NV_NVDLA_MCIF_WRITE_IG_cvt.v 24.2 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_MCIF_WRITE_IG_cvt.v
// ================================================================
// NVDLA Open Source Project
// 
// Copyright(c 2016 - 2017 NVIDIA Corporation.  Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with 
// this distribution for more information.
// ================================================================
`include "simulate_x_tick.vh"
module NV_NVDLA_MCIF_WRITE_IG_cvt (
   nvdla_core_clk //|< i
  ,nvdla_core_rstn //|< i
  ,reg2dp_wr_os_cnt //|< i
  ,cq_wr_pd //|> o
  ,cq_wr_pvld //|> o
  ,cq_wr_prdy //|< i
  ,cq_wr_thread_id //|> o
  ,eg2ig_axi_len //|< i
  ,eg2ig_axi_vld //|< i
  ,spt2cvt_cmd_pd //|< i
  ,spt2cvt_cmd_valid //|< i
  ,spt2cvt_cmd_ready //|> o
  ,spt2cvt_dat_pd //|< i
  ,spt2cvt_dat_valid //|< i
  ,spt2cvt_dat_ready //|> o
  ,mcif2noc_axi_aw_awaddr //|> o
  ,mcif2noc_axi_aw_awid //|> o
  ,mcif2noc_axi_aw_awlen //|> o
  ,mcif2noc_axi_aw_awvalid //|> o
  ,mcif2noc_axi_aw_awready //|< i
  ,mcif2noc_axi_w_wdata //|> o
  ,mcif2noc_axi_w_wlast //|> o
  ,mcif2noc_axi_w_wstrb //|> o
  ,mcif2noc_axi_w_wvalid //|> o
  ,mcif2noc_axi_w_wready //|< i
  );
//
// NV_NVDLA_MCIF_WRITE_IG_cvt_ports.v
//
input nvdla_core_clk;
input nvdla_core_rstn;
input spt2cvt_cmd_valid;
output spt2cvt_cmd_ready;
input [32 +13 -1:0] spt2cvt_cmd_pd;
input spt2cvt_dat_valid;
output spt2cvt_dat_ready;
input [64 +1 -1:0] spt2cvt_dat_pd;
output cq_wr_pvld;
input cq_wr_prdy;
output [2:0] cq_wr_pd;
output [2:0] cq_wr_thread_id;
output mcif2noc_axi_aw_awvalid;
input mcif2noc_axi_aw_awready;
output [32 -1:0] mcif2noc_axi_aw_awaddr;
output [7:0] mcif2noc_axi_aw_awid;
output [3:0] mcif2noc_axi_aw_awlen;
output mcif2noc_axi_w_wvalid;
input mcif2noc_axi_w_wready;
output [64 -1:0] mcif2noc_axi_w_wdata;
output [8 -1:0] mcif2noc_axi_w_wstrb;
output mcif2noc_axi_w_wlast;
input [1:0] eg2ig_axi_len;
input eg2ig_axi_vld;
input [7:0] reg2dp_wr_os_cnt;
reg [1:0] eg2ig_axi_len_d;
reg eg2ig_axi_vld_d;
reg os_adv;
reg [8:0] os_cnt;
reg [8:0] os_cnt_cur;
reg [10:0] os_cnt_ext;
reg [10:0] os_cnt_mod;
reg [10:0] os_cnt_new;
reg [10:0] os_cnt_nxt;
wire all_downs_rdy;
wire axi_both_rdy;
wire [32 -1:0] axi_addr;
wire [3:0] axi_axid;
wire [32 +5:0] axi_aw_pd;
wire [32 +5:0] axi_cmd_pd;
wire axi_cmd_rdy;
wire axi_cmd_vld;
wire [64 +8:0] axi_dat_pd;
wire axi_dat_rdy;
wire axi_dat_vld;
wire [64 -1:0] axi_data;
wire axi_last;
wire [1:0] axi_len;
wire [8 -1:0] axi_strb;
wire [64 +8:0] axi_w_pd;
wire [7:0] cfg_wr_os_cnt;
wire [32 -1:0] cmd_addr;
wire [3:0] cmd_axid;
wire cmd_ftran;
wire cmd_inc;
wire cmd_ltran;
