NV_NVDLA_CDP_RDMA_eg.v 38.8 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_CDP_RDMA_eg.v
// ================================================================
// NVDLA Open Source Project
// 
// Copyright(c) 2016 - 2017 NVIDIA Corporation.  Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with 
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_CDP_define.h
///////////////////////////////////////////////////
//#ifdef NVDLA_FEATURE_DATA_TYPE_INT8
//#if ( NVDLA_CDP_THROUGHPUT  ==  8 )
//    #define LARGE_FIFO_RAM
//#endif
//#if ( NVDLA_CDP_THROUGHPUT == 1 )
//    #define SMALL_FIFO_RAM
//#endif
//#endif
`include "simulate_x_tick.vh"
module NV_NVDLA_CDP_RDMA_eg (
   nvdla_core_clk //|< i
  ,nvdla_core_rstn //|< i
  ,cdp_rdma2dp_ready //|< i
  ,cq_rd_pd //|< i
  ,cq_rd_pvld //|< i
  ,mcif2cdp_rd_rsp_pd //|< i
  ,mcif2cdp_rd_rsp_valid //|< i
  ,pwrbus_ram_pd //|< i
  ,reg2dp_channel //|< i
  ,reg2dp_input_data //|< i
  ,reg2dp_src_ram_type //|< i
  ,cdp2mcif_rd_cdt_lat_fifo_pop //|> o
  ,cdp_rdma2dp_pd //|> o
  ,cdp_rdma2dp_valid //|> o
  ,cq_rd_prdy //|> o
  ,dp2reg_done //|> o
  ,eg2ig_done //|> o
  ,mcif2cdp_rd_rsp_ready //|> o
  );
/////////////////////////////////////////////////////////////////////////////////////////
input [4:0] reg2dp_channel;
input [1:0] reg2dp_input_data;
input reg2dp_src_ram_type;
output dp2reg_done;
output eg2ig_done;
input nvdla_core_clk;
input nvdla_core_rstn;
input mcif2cdp_rd_rsp_valid; /* data valid */
output mcif2cdp_rd_rsp_ready; /* data return handshake */
//: my $k=64;
//: my $jx = 8*8; ##atomic_m BW
//: my $M = $k/$jx; ##atomic_m number per dma transaction
//: print "input [${k}+${M}-1:0] mcif2cdp_rd_rsp_pd;  \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
input [64+1-1:0] mcif2cdp_rd_rsp_pd;  

//| eperl: generated_end (DO NOT EDIT ABOVE)
output cdp2mcif_rd_cdt_lat_fifo_pop;
output cdp_rdma2dp_valid; /* data valid */
input cdp_rdma2dp_ready; /* data return handshake */
output [1*8 +24:0] cdp_rdma2dp_pd;
input cq_rd_pvld; /* data valid */
output cq_rd_prdy; /* data return handshake */
input [6:0] cq_rd_pd;
input [31:0] pwrbus_ram_pd;
/////////////////////////////////////////////////////////////////////////////////////////
//: my $Mnum = 64/8/8;
//: my $Mnumbit= int( log($Mnum)/log(2) );
//: if($Mnum > 1){
//: print " reg      [${Mnumbit}-1:0] beat_align; \n";
//: } else{
//: print " reg                       beat_align; \n";
//: }
//| eperl: generated_beg (DO NOT EDIT BELOW)
 reg                       beat_align; 

//| eperl: generated_end (DO NOT EDIT ABOVE)
reg [3:0] beat_cnt;
reg cdp2mcif_rd_cdt_lat_fifo_pop;
wire [1*8 +24:0] cdp_rdma2dp_pd;
//reg cdp_rdma2dp_valid_f;
wire dp2reg_done_flag;
reg [1*8 -1:0] dp_data;
wire dp_rdy;
reg dp_vld;
wire eg2ig_done_flag;
reg [1 -1:0] invalid_flag;
reg is_last_c;
reg is_last_h;
reg is_last_w;
reg [5:0] tran_cnt;
reg [3:0] width_cnt;
wire [4:0] ele_in_channel;
//wire cv_dma_rd_rsp_vld;
//wire cv_int_rd_rsp_ready;
//wire cv_int_rd_rsp_valid;
// #ifdef NVDLA_SECONDARY_MEMIF_ENABLE
//wire cvif2cdp_rd_rsp_ready_d0;
//wire cvif2cdp_rd_rsp_valid_d0;
//#endif
wire dma_rd_cdt_lat_fifo_pop;
wire dma_rd_rsp_rdy;
wire dma_rd_rsp_type;
wire dma_rd_rsp_vld;
wire dp2reg_done_f;
wire dp_b_sync;
wire [7:0] dp_invalid;
wire dp_last_c;
wire dp_last_h;
wire dp_last_w;
wire [1*8 +24:0] dp_pd;
wire [4:0] dp_pos_c;
wire [3:0] dp_pos_w;
wire [3:0] dp_width;
wire eg2ig_done_f;
//: my $kx = 1*8;
//: my $k = 64/$kx;
//: print " wire     [${k}-1:0] fifo_rd_pvld;  \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
 wire     [8-1:0] fifo_rd_pvld;  

