wire [63:0] Q_166 = ITOP.iow2.arr[41];
wire [63:0] Q_167 = ITOP.iow3.arr[41];
wire [63:0] Q_168 = ITOP.iow0.arr[42];
wire [63:0] Q_169 = ITOP.iow1.arr[42];
wire [63:0] Q_170 = ITOP.iow2.arr[42];
wire [63:0] Q_171 = ITOP.iow3.arr[42];
wire [63:0] Q_172 = ITOP.iow0.arr[43];
wire [63:0] Q_173 = ITOP.iow1.arr[43];
wire [63:0] Q_174 = ITOP.iow2.arr[43];
wire [63:0] Q_175 = ITOP.iow3.arr[43];
wire [63:0] Q_176 = ITOP.iow0.arr[44];
wire [63:0] Q_177 = ITOP.iow1.arr[44];
wire [63:0] Q_178 = ITOP.iow2.arr[44];
wire [63:0] Q_179 = ITOP.iow3.arr[44];
wire [63:0] Q_180 = ITOP.iow0.arr[45];
wire [63:0] Q_181 = ITOP.iow1.arr[45];
wire [63:0] Q_182 = ITOP.iow2.arr[45];
wire [63:0] Q_183 = ITOP.iow3.arr[45];
wire [63:0] Q_184 = ITOP.iow0.arr[46];
wire [63:0] Q_185 = ITOP.iow1.arr[46];
wire [63:0] Q_186 = ITOP.iow2.arr[46];
wire [63:0] Q_187 = ITOP.iow3.arr[46];
wire [63:0] Q_188 = ITOP.iow0.arr[47];
wire [63:0] Q_189 = ITOP.iow1.arr[47];
wire [63:0] Q_190 = ITOP.iow2.arr[47];
wire [63:0] Q_191 = ITOP.iow3.arr[47];
wire [63:0] Q_192 = ITOP.iow0.arr[48];
wire [63:0] Q_193 = ITOP.iow1.arr[48];
wire [63:0] Q_194 = ITOP.iow2.arr[48];
wire [63:0] Q_195 = ITOP.iow3.arr[48];
wire [63:0] Q_196 = ITOP.iow0.arr[49];
wire [63:0] Q_197 = ITOP.iow1.arr[49];
wire [63:0] Q_198 = ITOP.iow2.arr[49];
wire [63:0] Q_199 = ITOP.iow3.arr[49];
wire [63:0] Q_200 = ITOP.iow0.arr[50];
wire [63:0] Q_201 = ITOP.iow1.arr[50];
wire [63:0] Q_202 = ITOP.iow2.arr[50];
wire [63:0] Q_203 = ITOP.iow3.arr[50];
wire [63:0] Q_204 = ITOP.iow0.arr[51];
wire [63:0] Q_205 = ITOP.iow1.arr[51];
wire [63:0] Q_206 = ITOP.iow2.arr[51];
wire [63:0] Q_207 = ITOP.iow3.arr[51];
wire [63:0] Q_208 = ITOP.iow0.arr[52];
wire [63:0] Q_209 = ITOP.iow1.arr[52];
wire [63:0] Q_210 = ITOP.iow2.arr[52];
wire [63:0] Q_211 = ITOP.iow3.arr[52];
wire [63:0] Q_212 = ITOP.iow0.arr[53];
wire [63:0] Q_213 = ITOP.iow1.arr[53];
wire [63:0] Q_214 = ITOP.iow2.arr[53];
wire [63:0] Q_215 = ITOP.iow3.arr[53];
wire [63:0] Q_216 = ITOP.iow0.arr[54];
wire [63:0] Q_217 = ITOP.iow1.arr[54];
wire [63:0] Q_218 = ITOP.iow2.arr[54];
wire [63:0] Q_219 = ITOP.iow3.arr[54];
wire [63:0] Q_220 = ITOP.iow0.arr[55];
wire [63:0] Q_221 = ITOP.iow1.arr[55];
wire [63:0] Q_222 = ITOP.iow2.arr[55];
wire [63:0] Q_223 = ITOP.iow3.arr[55];
wire [63:0] Q_224 = ITOP.iow0.arr[56];
wire [63:0] Q_225 = ITOP.iow1.arr[56];
wire [63:0] Q_226 = ITOP.iow2.arr[56];
wire [63:0] Q_227 = ITOP.iow3.arr[56];
wire [63:0] Q_228 = ITOP.iow0.arr[57];
wire [63:0] Q_229 = ITOP.iow1.arr[57];
wire [63:0] Q_230 = ITOP.iow2.arr[57];
wire [63:0] Q_231 = ITOP.iow3.arr[57];
wire [63:0] Q_232 = ITOP.iow0.arr[58];
wire [63:0] Q_233 = ITOP.iow1.arr[58];
wire [63:0] Q_234 = ITOP.iow2.arr[58];
wire [63:0] Q_235 = ITOP.iow3.arr[58];
wire [63:0] Q_236 = ITOP.iow0.arr[59];
wire [63:0] Q_237 = ITOP.iow1.arr[59];
wire [63:0] Q_238 = ITOP.iow2.arr[59];
wire [63:0] Q_239 = ITOP.iow3.arr[59];
wire [63:0] Q_240 = ITOP.iow0.arr[60];
wire [63:0] Q_241 = ITOP.iow1.arr[60];
wire [63:0] Q_242 = ITOP.iow2.arr[60];
wire [63:0] Q_243 = ITOP.iow3.arr[60];
wire [63:0] Q_244 = ITOP.iow0.arr[61];
wire [63:0] Q_245 = ITOP.iow1.arr[61];
wire [63:0] Q_246 = ITOP.iow2.arr[61];
wire [63:0] Q_247 = ITOP.iow3.arr[61];
wire [63:0] Q_248 = ITOP.iow0.arr[62];
wire [63:0] Q_249 = ITOP.iow1.arr[62];
wire [63:0] Q_250 = ITOP.iow2.arr[62];
wire [63:0] Q_251 = ITOP.iow3.arr[62];
wire [63:0] Q_252 = ITOP.iow0.arr[63];
wire [63:0] Q_253 = ITOP.iow1.arr[63];
wire [63:0] Q_254 = ITOP.iow2.arr[63];
wire [63:0] Q_255 = ITOP.iow3.arr[63];
wire [63:0] Q_256 = ITOP.iow0.arr[64];
wire [63:0] Q_257 = ITOP.iow1.arr[64];
wire [63:0] Q_258 = ITOP.iow2.arr[64];
wire [63:0] Q_259 = ITOP.iow3.arr[64];
wire [63:0] Q_260 = ITOP.iow0.arr[65];
wire [63:0] Q_261 = ITOP.iow1.arr[65];
wire [63:0] Q_262 = ITOP.iow2.arr[65];
wire [63:0] Q_263 = ITOP.iow3.arr[65];
wire [63:0] Q_264 = ITOP.iow0.arr[66];
wire [63:0] Q_265 = ITOP.iow1.arr[66];