wire cmd_odd;
wire [32 +13 -1:0] cmd_pd;
wire cmd_rdy;
wire cmd_require_ack;
wire [2:0] cmd_size;
wire cmd_swizzle;
wire [2:0] cmd_user_size;
wire cmd_vld;
wire [32 +13 -1:0] cmd_vld_pd;
wire [1:0] cq_wr_len;
wire cq_wr_require_ack;
wire [64 -1:0] dat_data;
wire [1 -1:0] dat_mask;
wire [64 +1 -1:0] dat_pd;
wire dat_rdy;
wire dat_vld;
wire [0:0] mon_thread_id_c;
wire is_first_beat;
wire is_single_beat;
wire is_last_beat;
reg [1:0] beat_count;
wire is_first_cmd_dat_vld;
wire [32 -1:0] opipe_axi_addr;
wire [3:0] opipe_axi_axid;
wire [64 -1:0] opipe_axi_data;
wire opipe_axi_last;
wire [1:0] opipe_axi_len;
wire [8 -1:0] opipe_axi_strb;
wire os_cmd_vld;
wire [2:0] os_cnt_add;
wire os_cnt_add_en;
wire os_cnt_cen;
wire os_cnt_full;
wire [2:0] os_cnt_sub;
wire os_cnt_sub_en;
wire [2:0] os_inp_add_nxt;
wire [9:0] os_inp_nxt;
wire [2:0] os_inp_sub_nxt;
wire [8:0] wr_os_cnt_ext;
//IG_cvt===upack : none-flop-in
NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p1 pipe_p1 (
   .nvdla_core_clk (nvdla_core_clk) //|< i
  ,.nvdla_core_rstn (nvdla_core_rstn) //|< i
  ,.spt2cvt_cmd_pd (spt2cvt_cmd_pd)
  ,.spt2cvt_cmd_valid (spt2cvt_cmd_valid) //|< i
  ,.spt2cvt_cmd_ready (spt2cvt_cmd_ready) //|> o
  ,.cmd_pd (cmd_pd)
  ,.cmd_vld (cmd_vld) //|> w
  ,.cmd_rdy (cmd_rdy) //|< w
  );
NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p2 pipe_p2 (
   .nvdla_core_clk (nvdla_core_clk) //|< i
  ,.nvdla_core_rstn (nvdla_core_rstn) //|< i
  ,.spt2cvt_dat_pd (spt2cvt_dat_pd)
  ,.spt2cvt_dat_valid (spt2cvt_dat_valid) //|< i
  ,.spt2cvt_dat_ready (spt2cvt_dat_ready) //|> o
  ,.dat_pd (dat_pd)
  ,.dat_vld (dat_vld) //|> w
  ,.dat_rdy (dat_rdy) //|< w
  );
assign os_cmd_vld = cmd_vld & !os_cnt_full;
//IG_cvt=== push into the cq on first beat of data
assign dat_rdy = is_first_beat ? (os_cmd_vld & all_downs_rdy) : axi_dat_rdy;
//IG_cvt=== will release cmd on the acception of last beat of data
assign cmd_rdy = is_first_beat & dat_vld & all_downs_rdy & !os_cnt_full;
//IG_cvt===UNPACK after ipipe
assign cmd_vld_pd = {32 +13{cmd_vld}} & cmd_pd;
assign cmd_axid = cmd_vld_pd[3:0];
assign cmd_require_ack = cmd_vld_pd[4];
assign cmd_addr = cmd_vld_pd[32 +4:5];
assign cmd_size = cmd_vld_pd[32 +7:32 +5];
assign cmd_swizzle = cmd_vld_pd[32 +8];
assign cmd_odd = cmd_vld_pd[32 +9];
assign cmd_inc = cmd_vld_pd[32 +10];
assign cmd_ltran = cmd_vld_pd[32 +11];
assign cmd_ftran = cmd_vld_pd[32 +12];
// PKT_UNPACK_WIRE( cvt_write_data , dat_ , dat_pd )
assign dat_data[64 -1:0] = dat_pd[64 -1:0];
assign dat_mask[1 -1:0] = dat_pd[64 +1 -1:64];
assign axi_len[1:0] = cmd_size[1:0];
assign is_first_cmd_dat_vld = os_cmd_vld & dat_vld && is_first_beat;