//| eperl: generated_end (DO NOT EDIT ABOVE)
//wire [7:0] fifo_rd_pvld;
wire [5:0] fifo_sel;
wire ig2eg_align;
wire ig2eg_last_c;
wire ig2eg_last_h;
wire ig2eg_last_w;
wire [2:0] ig2eg_width;
wire is_b_sync;
wire is_cube_end;
wire is_last_beat;
wire is_last_tran;
//: my $k=64;
//: my $jx = 8*8; ##atomic_m BW
//: my $M = $k/$jx; ##atomic_m number per dma transaction
//: ##print "wire [${k}+${M}-1:0] cv_dma_rd_rsp_pd;  \n";
//: ##print "wire [${k}+${M}-1:0] cv_int_rd_rsp_pd;  \n";
//: ##print "wire [${k}+${M}-1:0] cvif2cdp_rd_rsp_pd_d0;  \n";
//: print "wire [${k}+${M}-1:0] dma_rd_rsp_pd;  \n";
//: print "wire [${k}+${M}-1:0] lat_rd_pd;  \n";
//: ##print "wire [${k}+${M}-1:0] mc_dma_rd_rsp_pd;  \n";
//: ##print "wire [${k}+${M}-1:0] mc_int_rd_rsp_pd;  \n";
//: ##print "wire [${k}+${M}-1:0] mcif2cdp_rd_rsp_pd_d0;  \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
wire [64+1-1:0] dma_rd_rsp_pd;  
wire [64+1-1:0] lat_rd_pd;  

//| eperl: generated_end (DO NOT EDIT ABOVE)
wire [64 -1:0] lat_rd_data;
//: my $jx = 8*8; ##atomic_m BW
//: my $M = 64/$jx; ##atomic_m number per dma transaction
//: print "wire     [${M}-1:0] lat_rd_mask; \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
wire     [1-1:0] lat_rd_mask; 

//| eperl: generated_end (DO NOT EDIT ABOVE)
wire lat_rd_prdy;
wire lat_rd_pvld;
//wire mc_dma_rd_rsp_vld;
//wire mc_int_rd_rsp_ready;
//wire mc_int_rd_rsp_valid;
//wire mcif2cdp_rd_rsp_ready_d0;
//wire mcif2cdp_rd_rsp_valid_d0;
wire [5:0] rest_channel;
//: my $kx = 1*8; ##throughput BW
//: my $jx = 8*8; ##atomic_m BW
//: my $k = 64/$kx; ##total fifo num
//: my $M = 64/$jx; ##atomic_m number per dma transaction
//: my $F = $k/$M; ##how many fifo contribute to one atomic_m
//: foreach my $m (0..$k-1) {
//: print qq(
//: wire [${kx}-1:0] ro${m}_rd_pd;
//: wire ro${m}_rd_prdy;
//: wire ro${m}_rd_pvld;
//: wire [${kx}-1:0] ro${m}_wr_pd;
//: );
//: }
//: foreach my $m (0..$M-1) {
//: print qq(
//: wire ro${m}_wr_pvld;
//: wire ro${m}_wr_rdy;
//: );
//: }
//: foreach my $i (0..$M-1) {
//: print qq(
//: wire [${F}-1:0] ro${i}_wr_rdys;
//: );
//: }
//| eperl: generated_beg (DO NOT EDIT BELOW)

wire [8-1:0] ro0_rd_pd;
wire ro0_rd_prdy;
wire ro0_rd_pvld;
wire [8-1:0] ro0_wr_pd;

wire [8-1:0] ro1_rd_pd;
wire ro1_rd_prdy;
wire ro1_rd_pvld;
wire [8-1:0] ro1_wr_pd;

wire [8-1:0] ro2_rd_pd;
wire ro2_rd_prdy;
wire ro2_rd_pvld;
wire [8-1:0] ro2_wr_pd;

wire [8-1:0] ro3_rd_pd;
wire ro3_rd_prdy;
wire ro3_rd_pvld;
wire [8-1:0] ro3_wr_pd;

wire [8-1:0] ro4_rd_pd;
wire ro4_rd_prdy;
wire ro4_rd_pvld;
wire [8-1:0] ro4_wr_pd;

wire [8-1:0] ro5_rd_pd;
wire ro5_rd_prdy;
wire ro5_rd_pvld;
wire [8-1:0] ro5_wr_pd;

wire [8-1:0] ro6_rd_pd;
wire ro6_rd_prdy;
wire ro6_rd_pvld;
wire [8-1:0] ro6_wr_pd;

wire [8-1:0] ro7_rd_pd;
wire ro7_rd_prdy;
wire ro7_rd_pvld;
wire [8-1:0] ro7_wr_pd;

wire ro0_wr_pvld;
wire ro0_wr_rdy;

wire [8-1:0] ro0_wr_rdys;