wire [63:0] Q_266 = ITOP.iow2.arr[66];
wire [63:0] Q_267 = ITOP.iow3.arr[66];
wire [63:0] Q_268 = ITOP.iow0.arr[67];
wire [63:0] Q_269 = ITOP.iow1.arr[67];
wire [63:0] Q_270 = ITOP.iow2.arr[67];
wire [63:0] Q_271 = ITOP.iow3.arr[67];
wire [63:0] Q_272 = ITOP.iow0.arr[68];
wire [63:0] Q_273 = ITOP.iow1.arr[68];
wire [63:0] Q_274 = ITOP.iow2.arr[68];
wire [63:0] Q_275 = ITOP.iow3.arr[68];
wire [63:0] Q_276 = ITOP.iow0.arr[69];
wire [63:0] Q_277 = ITOP.iow1.arr[69];
wire [63:0] Q_278 = ITOP.iow2.arr[69];
wire [63:0] Q_279 = ITOP.iow3.arr[69];
wire [63:0] Q_280 = ITOP.iow0.arr[70];
wire [63:0] Q_281 = ITOP.iow1.arr[70];
wire [63:0] Q_282 = ITOP.iow2.arr[70];
wire [63:0] Q_283 = ITOP.iow3.arr[70];
wire [63:0] Q_284 = ITOP.iow0.arr[71];
wire [63:0] Q_285 = ITOP.iow1.arr[71];
wire [63:0] Q_286 = ITOP.iow2.arr[71];
wire [63:0] Q_287 = ITOP.iow3.arr[71];
wire [63:0] Q_288 = ITOP.iow0.arr[72];
wire [63:0] Q_289 = ITOP.iow1.arr[72];
wire [63:0] Q_290 = ITOP.iow2.arr[72];
wire [63:0] Q_291 = ITOP.iow3.arr[72];
wire [63:0] Q_292 = ITOP.iow0.arr[73];
wire [63:0] Q_293 = ITOP.iow1.arr[73];
wire [63:0] Q_294 = ITOP.iow2.arr[73];
wire [63:0] Q_295 = ITOP.iow3.arr[73];
wire [63:0] Q_296 = ITOP.iow0.arr[74];
wire [63:0] Q_297 = ITOP.iow1.arr[74];
wire [63:0] Q_298 = ITOP.iow2.arr[74];
wire [63:0] Q_299 = ITOP.iow3.arr[74];
wire [63:0] Q_300 = ITOP.iow0.arr[75];
wire [63:0] Q_301 = ITOP.iow1.arr[75];
wire [63:0] Q_302 = ITOP.iow2.arr[75];
wire [63:0] Q_303 = ITOP.iow3.arr[75];
wire [63:0] Q_304 = ITOP.iow0.arr[76];
wire [63:0] Q_305 = ITOP.iow1.arr[76];
wire [63:0] Q_306 = ITOP.iow2.arr[76];
wire [63:0] Q_307 = ITOP.iow3.arr[76];
wire [63:0] Q_308 = ITOP.iow0.arr[77];
wire [63:0] Q_309 = ITOP.iow1.arr[77];
wire [63:0] Q_310 = ITOP.iow2.arr[77];
wire [63:0] Q_311 = ITOP.iow3.arr[77];
wire [63:0] Q_312 = ITOP.iow0.arr[78];
wire [63:0] Q_313 = ITOP.iow1.arr[78];
wire [63:0] Q_314 = ITOP.iow2.arr[78];
wire [63:0] Q_315 = ITOP.iow3.arr[78];
wire [63:0] Q_316 = ITOP.iow0.arr[79];
wire [63:0] Q_317 = ITOP.iow1.arr[79];
wire [63:0] Q_318 = ITOP.iow2.arr[79];
wire [63:0] Q_319 = ITOP.iow3.arr[79];
wire [63:0] Q_320 = ITOP.iow0.arr[80];
wire [63:0] Q_321 = ITOP.iow1.arr[80];
wire [63:0] Q_322 = ITOP.iow2.arr[80];
wire [63:0] Q_323 = ITOP.iow3.arr[80];
wire [63:0] Q_324 = ITOP.iow0.arr[81];
wire [63:0] Q_325 = ITOP.iow1.arr[81];
wire [63:0] Q_326 = ITOP.iow2.arr[81];
wire [63:0] Q_327 = ITOP.iow3.arr[81];
wire [63:0] Q_328 = ITOP.iow0.arr[82];
wire [63:0] Q_329 = ITOP.iow1.arr[82];
wire [63:0] Q_330 = ITOP.iow2.arr[82];
wire [63:0] Q_331 = ITOP.iow3.arr[82];
wire [63:0] Q_332 = ITOP.iow0.arr[83];
wire [63:0] Q_333 = ITOP.iow1.arr[83];
wire [63:0] Q_334 = ITOP.iow2.arr[83];
wire [63:0] Q_335 = ITOP.iow3.arr[83];
wire [63:0] Q_336 = ITOP.iow0.arr[84];
wire [63:0] Q_337 = ITOP.iow1.arr[84];
wire [63:0] Q_338 = ITOP.iow2.arr[84];
wire [63:0] Q_339 = ITOP.iow3.arr[84];
wire [63:0] Q_340 = ITOP.iow0.arr[85];
wire [63:0] Q_341 = ITOP.iow1.arr[85];
wire [63:0] Q_342 = ITOP.iow2.arr[85];
wire [63:0] Q_343 = ITOP.iow3.arr[85];
wire [63:0] Q_344 = ITOP.iow0.arr[86];
wire [63:0] Q_345 = ITOP.iow1.arr[86];
wire [63:0] Q_346 = ITOP.iow2.arr[86];
wire [63:0] Q_347 = ITOP.iow3.arr[86];
wire [63:0] Q_348 = ITOP.iow0.arr[87];
wire [63:0] Q_349 = ITOP.iow1.arr[87];
wire [63:0] Q_350 = ITOP.iow2.arr[87];
wire [63:0] Q_351 = ITOP.iow3.arr[87];
wire [63:0] Q_352 = ITOP.iow0.arr[88];
wire [63:0] Q_353 = ITOP.iow1.arr[88];
wire [63:0] Q_354 = ITOP.iow2.arr[88];
wire [63:0] Q_355 = ITOP.iow3.arr[88];
wire [63:0] Q_356 = ITOP.iow0.arr[89];
wire [63:0] Q_357 = ITOP.iow1.arr[89];
wire [63:0] Q_358 = ITOP.iow2.arr[89];
wire [63:0] Q_359 = ITOP.iow3.arr[89];
wire [63:0] Q_360 = ITOP.iow0.arr[90];
wire [63:0] Q_361 = ITOP.iow1.arr[90];
wire [63:0] Q_362 = ITOP.iow2.arr[90];
wire [63:0] Q_363 = ITOP.iow3.arr[90];
wire [63:0] Q_364 = ITOP.iow0.arr[91];
wire [63:0] Q_365 = ITOP.iow1.arr[91];
wire [63:0] Q_366 = ITOP.iow2.arr[91];