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    beat_count <= {2{1'b0}};
  end else begin
    if (is_first_cmd_dat_vld & all_downs_rdy) begin
        beat_count <= axi_len;
    end else if ((beat_count!=0) & dat_vld & axi_dat_rdy) begin //fixme
        beat_count <= beat_count - 1;
    end
  end
end
assign is_first_beat = (beat_count==0);
assign is_single_beat = (axi_len==0);
assign is_last_beat = (beat_count==1 || (beat_count==0 && is_single_beat));
assign axi_axid = cmd_axid[3:0];
assign axi_addr = cmd_addr;
assign axi_data = dat_data;
assign axi_last = is_last_beat;
assign axi_strb = {8{dat_mask}}; //{{32{dat_mask[1]}},{32{dat_mask[0]}}};
//=====================================
assign os_inp_add_nxt[2:0] = cmd_vld ? (axi_len + 1) : 3'd0;
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
     eg2ig_axi_vld_d <= 1'b0;
  end else begin
     eg2ig_axi_vld_d <= eg2ig_axi_vld;
  end
end
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
     eg2ig_axi_len_d <= {2{1'b0}};
  end else begin
  if ((eg2ig_axi_vld) == 1'b1) begin
     eg2ig_axi_len_d <= eg2ig_axi_len;
// VCS coverage off
  end else if ((eg2ig_axi_vld) == 1'b0) begin
  end else begin
     eg2ig_axi_len_d <= 'bx; // spyglass disable STARC-2.10.1.6 W443 NoWidthInBasedNum-ML -- (Constant containing x or z used, Based number `bx contains an X, Width specification missing for based number)
// VCS coverage on
  end
  end
end
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
`ifndef SYNTHESIS
// VCS coverage off
  nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_3x (nvdla_core_clk, `ASSERT_RESET, 1'd1, (^(eg2ig_axi_vld))); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`endif
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
assign os_inp_sub_nxt[2:0] = eg2ig_axi_vld_d ? (eg2ig_axi_len_d+1) : 3'd0;
assign os_inp_nxt[9:0] = os_cnt + os_inp_add_nxt - os_inp_sub_nxt;
// IG_cvt=== 256 outstanding trans
assign os_cnt_add_en = axi_cmd_vld & axi_cmd_rdy;
assign os_cnt_sub_en = eg2ig_axi_vld_d;
assign os_cnt_cen = os_cnt_add_en | os_cnt_sub_en;
assign os_cnt_add = os_cnt_add_en ? (axi_len + 1) : 3'd0;
assign os_cnt_sub = os_cnt_sub_en ? (eg2ig_axi_len_d+1) : 3'd0;
assign cfg_wr_os_cnt = reg2dp_wr_os_cnt[7:0];
assign wr_os_cnt_ext = {{1{1'b0}}, cfg_wr_os_cnt};
assign os_cnt_full = os_inp_nxt>(wr_os_cnt_ext+1);
// os adv logic
always @(
  os_cnt_add
  or os_cnt_sub
  ) begin
  os_adv = os_cnt_add[2:0] != os_cnt_sub[2:0];
end
// os cnt logic
always @(
  os_cnt_cur
  or os_cnt_add
  or os_cnt_sub
  or os_adv
  ) begin
// VCS sop_coverage_off start
  os_cnt_ext[10:0] = {1'b0, 1'b0, os_cnt_cur};