//| eperl: generated_end (DO NOT EDIT ABOVE)
wire tran_cnt_idle;
wire [3:0] tran_num;
wire tran_rdy;
wire tran_vld;
///////////////////////////////////////////////////////////////////////////
//==============
// DMA Interface
//==============
NV_NVDLA_DMAIF_rdrsp NV_NVDLA_CDP_RDMA_rdrsp(
   .nvdla_core_clk (nvdla_core_clk )
  ,.nvdla_core_rstn (nvdla_core_rstn )
  ,.mcif_rd_rsp_pd (mcif2cdp_rd_rsp_pd )
  ,.mcif_rd_rsp_valid (mcif2cdp_rd_rsp_valid )
  ,.mcif_rd_rsp_ready (mcif2cdp_rd_rsp_ready )
  ,.dmaif_rd_rsp_pd (dma_rd_rsp_pd )
  ,.dmaif_rd_rsp_pvld (dma_rd_rsp_vld )
  ,.dmaif_rd_rsp_prdy (dma_rd_rsp_rdy )
);
///////////////////////////////////////////////////////////////////////////
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    cdp2mcif_rd_cdt_lat_fifo_pop <= 1'b0;
  end else begin
  cdp2mcif_rd_cdt_lat_fifo_pop <= dma_rd_cdt_lat_fifo_pop & (dma_rd_rsp_type == 1'b1);
  end
end
assign dma_rd_rsp_type = reg2dp_src_ram_type;
//==============
// Latency FIFO to buffer return DATA
//==============
//: my $k=64;
//: my $jx = 8*8; ##atomic_m BW
//: my $M = $k/$jx; ##atomic_m number per dma transaction
//: my $s = $k + $M;
//: my $depth = 8;
//: print " NV_NVDLA_CDP_RDMA_lat_fifo_${s}x${depth} u_lat_fifo (  \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
 NV_NVDLA_CDP_RDMA_lat_fifo_65x8 u_lat_fifo (  

