NV_NVDLA_PDP_nan.v 11.4 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_PDP_nan.v
// ================================================================
// NVDLA Open Source Project
// 
// Copyright(c) 2016 - 2017 NVIDIA Corporation.  Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with 
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_PDP_define.h
/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
//#ifdef NVDLA_FEATURE_DATA_TYPE_INT8
//#if ( NVDLA_PDP_THROUGHPUT  ==  8 )
//    #define LARGE_FIFO_RAM
//#endif
//#if ( NVDLA_PDP_THROUGHPUT == 1 )
//    #define SMALL_FIFO_RAM
//#endif
//#endif
module NV_NVDLA_PDP_nan (
   nvdla_core_clk
  ,nvdla_core_rstn
  ,dp2reg_done
  ,nan_preproc_prdy
  ,pdp_rdma2dp_pd
  ,pdp_rdma2dp_valid
  ,reg2dp_flying_mode
// ,reg2dp_input_data
  ,reg2dp_nan_to_zero
  ,reg2dp_op_en
  ,dp2reg_inf_input_num
  ,dp2reg_nan_input_num
  ,nan_preproc_pd
  ,nan_preproc_pvld
  ,pdp_rdma2dp_ready
  );
///////////////////////////////////////////////////////////////////
input nvdla_core_clk;
input nvdla_core_rstn;
input dp2reg_done;
input nan_preproc_prdy;
input [8*1 +13:0] pdp_rdma2dp_pd;
input pdp_rdma2dp_valid;
input reg2dp_flying_mode;
//input [1:0] reg2dp_input_data;
input reg2dp_nan_to_zero;
input reg2dp_op_en;
output [31:0] dp2reg_inf_input_num;
output [31:0] dp2reg_nan_input_num;
output [8*1 +13:0] nan_preproc_pd;
output nan_preproc_pvld;
output pdp_rdma2dp_ready;
///////////////////////////////////////////////////////////////////
reg [8*1 +13:0] datin_d;
reg cube_end_d1;
//reg [11:0] datin_info_d;
reg din_pvld_d1;
wire [31:0] dp2reg_inf_input_num=0;
wire [31:0] dp2reg_nan_input_num=0;
//reg [31:0] inf_in_count;
//reg [31:0] inf_in_num0;
//reg [31:0] inf_in_num1;
//reg [2:0] inf_num_in_8byte_d1;
reg layer_flag;
//reg mon_inf_in_count;
//reg mon_nan_in_count;
//reg [31:0] nan_in_count;
//reg [31:0] nan_in_num0;
//reg [31:0] nan_in_num1;
//reg [2:0] nan_num_in_8byte_d1;
//reg [15:0] nan_preproc_pd0;
//reg [15:0] nan_preproc_pd1;
//reg [15:0] nan_preproc_pd2;
//reg [15:0] nan_preproc_pd3;
reg op_en_d1;
reg waiting_for_op_en;
reg wdma_layer_flag;
wire cube_end;
//wire [3:0] dat_is_inf;
//wire [3:0] dat_is_nan;
wire din_prdy_d1;
//wire fp16_en;
//wire [15:0] fp16_in_pd_0;
//wire [15:0] fp16_in_pd_1;
//wire [15:0] fp16_in_pd_2;
//wire [15:0] fp16_in_pd_3;
//wire [2:0] inf_num_in_8byte;
//wire [1:0] inf_num_in_8byte_0;
//wire [1:0] inf_num_in_8byte_1;
wire layer_end;
wire load_din;
wire load_din_d1;
//wire [2:0] nan_num_in_8byte;
//wire [1:0] nan_num_in_8byte_0;
//wire [1:0] nan_num_in_8byte_1;
wire onfly_en;
wire op_en_load;
wire pdp_rdma2dp_ready_f;
//wire tozero_en;
wire wdma_done;
//==========================================
//DP input side
//==========================================
//----------------------------------------
assign pdp_rdma2dp_ready = pdp_rdma2dp_ready_f;
assign pdp_rdma2dp_ready_f = (~din_pvld_d1 | din_prdy_d1) & (~waiting_for_op_en);
assign load_din = pdp_rdma2dp_valid & pdp_rdma2dp_ready_f;
//----------------------------------------
// assign tozero_en = reg2dp_nan_to_zero == 1'h1 ;
// assign fp16_en = (reg2dp_input_data[1:0]== 2'h2 );
assign onfly_en = (reg2dp_flying_mode == 1'h0 );
//----------------------------------------
// assign fp16_in_pd_0 = pdp_rdma2dp_pd[15:0] ;
// assign fp16_in_pd_1 = pdp_rdma2dp_pd[31:16] ;
// assign fp16_in_pd_2 = pdp_rdma2dp_pd[47:32] ;
// assign fp16_in_pd_3 = pdp_rdma2dp_pd[63:48] ;
//
// assign dat_is_nan[0] = fp16_en & (&fp16_in_pd_0[14:10]) & (|fp16_in_pd_0[9:0]);