  os_cnt_mod[10:0] = os_cnt_cur + os_cnt_add[2:0] - os_cnt_sub[2:0]; // spyglass disable W164b
  os_cnt_new[10:0] = (os_adv)? os_cnt_mod[10:0] : os_cnt_ext[10:0];
  os_cnt_nxt[10:0] = os_cnt_new[10:0];
// VCS sop_coverage_off end
end
// os flops
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    os_cnt_cur[8:0] <= 0;
  end else begin
  if (os_cnt_cen) begin
  os_cnt_cur[8:0] <= os_cnt_nxt[8:0];
  end
  end
end
// os output logic
always @(
  os_cnt_cur
  ) begin
  os_cnt[8:0] = os_cnt_cur[8:0];
end
// os asserts
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
// VCS coverage off
  nv_assert_never #(0,0,"never: counter overflow beyond <ovr_cnt>") zzz_assert_never_4x (nvdla_core_clk, `ASSERT_RESET, (os_cnt_nxt > 256 && os_cnt_cen)); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
//IG_cvt=== PIPE for $NOC ADDR Channel
// cmd will be pushed into pipe with the 1st beat of data in that cmd,
// and when *_beat_vld is high, *_cmd_vld should always be there.
assign axi_cmd_vld = is_first_cmd_dat_vld & cq_wr_prdy & axi_dat_rdy;
NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p3 pipe_p3 (
   .nvdla_core_clk (nvdla_core_clk) //|< i
  ,.nvdla_core_rstn (nvdla_core_rstn) //|< i
  ,.axi_cmd_pd (axi_cmd_pd) //|< w
  ,.axi_cmd_vld (axi_cmd_vld) //|< w
  ,.axi_cmd_rdy (axi_cmd_rdy) //|> w
  ,.axi_aw_pd (axi_aw_pd) //|> w
  ,.mcif2noc_axi_aw_awvalid (mcif2noc_axi_aw_awvalid) //|> o
  ,.mcif2noc_axi_aw_awready (mcif2noc_axi_aw_awready) //|< i
  );
//IG_cvt=== PIPE for $NOC DATA Channel
// first beat of data also need cq and cmd rdy, this is because we also need push ack/cmd into cq fifo and cmd pipe on first beat of data
assign axi_dat_vld = dat_vld & (!is_first_beat || (os_cmd_vld & cq_wr_prdy & axi_cmd_rdy));
//assign axi_dat_vld = dat_vld & (os_cmd_vld & cq_wr_prdy & axi_cmd_rdy);
NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p4 pipe_p4 (
   .nvdla_core_clk (nvdla_core_clk) //|< i
  ,.nvdla_core_rstn (nvdla_core_rstn) //|< i
  ,.axi_dat_pd (axi_dat_pd) //|< w
  ,.axi_dat_vld (axi_dat_vld) //|< w
  ,.axi_dat_rdy (axi_dat_rdy) //|> w
  ,.axi_w_pd (axi_w_pd) //|> w
  ,.mcif2noc_axi_w_wvalid (mcif2noc_axi_w_wvalid) //|> o
  ,.mcif2noc_axi_w_wready (mcif2noc_axi_w_wready) //|< i
  );
assign axi_cmd_pd = {axi_axid,axi_addr,axi_len};
assign {opipe_axi_axid,opipe_axi_addr,opipe_axi_len} = axi_aw_pd;
assign axi_dat_pd = {axi_data,axi_strb,axi_last};
assign {opipe_axi_data,opipe_axi_strb,opipe_axi_last} = axi_w_pd;
// IG_cvt===AXI OUT ZERO EXT
assign mcif2noc_axi_aw_awid = {{4{1'b0}}, opipe_axi_axid};
assign mcif2noc_axi_aw_awaddr = opipe_axi_addr;