wire [63:0] Q_367 = ITOP.iow3.arr[91];
wire [63:0] Q_368 = ITOP.iow0.arr[92];
wire [63:0] Q_369 = ITOP.iow1.arr[92];
wire [63:0] Q_370 = ITOP.iow2.arr[92];
wire [63:0] Q_371 = ITOP.iow3.arr[92];
wire [63:0] Q_372 = ITOP.iow0.arr[93];
wire [63:0] Q_373 = ITOP.iow1.arr[93];
wire [63:0] Q_374 = ITOP.iow2.arr[93];
wire [63:0] Q_375 = ITOP.iow3.arr[93];
wire [63:0] Q_376 = ITOP.iow0.arr[94];
wire [63:0] Q_377 = ITOP.iow1.arr[94];
wire [63:0] Q_378 = ITOP.iow2.arr[94];
wire [63:0] Q_379 = ITOP.iow3.arr[94];
wire [63:0] Q_380 = ITOP.iow0.arr[95];
wire [63:0] Q_381 = ITOP.iow1.arr[95];
wire [63:0] Q_382 = ITOP.iow2.arr[95];
wire [63:0] Q_383 = ITOP.iow3.arr[95];
wire [63:0] Q_384 = ITOP.iow0.arr[96];
wire [63:0] Q_385 = ITOP.iow1.arr[96];
wire [63:0] Q_386 = ITOP.iow2.arr[96];
wire [63:0] Q_387 = ITOP.iow3.arr[96];
wire [63:0] Q_388 = ITOP.iow0.arr[97];
wire [63:0] Q_389 = ITOP.iow1.arr[97];
wire [63:0] Q_390 = ITOP.iow2.arr[97];
wire [63:0] Q_391 = ITOP.iow3.arr[97];
wire [63:0] Q_392 = ITOP.iow0.arr[98];
wire [63:0] Q_393 = ITOP.iow1.arr[98];
wire [63:0] Q_394 = ITOP.iow2.arr[98];
wire [63:0] Q_395 = ITOP.iow3.arr[98];
wire [63:0] Q_396 = ITOP.iow0.arr[99];
wire [63:0] Q_397 = ITOP.iow1.arr[99];
wire [63:0] Q_398 = ITOP.iow2.arr[99];
wire [63:0] Q_399 = ITOP.iow3.arr[99];
wire [63:0] Q_400 = ITOP.iow0.arr[100];
wire [63:0] Q_401 = ITOP.iow1.arr[100];
wire [63:0] Q_402 = ITOP.iow2.arr[100];
wire [63:0] Q_403 = ITOP.iow3.arr[100];
wire [63:0] Q_404 = ITOP.iow0.arr[101];
wire [63:0] Q_405 = ITOP.iow1.arr[101];
wire [63:0] Q_406 = ITOP.iow2.arr[101];
wire [63:0] Q_407 = ITOP.iow3.arr[101];
wire [63:0] Q_408 = ITOP.iow0.arr[102];
wire [63:0] Q_409 = ITOP.iow1.arr[102];
wire [63:0] Q_410 = ITOP.iow2.arr[102];
wire [63:0] Q_411 = ITOP.iow3.arr[102];
wire [63:0] Q_412 = ITOP.iow0.arr[103];
wire [63:0] Q_413 = ITOP.iow1.arr[103];
wire [63:0] Q_414 = ITOP.iow2.arr[103];
wire [63:0] Q_415 = ITOP.iow3.arr[103];
wire [63:0] Q_416 = ITOP.iow0.arr[104];
wire [63:0] Q_417 = ITOP.iow1.arr[104];
wire [63:0] Q_418 = ITOP.iow2.arr[104];
wire [63:0] Q_419 = ITOP.iow3.arr[104];
wire [63:0] Q_420 = ITOP.iow0.arr[105];
wire [63:0] Q_421 = ITOP.iow1.arr[105];
wire [63:0] Q_422 = ITOP.iow2.arr[105];
wire [63:0] Q_423 = ITOP.iow3.arr[105];
wire [63:0] Q_424 = ITOP.iow0.arr[106];
wire [63:0] Q_425 = ITOP.iow1.arr[106];
wire [63:0] Q_426 = ITOP.iow2.arr[106];
wire [63:0] Q_427 = ITOP.iow3.arr[106];
wire [63:0] Q_428 = ITOP.iow0.arr[107];
wire [63:0] Q_429 = ITOP.iow1.arr[107];
wire [63:0] Q_430 = ITOP.iow2.arr[107];
wire [63:0] Q_431 = ITOP.iow3.arr[107];
wire [63:0] Q_432 = ITOP.iow0.arr[108];
wire [63:0] Q_433 = ITOP.iow1.arr[108];
wire [63:0] Q_434 = ITOP.iow2.arr[108];
wire [63:0] Q_435 = ITOP.iow3.arr[108];
wire [63:0] Q_436 = ITOP.iow0.arr[109];
wire [63:0] Q_437 = ITOP.iow1.arr[109];
wire [63:0] Q_438 = ITOP.iow2.arr[109];
wire [63:0] Q_439 = ITOP.iow3.arr[109];
wire [63:0] Q_440 = ITOP.iow0.arr[110];
wire [63:0] Q_441 = ITOP.iow1.arr[110];
wire [63:0] Q_442 = ITOP.iow2.arr[110];
wire [63:0] Q_443 = ITOP.iow3.arr[110];
wire [63:0] Q_444 = ITOP.iow0.arr[111];
wire [63:0] Q_445 = ITOP.iow1.arr[111];
wire [63:0] Q_446 = ITOP.iow2.arr[111];
wire [63:0] Q_447 = ITOP.iow3.arr[111];
wire [63:0] Q_448 = ITOP.iow0.arr[112];
wire [63:0] Q_449 = ITOP.iow1.arr[112];
wire [63:0] Q_450 = ITOP.iow2.arr[112];
wire [63:0] Q_451 = ITOP.iow3.arr[112];
wire [63:0] Q_452 = ITOP.iow0.arr[113];
wire [63:0] Q_453 = ITOP.iow1.arr[113];
wire [63:0] Q_454 = ITOP.iow2.arr[113];
wire [63:0] Q_455 = ITOP.iow3.arr[113];
wire [63:0] Q_456 = ITOP.iow0.arr[114];
wire [63:0] Q_457 = ITOP.iow1.arr[114];
wire [63:0] Q_458 = ITOP.iow2.arr[114];
wire [63:0] Q_459 = ITOP.iow3.arr[114];
wire [63:0] Q_460 = ITOP.iow0.arr[115];
wire [63:0] Q_461 = ITOP.iow1.arr[115];
wire [63:0] Q_462 = ITOP.iow2.arr[115];
wire [63:0] Q_463 = ITOP.iow3.arr[115];
wire [63:0] Q_464 = ITOP.iow0.arr[116];
wire [63:0] Q_465 = ITOP.iow1.arr[116];