// assign dat_is_nan[1] = fp16_en & (&fp16_in_pd_1[14:10]) & (|fp16_in_pd_1[9:0]);
// assign dat_is_nan[2] = fp16_en & (&fp16_in_pd_2[14:10]) & (|fp16_in_pd_2[9:0]);
// assign dat_is_nan[3] = fp16_en & (&fp16_in_pd_3[14:10]) & (|fp16_in_pd_3[9:0]);
//
// assign dat_is_inf[0] = fp16_en & (&fp16_in_pd_0[14:10]) & (~(|fp16_in_pd_0[9:0]));
// assign dat_is_inf[1] = fp16_en & (&fp16_in_pd_1[14:10]) & (~(|fp16_in_pd_1[9:0]));
// assign dat_is_inf[2] = fp16_en & (&fp16_in_pd_2[14:10]) & (~(|fp16_in_pd_2[9:0]));
// assign dat_is_inf[3] = fp16_en & (&fp16_in_pd_3[14:10]) & (~(|fp16_in_pd_3[9:0]));
//////////////////////////////////////////////////////////////////////
//waiting for op_en
//////////////////////////////////////////////////////////////////////
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    op_en_d1 <= 1'b0;
  end else begin
  op_en_d1 <= reg2dp_op_en;
  end
end
assign op_en_load = reg2dp_op_en & (~op_en_d1);
assign layer_end = &{pdp_rdma2dp_pd[8*1 +13],pdp_rdma2dp_pd[8*1 +9]} & load_din;
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    waiting_for_op_en <= 1'b1;
  end else begin
    if(layer_end & (~onfly_en))
        waiting_for_op_en <= 1'b1;
    else if(op_en_load) begin
        if(onfly_en)
            waiting_for_op_en <= 1'b1;
        else if(~onfly_en)
            waiting_for_op_en <= 1'b0;
    end
  end
end
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    reg funcpoint_cover_off;
    initial begin
        if ( $test$plusargs( "cover_off" ) ) begin
            funcpoint_cover_off = 1'b1;
        end else begin
            funcpoint_cover_off = 1'b0;
        end
    end
    property RDMA_NewLayer_out_req_And_core_CurLayer_not_finish__0_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        waiting_for_op_en & (~pdp_rdma2dp_ready_f) & pdp_rdma2dp_valid;
    endproperty
// Cover 0 : "waiting_for_op_en & (~pdp_rdma2dp_ready_f) & pdp_rdma2dp_valid"
    FUNCPOINT_RDMA_NewLayer_out_req_And_core_CurLayer_not_finish__0_COV : cover property (RDMA_NewLayer_out_req_And_core_CurLayer_not_finish__0_cov);
  `endif
`endif
//VCS coverage on
/////////////////////////////////////
//NaN process mode control
/////////////////////////////////////
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// nan_preproc_pd0 <= {16{1'b0}};
// nan_preproc_pd1 <= {16{1'b0}};
// nan_preproc_pd2 <= {16{1'b0}};
// nan_preproc_pd3 <= {16{1'b0}};
// datin_info_d <= {12{1'b0}};
// end else begin
// if(load_din) begin
// nan_preproc_pd0 <= (dat_is_nan[0] & tozero_en) ? 16'd0 : fp16_in_pd_0;
// nan_preproc_pd1 <= (dat_is_nan[1] & tozero_en) ? 16'd0 : fp16_in_pd_1;
// nan_preproc_pd2 <= (dat_is_nan[2] & tozero_en) ? 16'd0 : fp16_in_pd_2;
// nan_preproc_pd3 <= (dat_is_nan[3] & tozero_en) ? 16'd0 : fp16_in_pd_3;
// datin_info_d <= pdp_rdma2dp_pd[75:64];
// end
// end
// end
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    datin_d <= 0;
  end else begin
    if(load_din) begin
        datin_d <= pdp_rdma2dp_pd;
    end
  end
end
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    din_pvld_d1 <= 1'b0;
  end else begin
    if(pdp_rdma2dp_valid & (~waiting_for_op_en))
        din_pvld_d1 <= 1'b1;
    else if(din_prdy_d1)
        din_pvld_d1 <= 1'b0;
  end
end
assign din_prdy_d1 = nan_preproc_prdy;
//-------------output data -----------------
//assign nan_preproc_pd = {datin_info_d,nan_preproc_pd3,nan_preproc_pd2,nan_preproc_pd1,nan_preproc_pd0};
assign nan_preproc_pd = datin_d;
assign nan_preproc_pvld = din_pvld_d1;
//
// /////////////////////////////////////
// //input NaN element count