assign mcif2noc_axi_aw_awlen = {{2{1'b0}}, opipe_axi_len};
assign mcif2noc_axi_w_wlast = opipe_axi_last;
assign mcif2noc_axi_w_wdata = opipe_axi_data;
assign mcif2noc_axi_w_wstrb = opipe_axi_strb;
//=====================================
// DownStream readiness
//=====================================
assign axi_both_rdy = axi_cmd_rdy & axi_dat_rdy;
assign all_downs_rdy = cq_wr_prdy & axi_both_rdy;
//=====================================
// Outstanding Queue
//=====================================
// IG_cvt===valid for axi_cmd and oq, inter-lock
assign cq_wr_pvld = is_first_cmd_dat_vld & axi_both_rdy & !os_cnt_full;
assign cq_wr_require_ack = cmd_ltran & cmd_require_ack;
assign cq_wr_len = axi_len;
// PKT_PACK_WIRE( mcif_write_ig2eg , cq_wr_ , cq_wr_pd )
assign cq_wr_pd[0] = cq_wr_require_ack ;
assign cq_wr_pd[2:1] = cq_wr_len[1:0];
assign {mon_thread_id_c,cq_wr_thread_id[2:0]} = cmd_axid;
`ifdef NVDLA_PRINT_AXI
reg [32 +5:0] mon_axi_count;
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        mon_axi_count <= 0;
    end else begin
        mon_axi_count <= mon_axi_count + 1'b1;
    end
    if (mcif2noc_axi_aw_awvalid & mcif2noc_axi_aw_awready) begin
        $display("NVDLA MCIF WRITE ADDR:time=%0d:cycle=%0d:addr=0x%0h:id=%0d:len=%0d",$stime,mon_axi_count,mcif2noc_axi_aw_awaddr,mcif2noc_axi_aw_awid,mcif2noc_axi_aw_awlen);
    end
end
`endif
endmodule // NV_NVDLA_MCIF_WRITE_IG_cvt
// **************************************************************************************************************
// Generated by ::pipe -m -rand none -bc cmd_pd (cmd_vld,cmd_rdy) <= spt2cvt_cmd_pd[32 +13 -1:0] (spt2cvt_cmd_valid,spt2cvt_cmd_ready)
// **************************************************************************************************************
module NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p1 (
   nvdla_core_clk
  ,nvdla_core_rstn
  ,spt2cvt_cmd_pd
  ,spt2cvt_cmd_valid
  ,spt2cvt_cmd_ready
  ,cmd_pd
  ,cmd_vld
  ,cmd_rdy
  );
input nvdla_core_clk;
input nvdla_core_rstn;
input [32 +13 -1:0] spt2cvt_cmd_pd;
input spt2cvt_cmd_valid;
output spt2cvt_cmd_ready;
output [32 +13 -1:0] cmd_pd;
output cmd_vld;
input cmd_rdy;
//: my $k = 32 +13;
//: &eperl::pipe(" -wid $k -do cmd_pd -vo cmd_vld -ri cmd_rdy -di  spt2cvt_cmd_pd -vi spt2cvt_cmd_valid -ro spt2cvt_cmd_ready ");
//| eperl: generated_beg (DO NOT EDIT BELOW)
// Reg
reg pipe_spt2cvt_cmd_valid;
reg [45-1:0] pipe_spt2cvt_cmd_pd;
// Wire
wire spt2cvt_cmd_ready;
wire pipe_spt2cvt_cmd_ready;
wire cmd_vld;
wire [45-1:0] cmd_pd;
// Code
// PIPE READY
assign spt2cvt_cmd_ready = pipe_spt2cvt_cmd_ready || !pipe_spt2cvt_cmd_valid;