//| eperl: generated_end (DO NOT EDIT ABOVE)
   .nvdla_core_clk (nvdla_core_clk) //|< i
  ,.nvdla_core_rstn (nvdla_core_rstn) //|< i
  ,.lat_wr_prdy (dma_rd_rsp_rdy) //|> w
  ,.lat_wr_pvld (dma_rd_rsp_vld) //|< w
  ,.lat_wr_pd (dma_rd_rsp_pd) //|< w
  ,.lat_rd_prdy (lat_rd_prdy) //|< w
  ,.lat_rd_pvld (lat_rd_pvld) //|> w
  ,.lat_rd_pd (lat_rd_pd) //|> w
  ,.pwrbus_ram_pd (pwrbus_ram_pd[31:0]) //|< i
  );
assign lat_rd_data[64 -1:0] = lat_rd_pd[64 -1:0];
assign lat_rd_mask[1 -1:0] = lat_rd_pd[65 -1: 64];
assign dma_rd_cdt_lat_fifo_pop = lat_rd_pvld & lat_rd_prdy;
//==============
// Re-Order FIFO to send data to CDP-core in DP order(read NVDLA PP uARCH for details)
//==============
assign lat_rd_prdy = lat_rd_pvld
//: my $msk = 1;
//: foreach my $k (0..$msk-1) {
//: print " & (~lat_rd_mask[$k] | (lat_rd_mask[$k] & ro${k}_wr_rdy))  \n";
//: }
//: print " ; \n";
//:
//: my $tp = 1*8; ## throughput
//: my $atmm = 8*8; ## atomic_m
//: my $M = 64/$atmm; ## atomic_m number per dma transaction
//: my $F = $atmm/$tp; ## how many fifo contribute to one atomic_m
//:
//:
//: foreach my $i (0..$M-1){
//: print "    assign ro${i}_wr_pvld = lat_rd_pvld & (lat_rd_mask[${i}] & ro${i}_wr_rdy)  \n";
//: foreach my $s (0..$msk-1) {
//: if($s != $i) {
//: print "        & ( ~lat_rd_mask[${s}] | (lat_rd_mask[${s}] & ro${s}_wr_rdy))  \n";
//: }
//: }
//: print " ;  \n";
//: }
//:
//:
//: foreach my $m (0..$M-1) {
//: print "   assign ro${m}_wr_rdy = &ro${m}_wr_rdys;  \n";
//: foreach my $f (0..$F-1) {
//: my $r = $F * $m + $f;
//: print " assign ro${r}_wr_pd  = lat_rd_data[${tp}*${r}+${tp}-1:${tp}*${r}];  \n";
//: print " NV_NVDLA_CDP_RDMA_ro_fifo_32x${tp} u_ro${r}_fifo(     \n";
//: print "  .nvdla_core_clk      (nvdla_core_clk)       \n";
//: print " ,.nvdla_core_rstn     (nvdla_core_rstn)      \n";
//: print " ,.ro_wr_prdy          (ro${m}_wr_rdys[$f])   \n";
//: print " ,.ro_wr_pvld          (ro${m}_wr_pvld)       \n";
//: print " ,.ro_wr_pd            (ro${r}_wr_pd)         \n";
//: print " ,.ro_rd_prdy          (ro${r}_rd_prdy)       \n";
//: print " ,.ro_rd_pvld          (ro${r}_rd_pvld)       \n";
//: print " ,.ro_rd_pd            (ro${r}_rd_pd)         \n";
//: print " ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  \n";
//: print " ); \n";
//: }
//: }
//:
//:
//: my $Fbit = int( log($F)/log(2) );
//: if($M > 1) {
//: print " assign fifo_sel[5:0] = tran_cnt_idle ? 6'd0 : ((6'd${F}-tran_cnt) + {beat_align,{${Fbit}{1'b0}}}); \n";
//: } else {
//: print " assign fifo_sel[5:0] = tran_cnt_idle ? 6'd0 : ((6'd${F}-tran_cnt)); \n";
//: }
//:
//:
//: print " // DATA MUX out \n";
//: print " always @(*) begin \n";
//: print " case(fifo_sel) \n";
//: foreach my $m (0..$M-1) {
//: foreach my $f (0..$F-1) {
//: my $r = $F * $m + $f;
//: print "   6'd$r: begin \n";
//: print "       dp_vld = ro${r}_rd_pvld & (~tran_cnt_idle); \n";
//: print "   end \n";
//: }
//: }
//: print "default: begin \n";
//: print "       dp_vld = 1'b0; \n";
//: print "end \n";
//: print "endcase \n";
//: print "end \n";
//:
//:
//: foreach my $m (0..$M-1) {
//: foreach my $f (0..$F-1) {
//: my $r = $F * $m + $f;
//: print " assign ro${r}_rd_prdy = dp_rdy & (fifo_sel==$r) & (~tran_cnt_idle);  \n";
//: }
//: }
//: my $kx = 1*8; ##throughput BW
//: my $jx = 8*8; ##atomic_m BW
//: my $k = 64/$kx; ##total fifo num
//: my $M = 64/$jx; ##atomic_m number per dma trans
//: my $F = $k/$M; ##how many fifo contribute to one atomic_m
//: print "always @(*)      \n";
//: print "begin      \n";
//: print "case(fifo_sel)     \n";
//: foreach my $r (0..$k-1) {
//: print "   6'd$r: begin      \n";
//: print "               dp_data  = ro${r}_rd_pd[${kx}-1:0];      \n";
//: print "   end      \n";
//: }
//: print "default: dp_data = {${kx}{1'b0}};      \n";
//: print "endcase      \n";
//: print "end      \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
 & (~lat_rd_mask[0] | (lat_rd_mask[0] & ro0_wr_rdy))  
 ; 
    assign ro0_wr_pvld = lat_rd_pvld & (lat_rd_mask[0] & ro0_wr_rdy)  
 ;  
   assign ro0_wr_rdy = &ro0_wr_rdys;  
 assign ro0_wr_pd  = lat_rd_data[8*0+8-1:8*0];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro0_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[0])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro0_wr_pd)         
 ,.ro_rd_prdy          (ro0_rd_prdy)       
 ,.ro_rd_pvld          (ro0_rd_pvld)       
 ,.ro_rd_pd            (ro0_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign ro1_wr_pd  = lat_rd_data[8*1+8-1:8*1];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro1_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[1])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro1_wr_pd)         
 ,.ro_rd_prdy          (ro1_rd_prdy)       
 ,.ro_rd_pvld          (ro1_rd_pvld)       
 ,.ro_rd_pd            (ro1_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign ro2_wr_pd  = lat_rd_data[8*2+8-1:8*2];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro2_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[2])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro2_wr_pd)         
 ,.ro_rd_prdy          (ro2_rd_prdy)       
 ,.ro_rd_pvld          (ro2_rd_pvld)       
 ,.ro_rd_pd            (ro2_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign ro3_wr_pd  = lat_rd_data[8*3+8-1:8*3];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro3_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[3])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro3_wr_pd)         
 ,.ro_rd_prdy          (ro3_rd_prdy)       
 ,.ro_rd_pvld          (ro3_rd_pvld)       
 ,.ro_rd_pd            (ro3_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign ro4_wr_pd  = lat_rd_data[8*4+8-1:8*4];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro4_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[4])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro4_wr_pd)         
 ,.ro_rd_prdy          (ro4_rd_prdy)       
 ,.ro_rd_pvld          (ro4_rd_pvld)       
 ,.ro_rd_pd            (ro4_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign ro5_wr_pd  = lat_rd_data[8*5+8-1:8*5];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro5_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[5])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro5_wr_pd)         
 ,.ro_rd_prdy          (ro5_rd_prdy)       
 ,.ro_rd_pvld          (ro5_rd_pvld)       
 ,.ro_rd_pd            (ro5_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign ro6_wr_pd  = lat_rd_data[8*6+8-1:8*6];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro6_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[6])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro6_wr_pd)         
 ,.ro_rd_prdy          (ro6_rd_prdy)       
 ,.ro_rd_pvld          (ro6_rd_pvld)       
 ,.ro_rd_pd            (ro6_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign ro7_wr_pd  = lat_rd_data[8*7+8-1:8*7];  
 NV_NVDLA_CDP_RDMA_ro_fifo_32x8 u_ro7_fifo(     
  .nvdla_core_clk      (nvdla_core_clk)       
 ,.nvdla_core_rstn     (nvdla_core_rstn)      
 ,.ro_wr_prdy          (ro0_wr_rdys[7])   
 ,.ro_wr_pvld          (ro0_wr_pvld)       
 ,.ro_wr_pd            (ro7_wr_pd)         
 ,.ro_rd_prdy          (ro7_rd_prdy)       
 ,.ro_rd_pvld          (ro7_rd_pvld)       
 ,.ro_rd_pd            (ro7_rd_pd)         
 ,.pwrbus_ram_pd       (pwrbus_ram_pd[31:0])  
 ); 
 assign fifo_sel[5:0] = tran_cnt_idle ? 6'd0 : ((6'd8-tran_cnt)); 
 // DATA MUX out 
 always @(*) begin 
 case(fifo_sel) 
   6'd0: begin 
       dp_vld = ro0_rd_pvld & (~tran_cnt_idle); 
   end 
   6'd1: begin 
       dp_vld = ro1_rd_pvld & (~tran_cnt_idle); 
   end 
   6'd2: begin 
       dp_vld = ro2_rd_pvld & (~tran_cnt_idle); 
   end 
   6'd3: begin 
       dp_vld = ro3_rd_pvld & (~tran_cnt_idle); 
   end 
   6'd4: begin 
       dp_vld = ro4_rd_pvld & (~tran_cnt_idle); 
   end 
   6'd5: begin 
       dp_vld = ro5_rd_pvld & (~tran_cnt_idle); 
   end 
   6'd6: begin 
       dp_vld = ro6_rd_pvld & (~tran_cnt_idle); 
   end 
   6'd7: begin 
       dp_vld = ro7_rd_pvld & (~tran_cnt_idle); 
   end 
default: begin 
       dp_vld = 1'b0; 
end 
endcase 
end 
 assign ro0_rd_prdy = dp_rdy & (fifo_sel==0) & (~tran_cnt_idle);  
 assign ro1_rd_prdy = dp_rdy & (fifo_sel==1) & (~tran_cnt_idle);  
 assign ro2_rd_prdy = dp_rdy & (fifo_sel==2) & (~tran_cnt_idle);  
 assign ro3_rd_prdy = dp_rdy & (fifo_sel==3) & (~tran_cnt_idle);  
 assign ro4_rd_prdy = dp_rdy & (fifo_sel==4) & (~tran_cnt_idle);  
 assign ro5_rd_prdy = dp_rdy & (fifo_sel==5) & (~tran_cnt_idle);  
 assign ro6_rd_prdy = dp_rdy & (fifo_sel==6) & (~tran_cnt_idle);  
 assign ro7_rd_prdy = dp_rdy & (fifo_sel==7) & (~tran_cnt_idle);  
always @(*)      
begin      
case(fifo_sel)     
   6'd0: begin      
               dp_data  = ro0_rd_pd[8-1:0];      
   end      
   6'd1: begin      
               dp_data  = ro1_rd_pd[8-1:0];      
   end      
   6'd2: begin      
               dp_data  = ro2_rd_pd[8-1:0];      
   end      
   6'd3: begin      
               dp_data  = ro3_rd_pd[8-1:0];      
   end      
   6'd4: begin      
               dp_data  = ro4_rd_pd[8-1:0];      
   end      
   6'd5: begin      
               dp_data  = ro5_rd_pd[8-1:0];      
   end      
   6'd6: begin      
               dp_data  = ro6_rd_pd[8-1:0];      
   end      
   6'd7: begin      
               dp_data  = ro7_rd_pd[8-1:0];      
   end      
default: dp_data = {8{1'b0}};      
endcase      
end      