// /////////////////////////////////////
// assign cube_end = pdp_rdma2dp_pd[75];
//
// assign nan_num_in_8byte_0[1:0] = dat_is_nan[0] + dat_is_nan[1];
// assign nan_num_in_8byte_1[1:0] = dat_is_nan[2] + dat_is_nan[3];
// assign nan_num_in_8byte[2:0] = nan_num_in_8byte_0 + nan_num_in_8byte_1;
//
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// cube_end_d1 <= 1'b0;
// end else begin
// if ((load_din) == 1'b1) begin
// cube_end_d1 <= cube_end;
// end
// end
// end
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// nan_num_in_8byte_d1 <= {3{1'b0}};
// end else begin
// if ((load_din) == 1'b1) begin
// nan_num_in_8byte_d1 <= nan_num_in_8byte[2:0];
// end
// end
// end
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// inf_num_in_8byte_d1 <= {3{1'b0}};
// end else begin
// if ((load_din) == 1'b1) begin
// inf_num_in_8byte_d1 <= inf_num_in_8byte[2:0];
// end
// end
// end
//
// assign load_din_d1 = din_pvld_d1 & din_prdy_d1;
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// {mon_nan_in_count,nan_in_count[31:0]} <= {33{1'b0}};
// end else begin
// if(load_din_d1) begin
// if(cube_end_d1)
// {mon_nan_in_count,nan_in_count[31:0]} <= 33'd0;
// else
// {mon_nan_in_count,nan_in_count[31:0]} <= nan_in_count + nan_num_in_8byte_d1;
// end
// end
// end
//
// assign inf_num_in_8byte_0[1:0] = dat_is_inf[0] + dat_is_inf[1];
// assign inf_num_in_8byte_1[1:0] = dat_is_inf[2] + dat_is_inf[3];
// assign inf_num_in_8byte[2:0] = inf_num_in_8byte_0 + inf_num_in_8byte_1;
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// {mon_inf_in_count,inf_in_count[31:0]} <= {33{1'b0}};
// end else begin
// if(load_din_d1) begin
// if(cube_end_d1)
// {mon_inf_in_count,inf_in_count[31:0]} <= 33'd0;
// else
// {mon_inf_in_count,inf_in_count[31:0]} <= inf_in_count + inf_num_in_8byte_d1;
// end
// end
// end
//
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// layer_flag <= 1'b0;
// nan_in_num1 <= {32{1'b0}};
// inf_in_num1 <= {32{1'b0}};
// nan_in_num0 <= {32{1'b0}};
// inf_in_num0 <= {32{1'b0}};
// end else begin
// if(load_din_d1 & cube_end_d1) begin
// layer_flag <= ~layer_flag;
// if(layer_flag) begin
// nan_in_num1 <= nan_in_count;
// inf_in_num1 <= inf_in_count;
// end else begin
// nan_in_num0 <= nan_in_count;
// inf_in_num0 <= inf_in_count;
// end
// end
// end
// end
//
// //adding dp2reg_done to latch the num and output a sigle one for each
// assign wdma_done = dp2reg_done;
// always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
// if (!nvdla_core_rstn) begin
// wdma_layer_flag <= 1'b0;
// dp2reg_nan_input_num <= {32{1'b0}};
// dp2reg_inf_input_num <= {32{1'b0}};
// end else begin
// if(wdma_done) begin
// wdma_layer_flag <= ~wdma_layer_flag;
// if(wdma_layer_flag) begin
// dp2reg_nan_input_num <= nan_in_num1;
// dp2reg_inf_input_num <= inf_in_num1;
// end else begin
// dp2reg_nan_input_num <= nan_in_num0;
// dp2reg_inf_input_num <= inf_in_num0;
// end
// end
// end
// end
//==============
//function points
//==============
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    property PDP_RDMA2CORE__rdma_layerDone_stall__1_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        waiting_for_op_en & (~pdp_rdma2dp_ready_f);
    endproperty
// Cover 1 : "waiting_for_op_en & (~pdp_rdma2dp_ready_f)"
    FUNCPOINT_PDP_RDMA2CORE__rdma_layerDone_stall__1_COV : cover property (PDP_RDMA2CORE__rdma_layerDone_stall__1_cov);
  `endif
`endif
//VCS coverage on
//////////////////////////////////////////////////////////////////////
endmodule // NV_NVDLA_PDP_nan