// PIPE VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        pipe_spt2cvt_cmd_valid <= 1'b0;
    end else begin
        if (spt2cvt_cmd_ready) begin
            pipe_spt2cvt_cmd_valid <= spt2cvt_cmd_valid;
        end
    end
end

// PIPE DATA
always @(posedge nvdla_core_clk) begin
    if (spt2cvt_cmd_ready && spt2cvt_cmd_valid) begin
        pipe_spt2cvt_cmd_pd[45-1:0] <= spt2cvt_cmd_pd[45-1:0];
    end
end


// PIPE OUTPUT
assign pipe_spt2cvt_cmd_ready = cmd_rdy;
assign cmd_vld = pipe_spt2cvt_cmd_valid;
assign cmd_pd = pipe_spt2cvt_cmd_pd;

//| eperl: generated_end (DO NOT EDIT ABOVE)
endmodule // NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p1
// **************************************************************************************************************
// Generated by ::pipe -m -rand none -bc dat_pd (dat_vld,dat_rdy) <= spt2cvt_dat_pd[64 +1 -1:0] (spt2cvt_dat_valid,spt2cvt_dat_ready)
// **************************************************************************************************************
module NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p2 (
   nvdla_core_clk
  ,nvdla_core_rstn
  ,spt2cvt_dat_pd
  ,spt2cvt_dat_valid
  ,spt2cvt_dat_ready
  ,dat_pd
  ,dat_vld
  ,dat_rdy
  );
input nvdla_core_clk;
input nvdla_core_rstn;
input [64 +1 -1:0] spt2cvt_dat_pd;
input spt2cvt_dat_valid;
output spt2cvt_dat_ready;
output [64 +1 -1:0] dat_pd;
output dat_vld;
input dat_rdy;
//: my $k = 64 +1;
//: &eperl::pipe(" -wid  $k -do dat_pd -vo dat_vld -ri dat_rdy -di  spt2cvt_dat_pd -vi spt2cvt_dat_valid -ro spt2cvt_dat_ready ");
//| eperl: generated_beg (DO NOT EDIT BELOW)
// Reg
reg pipe_spt2cvt_dat_valid;
reg [65-1:0] pipe_spt2cvt_dat_pd;
// Wire
wire spt2cvt_dat_ready;
wire pipe_spt2cvt_dat_ready;
wire dat_vld;
wire [65-1:0] dat_pd;
// Code
// PIPE READY
assign spt2cvt_dat_ready = pipe_spt2cvt_dat_ready || !pipe_spt2cvt_dat_valid;