//| eperl: generated_end (DO NOT EDIT ABOVE)
//////////////////////
//replacd by 0 value in invalid position
//////////////////////
//: my $tp = 1;
//: my $atmm = 8;
//: my $tt_fifo_num = 64/8/$tp;
//: my $M = 64/8/$atmm;
//: my $F = $atmm/$tp;
//:
//: my $tpbw = int(log($tp)/log(2));
//: my $atmmbw = int(log($atmm)/log(2));
//: if($atmmbw ==5) {
//: print " assign ele_in_channel = {reg2dp_channel[${atmmbw}-1:0]};   \n";
//: } else {
//: print " assign ele_in_channel = {{(5-${atmmbw}){1'b0}},reg2dp_channel[${atmmbw}-1:0]};   \n";
//: }
//: ##print " assign ele_in_channel = {{(5-${atmmbw}){1'b0}},reg2dp_channel[${atmmbw}-1:0]};   \n";
//: print " assign rest_channel=(6'd${F}-ele_in_channel[${atmmbw}-1:${tpbw}]);  \n";
//:
//: print " always @(*)  begin \n";
//: print " case(fifo_sel)  \n";
//: foreach my $r (0..$tt_fifo_num-1) {
//: print "   6'd$r: begin  \n";
//: print "       if(is_last_c) begin  \n";
//: print "           if(tran_cnt < rest_channel)  \n";
//: print "               invalid_flag  = {${tp}{1'b1}};  \n";
//: print "           else if(tran_cnt > rest_channel)  \n";
//: print "               invalid_flag  = {${tp}{1'b0}};  \n";
//: print "           else  \n";
//:
//: if($tp == 1) {
//: print "               invalid_flag  = {${tp}{1'b0}};  \n";
//: } else {
//: print "               invalid_flag = {${tp}{ele_in_channel[${tpbw}-1:0]==${tpbw}'d0}} & {{(${tp}-1){1'b1}},1'b0}  \n";
//: foreach my $i (0..$tp-2) {
//: my $j = $i + 1;
//: my $s = $j + 1;
//: if($s < $tp){
//: print "             | {${tp}{ele_in_channel[${tpbw}-1:0]==${tpbw}'d${j}}} & {{(${tp}-${s}){1'b1}},${s}'b0}  \n";
//: } else {
//: print "             | {${tp}{ele_in_channel[${tpbw}-1:0]==${tpbw}'d${j}}} & {${s}'b0}  \n";
//: }
//: ##print "             | {${tp}{ele_in_channel[${tpbw}-1:0]==${tpbw}'d${j}}} & {{(${tp}-${s}){1'b1}},${s}'b0}  \n";
//: }
//: print "     ;  \n";
//: }
//: print "       end else  \n";
//: print "           invalid_flag  = {${tp}{1'b0}};  \n";
//: print "   end  \n";
//: }
//: print "default: invalid_flag = {${tp}{1'b0}};  \n";
//: print "endcase  \n";
//: print "end  \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
 assign ele_in_channel = {{(5-3){1'b0}},reg2dp_channel[3-1:0]};   
 assign rest_channel=(6'd8-ele_in_channel[3-1:0]);  
 always @(*)  begin 
 case(fifo_sel)  
   6'd0: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
   6'd1: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
   6'd2: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
   6'd3: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
   6'd4: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
   6'd5: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
   6'd6: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
   6'd7: begin  
       if(is_last_c) begin  
           if(tran_cnt < rest_channel)  
               invalid_flag  = {1{1'b1}};  
           else if(tran_cnt > rest_channel)  
               invalid_flag  = {1{1'b0}};  
           else  
               invalid_flag  = {1{1'b0}};  
       end else  
           invalid_flag  = {1{1'b0}};  
   end  
default: invalid_flag = {1{1'b0}};  
endcase  
end  