wire [63:0] Q_466 = ITOP.iow2.arr[116];
wire [63:0] Q_467 = ITOP.iow3.arr[116];
wire [63:0] Q_468 = ITOP.iow0.arr[117];
wire [63:0] Q_469 = ITOP.iow1.arr[117];
wire [63:0] Q_470 = ITOP.iow2.arr[117];
wire [63:0] Q_471 = ITOP.iow3.arr[117];
wire [63:0] Q_472 = ITOP.iow0.arr[118];
wire [63:0] Q_473 = ITOP.iow1.arr[118];
wire [63:0] Q_474 = ITOP.iow2.arr[118];
wire [63:0] Q_475 = ITOP.iow3.arr[118];
wire [63:0] Q_476 = ITOP.iow0.arr[119];
wire [63:0] Q_477 = ITOP.iow1.arr[119];
wire [63:0] Q_478 = ITOP.iow2.arr[119];
wire [63:0] Q_479 = ITOP.iow3.arr[119];
wire [63:0] Q_480 = ITOP.iow0.arr[120];
wire [63:0] Q_481 = ITOP.iow1.arr[120];
wire [63:0] Q_482 = ITOP.iow2.arr[120];
wire [63:0] Q_483 = ITOP.iow3.arr[120];
wire [63:0] Q_484 = ITOP.iow0.arr[121];
wire [63:0] Q_485 = ITOP.iow1.arr[121];
wire [63:0] Q_486 = ITOP.iow2.arr[121];
wire [63:0] Q_487 = ITOP.iow3.arr[121];
wire [63:0] Q_488 = ITOP.iow0.arr[122];
wire [63:0] Q_489 = ITOP.iow1.arr[122];
wire [63:0] Q_490 = ITOP.iow2.arr[122];
wire [63:0] Q_491 = ITOP.iow3.arr[122];
wire [63:0] Q_492 = ITOP.iow0.arr[123];
wire [63:0] Q_493 = ITOP.iow1.arr[123];
wire [63:0] Q_494 = ITOP.iow2.arr[123];
wire [63:0] Q_495 = ITOP.iow3.arr[123];
wire [63:0] Q_496 = ITOP.iow0.arr[124];
wire [63:0] Q_497 = ITOP.iow1.arr[124];
wire [63:0] Q_498 = ITOP.iow2.arr[124];
wire [63:0] Q_499 = ITOP.iow3.arr[124];
wire [63:0] Q_500 = ITOP.iow0.arr[125];
wire [63:0] Q_501 = ITOP.iow1.arr[125];
wire [63:0] Q_502 = ITOP.iow2.arr[125];
wire [63:0] Q_503 = ITOP.iow3.arr[125];
wire [63:0] Q_504 = ITOP.iow0.arr[126];
wire [63:0] Q_505 = ITOP.iow1.arr[126];
wire [63:0] Q_506 = ITOP.iow2.arr[126];
wire [63:0] Q_507 = ITOP.iow3.arr[126];
wire [63:0] Q_508 = ITOP.iow0.arr[127];
wire [63:0] Q_509 = ITOP.iow1.arr[127];
wire [63:0] Q_510 = ITOP.iow2.arr[127];
wire [63:0] Q_511 = ITOP.iow3.arr[127];
`endif //NV_RAM_EXPAND_ARRAY
`endif //SYNTHESIS
`ifdef FAULT_INJECTION
// BIST stuck at tasks
// induce faults on columns
//VCS coverage off
task mem_fault_no_write;
input [63:0] fault_mask;
    begin
        ITOP.iow0.mem_fault_no_write_subbank(fault_mask);
        ITOP.iow1.mem_fault_no_write_subbank(fault_mask);
        ITOP.iow2.mem_fault_no_write_subbank(fault_mask);
        ITOP.iow3.mem_fault_no_write_subbank(fault_mask);
    end
endtask
task mem_fault_stuck_0;
input [63:0] fault_mask;
    begin
        ITOP.iow0.mem_fault_stuck_0_subbank(fault_mask);
        ITOP.iow1.mem_fault_stuck_0_subbank(fault_mask);
        ITOP.iow2.mem_fault_stuck_0_subbank(fault_mask);
        ITOP.iow3.mem_fault_stuck_0_subbank(fault_mask);
    end
endtask
task mem_fault_stuck_1;
input [63:0] fault_mask;
    begin
        ITOP.iow0.mem_fault_stuck_1_subbank(fault_mask);
        ITOP.iow1.mem_fault_stuck_1_subbank(fault_mask);
        ITOP.iow2.mem_fault_stuck_1_subbank(fault_mask);
        ITOP.iow3.mem_fault_stuck_1_subbank(fault_mask);
    end
endtask
task set_bit_fault_stuck_0;
input r;
input c;
integer r;
integer c;
  if ( (r % 4) == 0)
    ITOP.iow0.set_bit_fault_stuck_0_subbank((r/4), c);
  else if ( (r % 4) == 1)
    ITOP.iow1.set_bit_fault_stuck_0_subbank((r/4), c);
  else if ( (r % 4) == 2)
    ITOP.iow2.set_bit_fault_stuck_0_subbank((r/4), c);
  else if ( (r % 4) == 3)
    ITOP.iow3.set_bit_fault_stuck_0_subbank((r/4), c);
endtask
task set_bit_fault_stuck_1;
input r;
input c;
integer r;
integer c;
    if ( (r % 4) == 0)
    ITOP.iow0.set_bit_fault_stuck_1_subbank((r/4), c);
  else if ( (r % 4) == 1)
    ITOP.iow1.set_bit_fault_stuck_1_subbank((r/4), c);
  else if ( (r % 4) == 2)
    ITOP.iow2.set_bit_fault_stuck_1_subbank((r/4), c);
  else if ( (r % 4) == 3)
    ITOP.iow3.set_bit_fault_stuck_1_subbank((r/4), c);
endtask
task clear_bit_fault_stuck_0;
input r;
input c;
integer r;
integer c;
  if ( (r % 4) == 0)
    ITOP.iow0.clear_bit_fault_stuck_0_subbank((r/4), c);
  else if ( (r % 4) == 1)
    ITOP.iow1.clear_bit_fault_stuck_0_subbank((r/4), c);