// PIPE VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        pipe_spt2cvt_dat_valid <= 1'b0;
    end else begin
        if (spt2cvt_dat_ready) begin
            pipe_spt2cvt_dat_valid <= spt2cvt_dat_valid;
        end
    end
end

// PIPE DATA
always @(posedge nvdla_core_clk) begin
    if (spt2cvt_dat_ready && spt2cvt_dat_valid) begin
        pipe_spt2cvt_dat_pd[65-1:0] <= spt2cvt_dat_pd[65-1:0];
    end
end


// PIPE OUTPUT
assign pipe_spt2cvt_dat_ready = dat_rdy;
assign dat_vld = pipe_spt2cvt_dat_valid;
assign dat_pd = pipe_spt2cvt_dat_pd;

//| eperl: generated_end (DO NOT EDIT ABOVE)
endmodule // NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p2
// **************************************************************************************************************
// Generated by ::pipe -m -rand none -bc -is axi_aw_pd (mcif2noc_axi_aw_awvalid,mcif2noc_axi_aw_awready) <= axi_cmd_pd[32 +5:0] (axi_cmd_vld,axi_cmd_rdy)
// **************************************************************************************************************
module NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p3 (
   nvdla_core_clk
  ,nvdla_core_rstn
  ,axi_cmd_pd
  ,axi_cmd_vld
  ,axi_cmd_rdy
  ,axi_aw_pd
  ,mcif2noc_axi_aw_awvalid
  ,mcif2noc_axi_aw_awready
  );
input nvdla_core_clk;
input nvdla_core_rstn;
input [32 +5:0] axi_cmd_pd;
input axi_cmd_vld;
output axi_cmd_rdy;
output [32 +5:0] axi_aw_pd;
output mcif2noc_axi_aw_awvalid;
input mcif2noc_axi_aw_awready;
//: my $k = 32 +6;
//: &eperl::pipe(" -wid $k -is -do axi_aw_pd -vo mcif2noc_axi_aw_awvalid -ri mcif2noc_axi_aw_awready -di axi_cmd_pd -vi axi_cmd_vld -ro axi_cmd_rdy ");
//| eperl: generated_beg (DO NOT EDIT BELOW)
// Reg
reg axi_cmd_rdy;
reg skid_flop_axi_cmd_rdy;
reg skid_flop_axi_cmd_vld;
reg [38-1:0] skid_flop_axi_cmd_pd;
reg pipe_skid_axi_cmd_vld;
reg [38-1:0] pipe_skid_axi_cmd_pd;
// Wire
wire skid_axi_cmd_vld;
wire [38-1:0] skid_axi_cmd_pd;
wire skid_axi_cmd_rdy;
wire pipe_skid_axi_cmd_rdy;
wire mcif2noc_axi_aw_awvalid;
wire [38-1:0] axi_aw_pd;
// Code
// SKID READY
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
   if (!nvdla_core_rstn) begin
       axi_cmd_rdy <= 1'b1;
       skid_flop_axi_cmd_rdy <= 1'b1;
   end else begin
       axi_cmd_rdy <= skid_axi_cmd_rdy;
       skid_flop_axi_cmd_rdy <= skid_axi_cmd_rdy;
   end
end

// SKID VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        skid_flop_axi_cmd_vld <= 1'b0;
    end else begin
        if (skid_flop_axi_cmd_rdy) begin
            skid_flop_axi_cmd_vld <= axi_cmd_vld;
        end
   end
end
assign skid_axi_cmd_vld = (skid_flop_axi_cmd_rdy) ? axi_cmd_vld : skid_flop_axi_cmd_vld;

// SKID DATA
always @(posedge nvdla_core_clk) begin
    if (skid_flop_axi_cmd_rdy & axi_cmd_vld) begin
        skid_flop_axi_cmd_pd[38-1:0] <= axi_cmd_pd[38-1:0];
    end
end
assign skid_axi_cmd_pd[38-1:0] = (skid_flop_axi_cmd_rdy) ? axi_cmd_pd[38-1:0] : skid_flop_axi_cmd_pd[38-1:0];


// PIPE READY
assign skid_axi_cmd_rdy = pipe_skid_axi_cmd_rdy || !pipe_skid_axi_cmd_vld;

// PIPE VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        pipe_skid_axi_cmd_vld <= 1'b0;
    end else begin
        if (skid_axi_cmd_rdy) begin
            pipe_skid_axi_cmd_vld <= skid_axi_cmd_vld;
        end
    end
end

// PIPE DATA
always @(posedge nvdla_core_clk) begin
    if (skid_axi_cmd_rdy && skid_axi_cmd_vld) begin
        pipe_skid_axi_cmd_pd[38-1:0] <= skid_axi_cmd_pd[38-1:0];
    end
end


// PIPE OUTPUT
assign pipe_skid_axi_cmd_rdy = mcif2noc_axi_aw_awready;
assign mcif2noc_axi_aw_awvalid = pipe_skid_axi_cmd_vld;
assign axi_aw_pd = pipe_skid_axi_cmd_pd;