//| eperl: generated_end (DO NOT EDIT ABOVE)
//==============
// Return Data Counting
//==============
// unpack from rd_pd, which should be the same order as wr_pd
assign cq_rd_prdy = tran_rdy;
assign tran_vld = cq_rd_pvld;
assign ig2eg_width[2:0] = cq_rd_pd[2:0];
assign ig2eg_align = cq_rd_pd[3];
assign ig2eg_last_w = cq_rd_pd[4];
assign ig2eg_last_h = cq_rd_pd[5];
assign ig2eg_last_c = cq_rd_pd[6];
assign tran_num[3:0] = ig2eg_width + 1;
assign tran_cnt_idle = (tran_cnt==0);
assign is_last_tran = (tran_cnt==1);
assign is_last_beat = (beat_cnt==1);
//: my $kx = 1*8; ##throughput BW
//: my $jx = 8*8; ##atomic_m BW
//: my $k = 64/$kx; ##total fifo num
//: my $M = 64/$jx; ##atomic_m number per dma trans
//: my $F = $k/$M; ##how many fifo contribute to one atomic_m
//: foreach my $r (0..$k-1) {
//: print " assign fifo_rd_pvld[$r] = (fifo_sel==${r}) & ro${r}_rd_pvld;  \n";
//: }
//: print "wire     fifo_rd_pvld_active = |fifo_rd_pvld;    \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
 assign fifo_rd_pvld[0] = (fifo_sel==0) & ro0_rd_pvld;  
 assign fifo_rd_pvld[1] = (fifo_sel==1) & ro1_rd_pvld;  
 assign fifo_rd_pvld[2] = (fifo_sel==2) & ro2_rd_pvld;  
 assign fifo_rd_pvld[3] = (fifo_sel==3) & ro3_rd_pvld;  
 assign fifo_rd_pvld[4] = (fifo_sel==4) & ro4_rd_pvld;  
 assign fifo_rd_pvld[5] = (fifo_sel==5) & ro5_rd_pvld;  
 assign fifo_rd_pvld[6] = (fifo_sel==6) & ro6_rd_pvld;  
 assign fifo_rd_pvld[7] = (fifo_sel==7) & ro7_rd_pvld;  
wire     fifo_rd_pvld_active = |fifo_rd_pvld;    