  else if ( (r % 4) == 2)
    ITOP.iow2.clear_bit_fault_stuck_0_subbank((r/4), c);
  else if ( (r % 4) == 3)
    ITOP.iow3.clear_bit_fault_stuck_0_subbank((r/4), c);
endtask
task clear_bit_fault_stuck_1;
input r;
input c;
integer r;
integer c;
  if ( (r % 4) == 0)
    ITOP.iow0.clear_bit_fault_stuck_1_subbank((r/4), c);
  else if ( (r % 4) == 1)
    ITOP.iow1.clear_bit_fault_stuck_1_subbank((r/4), c);
  else if ( (r % 4) == 2)
    ITOP.iow2.clear_bit_fault_stuck_1_subbank((r/4), c);
  else if ( (r % 4) == 3)
    ITOP.iow3.clear_bit_fault_stuck_1_subbank((r/4), c);
endtask
//VCS coverage on
`endif // STUCK
`else // EMULATION=1 
//VCS coverage off
// The emulation model is a simple model which models only basic functionality and contains no test logic or redundancy.
// The model also uses flops wherever possible. Latches are avoided to help close timing on the emulator.
// The unused pins are left floating in the model.
// Register declarations
// enables
    reg RE_FF,WE_FF,RE_LAT,WE_LAT;
// Addresses
    reg [8:0] RAFF,WAFF;
// Data
    reg [63:0] WD_FF;
    reg [63:0] RD_LAT;
// Latch the enables
//spyglass disable_block IntClock,W18
    always @(*) begin
        if (!CLK) begin
            RE_LAT <= RE;
            WE_LAT <= WE;
        end
    end
//spyglass enable_block IntClock,W18
// Flop the enables : RE/WE/RE_O
    always @(posedge CLK) begin
        RE_FF <= RE; //spyglass disable IntClock
        WE_FF <= WE; //spyglass disable IntClock
    end
// Gated clock for the read/write operations
    wire RECLK = CLK & RE_LAT; //spyglass disable GatedClock
    wire WECLK = CLK & WE_LAT; //spyglass disable GatedClock
// Flop the addresses/write data//mask 
    always @(posedge RECLK)
        RAFF <= RA; //spyglass disable IntClock
    always @(posedge WECLK) begin
        WAFF <= WA; //spyglass disable IntClock
        WD_FF <= WD; //spyglass disable IntClock
    end
// Memory
    reg [63:0] mem[511:0];
// write into the memory on negative edge of clock
   wire WRCLK = ~CLK & WE_FF ; //spyglass disable GatedClock
    always @(posedge WRCLK)
        mem[WAFF] <= WD_FF; //spyglass disable SYNTH_5130
// Read
    wire [63:0] dout;
    assign dout = mem[RAFF]; //spyglass disable SYNTH_5130
    reg [63:0] dout_LAT;
    always @(RECLK or dout)
        if (RECLK)
            dout_LAT <= dout; //spyglass disable W18
    assign RD = dout_LAT;
`endif // EMULATION
//VCS coverage on
`endif // end RAM_INTERFACE
endmodule
`endcelldefine
`ifndef RAM_INTERFACE
`ifndef EMULATION
//memory bank block
module RAM_BANK_RAMPDP_512X64_GL_M4_D2 ( WE, CLK, IDDQ, SVOP, WD, RD, RE, RA, WA
, SLEEP_EN
, RET_EN , clobber_array , clobber_flops
);
// Input/output port definitions
input WE, CLK, IDDQ , RE;
input [7:0] SVOP;
input [63:0] WD;
input [8:0] RA, WA;
output [63:0] RD;
input [7:0] SLEEP_EN;
input RET_EN , clobber_array , clobber_flops ;
// When there is no bypass requested, tie the internal bypass select to 0.
    wire RDBYP = 1'b0;
//Definitions of latches and flops in the design
// *_LAT --> Latched value
// *_LATB --> inverted latch value
// *_FF --> Flopped version
 reg RE_LATB, RE_FF, WE_LATB, WE_FF;
 reg [8:0] RADR, WADR, WAFF;
// For non-pipelined rams , capture_dis is disabled
    wire CAPT_DIS = 1'b0;
// Clamp the array access when IDDQ=1
 wire CLAMPB = ~IDDQ;
 wire latffclk = CLK;
// Latch and flop the primary control enables. This is on the unconditional clock.
// spyglass disable_block W18
 always @(*) begin
// Latch part
  if(!latffclk & !clobber_flops) begin
            RE_LATB <= ~RE ;
// Write Enable
   WE_LATB <= ~WE; // spyglass disable IntClock
  end // end if
 end // end always
 always @(*) begin
// Flop part
  if (latffclk & !clobber_flops) begin
// Flop outputs of the latches above
            WE_FF <= ~WE_LATB;
   RE_FF <= ~RE_LATB;
        end // end if
    end // end always
// spyglass enable_block W18
// Conditional clock generation.