//| eperl: generated_end (DO NOT EDIT ABOVE)
endmodule // NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p3
// **************************************************************************************************************
// Generated by ::pipe -m -rand none -bc -is axi_w_pd (mcif2noc_axi_w_wvalid,mcif2noc_axi_w_wready) <= axi_dat_pd (axi_dat_vld,axi_dat_rdy)
// **************************************************************************************************************
module NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p4 (
   nvdla_core_clk
  ,nvdla_core_rstn
  ,axi_dat_pd
  ,axi_dat_vld
  ,axi_dat_rdy
  ,axi_w_pd
  ,mcif2noc_axi_w_wvalid
  ,mcif2noc_axi_w_wready
  );
input nvdla_core_clk;
input nvdla_core_rstn;
input [64 +8:0] axi_dat_pd;
input axi_dat_vld;
output axi_dat_rdy;
output [64 +8:0] axi_w_pd;
output mcif2noc_axi_w_wvalid;
input mcif2noc_axi_w_wready;
//: my $k = 64 +8 +1;
//: &eperl::pipe(" -wid $k -is -do axi_w_pd -vo mcif2noc_axi_w_wvalid -ri mcif2noc_axi_w_wready -di axi_dat_pd -vi axi_dat_vld -ro axi_dat_rdy ");
//| eperl: generated_beg (DO NOT EDIT BELOW)
// Reg
reg axi_dat_rdy;
reg skid_flop_axi_dat_rdy;
reg skid_flop_axi_dat_vld;
reg [73-1:0] skid_flop_axi_dat_pd;
reg pipe_skid_axi_dat_vld;
reg [73-1:0] pipe_skid_axi_dat_pd;
// Wire
wire skid_axi_dat_vld;
wire [73-1:0] skid_axi_dat_pd;
wire skid_axi_dat_rdy;
wire pipe_skid_axi_dat_rdy;
wire mcif2noc_axi_w_wvalid;
wire [73-1:0] axi_w_pd;
// Code
// SKID READY
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
   if (!nvdla_core_rstn) begin
       axi_dat_rdy <= 1'b1;
       skid_flop_axi_dat_rdy <= 1'b1;
   end else begin
       axi_dat_rdy <= skid_axi_dat_rdy;
       skid_flop_axi_dat_rdy <= skid_axi_dat_rdy;
   end
end

// SKID VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        skid_flop_axi_dat_vld <= 1'b0;
    end else begin
        if (skid_flop_axi_dat_rdy) begin
            skid_flop_axi_dat_vld <= axi_dat_vld;
        end
   end
end
assign skid_axi_dat_vld = (skid_flop_axi_dat_rdy) ? axi_dat_vld : skid_flop_axi_dat_vld;

// SKID DATA
always @(posedge nvdla_core_clk) begin
    if (skid_flop_axi_dat_rdy & axi_dat_vld) begin
        skid_flop_axi_dat_pd[73-1:0] <= axi_dat_pd[73-1:0];
    end
end
assign skid_axi_dat_pd[73-1:0] = (skid_flop_axi_dat_rdy) ? axi_dat_pd[73-1:0] : skid_flop_axi_dat_pd[73-1:0];


// PIPE READY
assign skid_axi_dat_rdy = pipe_skid_axi_dat_rdy || !pipe_skid_axi_dat_vld;

// PIPE VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        pipe_skid_axi_dat_vld <= 1'b0;
    end else begin
        if (skid_axi_dat_rdy) begin
            pipe_skid_axi_dat_vld <= skid_axi_dat_vld;
        end
    end
end

// PIPE DATA
always @(posedge nvdla_core_clk) begin
    if (skid_axi_dat_rdy && skid_axi_dat_vld) begin
        pipe_skid_axi_dat_pd[73-1:0] <= skid_axi_dat_pd[73-1:0];
    end
end


// PIPE OUTPUT
assign pipe_skid_axi_dat_rdy = mcif2noc_axi_w_wready;
assign mcif2noc_axi_w_wvalid = pipe_skid_axi_dat_vld;
assign axi_w_pd = pipe_skid_axi_dat_pd;

//| eperl: generated_end (DO NOT EDIT ABOVE)
endmodule // NV_NVDLA_MCIF_WRITE_IG_CVT_pipe_p4