//| eperl: generated_end (DO NOT EDIT ABOVE)
wire tran_accept;
//the first cq_rd_prdy should start when fifo have data to be read
assign tran_rdy = (tran_cnt_idle & fifo_rd_pvld_active/*(|fifo_rd_pvld)*/) || (is_last_tran & is_last_beat & dp_rdy);
assign tran_accept = tran_vld & tran_rdy;
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    tran_cnt <= 0;
    beat_cnt <= 0;
  end else begin
    if(is_cube_end & tran_rdy) begin
            tran_cnt <= 0;
            beat_cnt <= 0;
    end else if(tran_rdy) begin
        if (tran_vld) begin
//: my $F = 8/1;
//: print " tran_cnt    <= 6'd${F}; \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
 tran_cnt    <= 6'd8; 

//| eperl: generated_end (DO NOT EDIT ABOVE)
            beat_cnt <= tran_num;
        end else begin
            tran_cnt <= 0;
            beat_cnt <= 0;
        end
    end else if (dp_rdy & fifo_rd_pvld_active/*(|fifo_rd_pvld)*/) begin
        beat_cnt <= (beat_cnt==1)? width_cnt : beat_cnt - 1;
        if (is_last_beat) begin
            tran_cnt <= tran_cnt - 1;
        end
    end
  end
end
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    beat_align <= 0;
  end else begin
    if (tran_rdy) begin
        beat_align <= 0;
    end else if (dp_rdy & fifo_rd_pvld_active/*|fifo_rd_pvld*/) begin
        if (is_last_beat) begin
            beat_align <= 0;
        end else begin
            beat_align <= beat_align + 1'b1;
        end
    end
  end
end
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    width_cnt <= {4{1'b0}};
  end else begin
  if ((tran_accept) == 1'b1) begin
    width_cnt <= tran_num;
// VCS coverage off
  end else if ((tran_accept) == 1'b0) begin
  end else begin
    width_cnt <= 'bx; // spyglass disable STARC-2.10.1.6 W443 NoWidthInBasedNum-ML -- (Constant containing x or z used, Based number `bx contains an X, Width specification missing for based number)
// VCS coverage on
  end
  end
end
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
`ifndef SYNTHESIS
// VCS coverage off
  nv_assert_no_x #(0,1,0,"No X's allowed on control signals") zzz_assert_no_x_2x (nvdla_core_clk, `ASSERT_RESET, 1'd1, (^(tran_accept))); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`endif
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    is_last_w <= 1'b0;
    is_last_h <= 1'b0;
    is_last_c <= 1'b0;
  end else begin
    if(is_cube_end & tran_rdy) begin
        is_last_w <= 1'b0;
        is_last_h <= 1'b0;
        is_last_c <= 1'b0;
    end else if(tran_accept) begin
        is_last_w <= ig2eg_last_w;
        is_last_h <= ig2eg_last_h;
        is_last_c <= ig2eg_last_c;
    end
  end
end
assign is_b_sync = is_last_beat;
assign dp_pos_w[3:0] = width_cnt - beat_cnt; //spyglass disable W484
assign dp_width[3:0] = width_cnt; //spyglass disable W484
wire mon_dp_pos_c;
//: my $tp = 1*8;
//: my $atmm = 8*8;
//: my $F = $atmm/$tp;
//: print " assign {mon_dp_pos_c,dp_pos_c[4:0]} = 6'd${F} - tran_cnt; \n";
//| eperl: generated_beg (DO NOT EDIT BELOW)
 assign {mon_dp_pos_c,dp_pos_c[4:0]} = 6'd8 - tran_cnt; 

//| eperl: generated_end (DO NOT EDIT ABOVE)
assign dp_b_sync = is_b_sync;
assign dp_last_w = is_last_w;
assign dp_last_h = is_last_h;
assign dp_last_c = is_last_c;
assign is_cube_end = is_last_w & is_last_h & is_last_c;
assign dp2reg_done_f = is_cube_end & tran_rdy;
assign eg2ig_done_f = is_cube_end & tran_rdy;
//==============
// OUTPUT PACK and PIPE: To Data Processor
//==============
// PD Pack
//: my $tp = 1;
//: if($tp ==8) {
//: print " assign dp_invalid = {invalid_flag}; \n";
//: } else {
//: print " assign dp_invalid = {{(8-${tp}){1'b0}},invalid_flag}; \n";
//: }
//| eperl: generated_beg (DO NOT EDIT BELOW)
 assign dp_invalid = {{(8-1){1'b0}},invalid_flag}; 