// Write enable and clock
// Clocks are generated when the write enable OR SE == 1 , but SHOLD == 0
    wire we_se = ~WE_LATB;
 wire WRDCLK = we_se & latffclk & !clobber_flops; // spyglass disable GatedClock
 wire WADRCLK = WRDCLK;
// Read enable and clock
// There is no SHOLD dependence on the read clocks because these are implemented using loopback flops
// Clocks are generated when the Read enable OR SE == 1
    wire re_se = ~RE_LATB;
 wire RADRCLK = re_se & latffclk ;
// *** The model reads in A , writes in B ***
// Read clock to the memory is off the rising edge of clock
// CLk ==1 , when RE=1 or (SE=1 and SCRE=1) && (ACC_DIS == 1)
// SE=1 and SCRE=1 is needed to force known values into the latches for launch in testmodes.
 wire RECLK = (~RE_LATB) & CLAMPB & !clobber_flops & !RET_EN & CLK;
// Writes are shifted to the low phase of the clock
// Flopped version of the enables are used to prevent glitches in the clock
// SCWI ==1 prevents writes into the memory
    wire WECLK = WE_FF & CLAMPB & !clobber_flops & !RET_EN & ~CLK;
 wire RWSEL = WE_FF & CLAMPB & ~CLK;
// Latch read addresses
// spyglass disable_block W18
 always @(*) begin
  if(!RADRCLK & !clobber_flops) begin
   RADR <= RA;
  end // end if
 end // end always
// Flop write address
 always @(posedge WADRCLK) begin
  WAFF <= WA ;
 end
// spyglass enable_block W18
// Force the MSB's to 0 in the SCRE mode. This makes sure that we will always read in from valid addresses for resetting the output latches.
 wire [8:0] RADRSWI = RADR[8:0];
// Select the read address when CLK=1 and write addresses when CLK=0
 wire [8:0] ADR = {9{RWSEL}} & WAFF | ~{9{RWSEL}} & RADRSWI;
 wire [7:0] fusePDEC2;
 wire [7:0] fusePDEC1;
 wire [7:0] fusePDEC0;
    wire fuseien;
// Non repairable rams
    assign fusePDEC2 = {8{1'b0}};
    assign fusePDEC1 = {8{1'b0}};
    assign fusePDEC0 = {8{1'b0}};
    assign fuseien = 0;
//io part
 wire [63:0] WDQ;
 wire [63:0] WDBQ;
 wire [63:0] WMNexp;
 wire [63:0] WMNQ;
// Expand the fuse predec to 512 bits . It follows the 8x8x8 repeat pattern
// We will use only the ones needed for this particular ram configuration and ignore the rest
 wire [511:0] PDEC2 = {{64{fusePDEC2[7]}}, {64{fusePDEC2[6]}}, {64{fusePDEC2[5]}}, {64{fusePDEC2[4]}}, {64{fusePDEC2[3]}}, {64{fusePDEC2[2]}}, {64{fusePDEC2[1]}}, {64{fusePDEC2[0]}}};
 wire [511:0] PDEC1 = {8{{8{fusePDEC1[7]}}, {8{fusePDEC1[6]}}, {8{fusePDEC1[5]}}, {8{fusePDEC1[4]}}, {8{fusePDEC1[3]}}, {8{fusePDEC1[2]}}, {8{fusePDEC1[1]}}, {8{fusePDEC1[0]}}}};
 wire [511:0] PDEC0 = {64{fusePDEC0[7:0]}};
 wire [63:0] BADBIT, SHFT;
// SHIFT<*> == 1 --> No repair at that bit , 0 --> repair at that bit .
// SHIFT<X> == not(and Pdec*<X>) & SHIFT<X-1>
    assign BADBIT = {64{1'b0}};
    assign SHFT = {64{1'b1}};
    reg [63:0] WDQ_pr;
    wire [63:0] WDBQ_pr;
    assign WMNexp = {64{1'b1}};
    always @(posedge WRDCLK) begin
// Flop write data
  WDQ_pr[63:0] <= WD & WMNexp;
 end
    assign WDBQ_pr = ~WDQ_pr;
    assign WMNQ = (WDQ | WDBQ);
 assign WDQ = WDQ_pr;
 assign WDBQ = WDBQ_pr;
    reg [63:0] dout;
 wire [63:0] RD;
 wire RD_rdnt;
 wire [63:0] sel_normal, sel_redun;
// Read bypass is not used for non custom ram
 wire [63:0] RDBYPASS = {64{1'b0}};
// Read bypass will override redunancy mux .
 assign sel_redun = ~SHFT & ~RDBYPASS;
 assign sel_normal = SHFT & ~RDBYPASS;
// Non pipelined Read out. This is a 2 to 1 mux with bypass taking priority
 assign RD = sel_normal & dout | RDBYPASS & WDQ_pr;
// FOR SIMULATION ONLY. REMOVE WHEN ASSERTIONS ARE AVAILABLE!
// The following section figures out the unused address space and forces a X out on the reads/prevents writes
// #unusedbits 0 #lowcmidx 2 #cmstep 1 #cm 4 #maxaddr 512
    wire legal, tiedvalid, empadd;
    assign tiedvalid = 1'b1;
// Max address is 512 --> ['1', '1', '1', '1', '1', '1', '1', '1', '1']
    assign empadd = 1'b0;
// It is a legal input address if it does not fall in the empty space.
    assign legal = tiedvalid & ~empadd ;
    wire [63:0] force_x;
`ifndef SYNTHESIS
    assign force_x = {64{1'bx}};
`else
    assign force_x = {64{1'b0}};
`endif
// Generate the read and write clocks for the various CM banks
    wire RdClk0, RdClk1, RdClk2, RdClk3;
    wire WrClk0, WrClk1, WrClk2, WrClk3;
    assign RdClk0 = RECLK & ~RADRSWI[0] & ~RADRSWI[1];
    assign RdClk1 = RECLK & RADRSWI[0] & ~RADRSWI[1];
    assign RdClk2 = RECLK & ~RADRSWI[0] & RADRSWI[1];
    assign RdClk3 = RECLK & RADRSWI[0] & RADRSWI[1];
    assign WrClk0 = WECLK & ~WAFF[0] & ~WAFF[1] & legal;
    assign WrClk1 = WECLK & WAFF[0] & ~WAFF[1] & legal;
    assign WrClk2 = WECLK & ~WAFF[0] & WAFF[1] & legal;
    assign WrClk3 = WECLK & WAFF[0] & WAFF[1] & legal;
    wire [63:0] rmuxd0, rmuxd1, rmuxd2, rmuxd3;
    wire [63:0] dout0, dout1, dout2, dout3;
// Mux the way reads onto the final read busa
// Output X's if the address is invalid
// assign rmuxd0 = legal ? {64{RdClk0}} & ~dout0 : force_x;
// assign rmuxd1 = legal ? {64{RdClk1}} & ~dout1 : force_x;
// assign rmuxd2 = legal ? {64{RdClk2}} & ~dout2 : force_x;
// assign rmuxd3 = legal ? {64{RdClk3}} & ~dout3 : force_x;
    assign rmuxd0 = {64{RdClk0}} & ~dout0;
    assign rmuxd1 = {64{RdClk1}} & ~dout1;
    assign rmuxd2 = {64{RdClk2}} & ~dout2;
    assign rmuxd3 = {64{RdClk3}} & ~dout3;
    always @(RECLK or rmuxd0 or rmuxd1 or rmuxd2 or rmuxd3)
    begin
        if (RECLK)
     begin
            dout[63:0] <= (rmuxd0[63:0] | rmuxd1[63:0] | rmuxd2[63:0] | rmuxd3[63:0]); // spyglass disable W18 
        end
    end
// Instantiate the memory banks. One for each CM .
    RAMPDP_512X64_GL_M4_D2_ram # (128, 64, 7) iow0 (
  WAFF[8:2],
  WrClk0,
        WMNQ,
  WDQ,
  RADRSWI[8:2],
  dout0
 );
    RAMPDP_512X64_GL_M4_D2_ram # (128, 64, 7) iow1 (
  WAFF[8:2],
  WrClk1,
        WMNQ,
  WDQ,
  RADRSWI[8:2],
  dout1
 );
    RAMPDP_512X64_GL_M4_D2_ram # (128, 64, 7) iow2 (
  WAFF[8:2],
  WrClk2,
        WMNQ,
  WDQ,
  RADRSWI[8:2],
  dout2
 );
    RAMPDP_512X64_GL_M4_D2_ram # (128, 64, 7) iow3 (
  WAFF[8:2],
  WrClk3,
        WMNQ,
  WDQ,
  RADRSWI[8:2],
  dout3
 );
`ifndef SYNTHESIS
// Tasks for initializing the arrays
// Ramgen function for writing the arrays
//VCS coverage off
task mem_write_bank;
  input [8:0] addr;
  input [63:0] data;
  reg [63:0] wdat;
  begin
    wdat = data;
    if (addr[1:0] == 2'b00)
        iow0.mem_wr_raw_subbank(addr[8:2], wdat);
    else if (addr[1:0] == 2'b01)
        iow1.mem_wr_raw_subbank(addr[8:2], wdat);
    else if (addr[1:0] == 2'b10)
        iow2.mem_wr_raw_subbank(addr[8:2], wdat);
    else if (addr[1:0] == 2'b11)
        iow3.mem_wr_raw_subbank(addr[8:2], wdat);
  end
endtask
// Ramgen function for reading the arrays
function [63:0] mem_read_bank;
input [8:0] addr;
reg [63:0] memout;
  begin
    if (addr[1:0] == 2'b00)
        memout = iow0.mem_read_raw_subbank(addr[8:2]);
    else if (addr[1:0] == 2'b01)
        memout = iow1.mem_read_raw_subbank(addr[8:2]);
    else if (addr[1:0] == 2'b10)
        memout = iow2.mem_read_raw_subbank(addr[8:2]);
    else if (addr[1:0] == 2'b11)
        memout = iow3.mem_read_raw_subbank(addr[8:2]);
    mem_read_bank = memout;
  end
endfunction
//VCS coverage on
`endif //SYNTHESIS
endmodule
`endif // end EMULATION
`endif // end RAM_INTERFACE 
`ifndef RAM_INTERFACE
`ifndef EMULATION
module RAMPDP_512X64_GL_M4_D2_ram (
   wadr,
   wrclk,
   wrmaskn,
   wrdata,
   radr,
   rout_B
);
// default parameters
parameter words = 128;
parameter bits = 64;
parameter addrs = 7;
// Write address
input [addrs-1:0] wadr;
// Write clock
input wrclk;
// Write data
input [bits-1:0] wrdata;
// Write Mask
input [bits-1:0] wrmaskn;
// Read address
input [addrs-1:0] radr;
// Read out
wire [bits-1:0] rdarr;
output [bits-1:0] rout_B;
// Memory . words X bits
reg [bits-1:0] arr[0:words-1];
`ifdef SIM_and_FAULT
// regs for inducing faults
reg [bits-1:0] fault_no_write; // block writes to this column
reg [bits-1:0] fault_stuck_0; // column always reads as 0
reg [bits-1:0] fault_stuck_1; // column always reads as 1
reg [bits-1:0] bit_fault_stuck_0[0:words-1]; // column always reads as 0
reg [bits-1:0] bit_fault_stuck_1[0:words-1]; // column always reads as 1
initial begin : init_bit_fault_stuck
    integer i;
    integer j;
    fault_no_write = {bits{1'b0}};
    fault_stuck_0 = {bits{1'b0}};
    fault_stuck_1 = {bits{1'b0}};
    for ( i =0; i <=words; i=i+1) begin
        bit_fault_stuck_0[i] = {bits{1'b0}};
        bit_fault_stuck_1[i] = {bits{1'b0}};
    end
end
`endif // FAULT
`ifdef SIM_and_MONITOR
//VCS coverage off
// monitor variables
reg monitor_on;
reg [words-1:0] word_written;
reg [words-1:0] word_read;
reg [bits-1:0] bit_written[0:words-1];
reg [bits-1:0] bit_read[0:words-1];
initial begin : init_monitor
  integer i;
  monitor_on = 1'b0;
  for(i=0;i<= words-1;i=i+1) begin
      word_written[i] = 1'b0;
      word_read[i] = 1'b0;
      bit_written[i] = {bits{1'bx}};
      bit_read[i] = {bits{1'bx}};
  end
end
`endif // MONITOR
//VCS coverage on
// Bit write enable
// Write only when mask=1. Else hold the data.
`ifdef SIM_and_FAULT
// Include fault registers
wire [bits-1:0] bwe = wrmaskn & ~fault_no_write;
`else //SIM_and_FAULT
wire [bits-1:0] bwe = wrmaskn ;
`endif //SIM_and_FAULT
wire [bits-1:0] bitclk = {bits{wrclk}} & bwe ;
integer i;
`ifdef SIM_and_FAULT
always @(bitclk or wadr or wrdata)
`else
always @(wrclk or wadr or wrdata)
`endif
begin
`ifdef SIM_and_FAULT
    for (i=0 ; i<bits ; i=i+1)
    begin
        if (bitclk[i])
            arr[wadr][i] <= wrdata[i]; // spyglass disable SYNTH_5130,W18
    end
`else
    if (wrclk)
        arr[wadr] <= wrdata; // spyglass disable SYNTH_5130,W18
`endif
`ifdef SIM_and_MONITOR
//VCS coverage off
    for (i=0 ; i<bits ; i=i+1)
    begin
`ifdef SIM_and_FAULT
        if (bitclk[i])
`else
        if (wrclk)
`endif // FAULT
        begin
// Check which bits are being written. Also track the values as per table below.
// 1'bx = not accessed
// 1'b0 = accessed as a 0
// 1'b1 = accessed as a 1
// 1'bz = accessed as both 0 and 1
            if (monitor_on) begin
    case (bit_written[wadr][i]) // spyglass disable SYNTH_5130,W18
     1'bx: bit_written[wadr][i] = wrdata[i];
     1'b0: bit_written[wadr][i] = wrdata[i] == 1 ? 1'bz : 1'b0;
     1'b1: bit_written[wadr][i] = wrdata[i] == 0 ? 1'bz : 1'b1;
     1'bz: bit_written[wadr][i] = 1'bz;
    endcase
            end
        end // if
    end //for
    if (monitor_on) begin
// Word is considered written if any of the bits are written
`ifdef SIM_and_FAULT
        word_written[wadr] <= |(bitclk) | word_written[wadr]; // spyglass disable SYNTH_5130,W18
`else
        word_written[wadr] <= wrclk | word_written[wadr]; // spyglass disable SYNTH_5130,W18
`endif // FAULT
    end
`endif // MONITOR
//VCS coverage on
end
`ifdef SIM_and_FAULT
// Include fault registers
wire [bits-1:0] bre = ~(bit_fault_stuck_1[radr] | bit_fault_stuck_0[radr]); // spyglass disable SYNTH_5130
`else //SIM_and_FAULT
wire [bits-1:0] bre = {bits{1'b1}};
`endif //SIM_and_FAULT
// Read the unlatched data out.
`ifdef SIM_and_FAULT
assign rdarr = (~arr[radr] | bit_fault_stuck_0[radr]) & ~bit_fault_stuck_1[radr]; // spyglass disable SYNTH_5130
`else
assign rdarr = ~arr[radr]; // spyglass disable SYNTH_5130
`endif
`ifdef SIM_and_MONITOR
//VCS coverage off
always @radr begin
// Check if a bit in the word can be read.
// 1'bx = not accessed
// 1'b0 = accessed as a 0
// 1'b1 = accessed as a 1
// 1'bz = accessed as both 0 and 1
    if (monitor_on) begin
        for (i=0; i<bits; i=i+1) begin
         if (bre[i]) begin
             case (bit_read[radr][i])
        1'bx: bit_read[radr][i] = rdarr[i];
     1'b0: bit_read[radr][i] = rdarr[i] == 1 ? 1'bz : 1'b0;
     1'b1: bit_read[radr][i] = rdarr[i] == 0 ? 1'bz : 1'b1;
     1'bz: bit_read[radr][i] = 1'bz;
          endcase
         end
     end
    end
// Word is marked read only if any of the bits are read.
    word_read[radr] = |(bre);
end
//VCS coverage on
`endif // MONITOR
`ifndef SYNTHESIS
assign #0.1 rout_B = rdarr;
`else
assign rout_B = rdarr;
`endif
`ifndef SYNTHESIS
// Task for initializing the arrays
//VCS coverage off
task mem_wr_raw_subbank;
  input [addrs-1:0] addr;
  input [63:0] data;
  begin
    arr[addr] = data;
  end
endtask
// function for array read
function [63:0] mem_read_raw_subbank;
input [addrs-1:0] addr;
 mem_read_raw_subbank = arr[addr];
endfunction
`ifdef FAULT_INJECTION
// BIST Tasks for inducing faults
// induce faults on columns
task mem_fault_no_write_subbank;
  input [bits-1:0] fault_mask;
   begin
    fault_no_write = fault_mask;
  end
endtask
// Stuck at 0 for entire memory
task mem_fault_stuck_0_subbank;
  input [bits-1:0] fault_mask;
  integer i;
   begin
    for ( i=0; i<words; i=i+1 ) begin
      bit_fault_stuck_0[i] = fault_mask;
    end
  end
endtask
// Stuck at 1 for entire memory
task mem_fault_stuck_1_subbank;
  input [bits-1:0] fault_mask;
  integer i;
   begin
    for ( i=0; i<words; i=i+1 ) begin
      bit_fault_stuck_1[i] = fault_mask;
    end
  end
endtask
// Stuck at 0 for specific bit
task set_bit_fault_stuck_0_subbank;
  input r;
  input c;
  integer r;
  integer c;
  bit_fault_stuck_0[r][c] = 1;
endtask
// Stuck at 1 for specific bit
task set_bit_fault_stuck_1_subbank;
  input r;
  input c;
  integer r;
  integer c;
  bit_fault_stuck_1[r][c] = 1;
endtask
// Clear stuck 0 at bit
task clear_bit_fault_stuck_0_subbank;
  input r;
  input c;
  integer r;
  integer c;
  bit_fault_stuck_0[r][c] = 0;
endtask
// Clear stuck 1 at bit
task clear_bit_fault_stuck_1_subbank;
  input r;
  input c;
  integer r;
  integer c;
  bit_fault_stuck_1[r][c] = 0;
endtask
//VCS coverage on
`endif //STUCK
`endif //SYNTHESIS
endmodule
`endif // end EMULATION
`endif // end RAM_INTERFACE