//| eperl: generated_end (DO NOT EDIT ABOVE)
//assign dp_invalid = {{(8-1){1'b0}},invalid_flag};
// PKT_PACK_WIRE( cdp_rdma2dp , dp_ , dp_pd )
assign dp_pd[1*8 -1:0] = dp_data[1*8 -1:0];
assign dp_pd[1*8 +3:1*8] = dp_pos_w[3:0];
assign dp_pd[1*8 +7:1*8 +4] = dp_width[3:0];
assign dp_pd[1*8 +12:1*8 +8] = dp_pos_c[4:0];
assign dp_pd[1*8 +13] = dp_b_sync ;
assign dp_pd[1*8 +14] = dp_last_w ;
assign dp_pd[1*8 +15] = dp_last_h ;
assign dp_pd[1*8 +16] = dp_last_c ;
assign dp_pd[1*8 +24:1*8 +17] = dp_invalid[7:0];
wire [1*8 +27-1:0] cdp_rdma2dp_pd_i;
assign cdp_rdma2dp_pd_i = {dp_pd,dp2reg_done_f,eg2ig_done_f};
//: my $k=1*8 +27;
//: &eperl::pipe(" -wid $k -is -do cdp_rdma2dp_pd_o -vo cdp_rdma2dp_valid_f -ri cdp_rdma2dp_ready -di cdp_rdma2dp_pd_i  -vi dp_vld -ro dp_rdy_f ");
//| eperl: generated_beg (DO NOT EDIT BELOW)
// Reg
reg dp_rdy_f;
reg skid_flop_dp_rdy_f;
reg skid_flop_dp_vld;
reg [35-1:0] skid_flop_cdp_rdma2dp_pd_i;
reg pipe_skid_dp_vld;
reg [35-1:0] pipe_skid_cdp_rdma2dp_pd_i;
// Wire
wire skid_dp_vld;
wire [35-1:0] skid_cdp_rdma2dp_pd_i;
wire skid_dp_rdy_f;
wire pipe_skid_dp_rdy_f;
wire cdp_rdma2dp_valid_f;
wire [35-1:0] cdp_rdma2dp_pd_o;
// Code
// SKID READY
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
   if (!nvdla_core_rstn) begin
       dp_rdy_f <= 1'b1;
       skid_flop_dp_rdy_f <= 1'b1;
   end else begin
       dp_rdy_f <= skid_dp_rdy_f;
       skid_flop_dp_rdy_f <= skid_dp_rdy_f;
   end
end

// SKID VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        skid_flop_dp_vld <= 1'b0;
    end else begin
        if (skid_flop_dp_rdy_f) begin
            skid_flop_dp_vld <= dp_vld;
        end
   end
end
assign skid_dp_vld = (skid_flop_dp_rdy_f) ? dp_vld : skid_flop_dp_vld;

// SKID DATA
always @(posedge nvdla_core_clk) begin
    if (skid_flop_dp_rdy_f & dp_vld) begin
        skid_flop_cdp_rdma2dp_pd_i[35-1:0] <= cdp_rdma2dp_pd_i[35-1:0];
    end
end
assign skid_cdp_rdma2dp_pd_i[35-1:0] = (skid_flop_dp_rdy_f) ? cdp_rdma2dp_pd_i[35-1:0] : skid_flop_cdp_rdma2dp_pd_i[35-1:0];


// PIPE READY
assign skid_dp_rdy_f = pipe_skid_dp_rdy_f || !pipe_skid_dp_vld;

// PIPE VALID
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
    if (!nvdla_core_rstn) begin
        pipe_skid_dp_vld <= 1'b0;
    end else begin
        if (skid_dp_rdy_f) begin
            pipe_skid_dp_vld <= skid_dp_vld;
        end
    end
end

// PIPE DATA
always @(posedge nvdla_core_clk) begin
    if (skid_dp_rdy_f && skid_dp_vld) begin
        pipe_skid_cdp_rdma2dp_pd_i[35-1:0] <= skid_cdp_rdma2dp_pd_i[35-1:0];
    end
end


// PIPE OUTPUT
assign pipe_skid_dp_rdy_f = cdp_rdma2dp_ready;
assign cdp_rdma2dp_valid_f = pipe_skid_dp_vld;
assign cdp_rdma2dp_pd_o = pipe_skid_cdp_rdma2dp_pd_i;

//| eperl: generated_end (DO NOT EDIT ABOVE)
assign dp_rdy = dp_rdy_f;
assign {cdp_rdma2dp_pd,dp2reg_done_flag,eg2ig_done_flag} = cdp_rdma2dp_pd_o;
assign cdp_rdma2dp_valid = cdp_rdma2dp_valid_f;
assign dp2reg_done = (cdp_rdma2dp_valid_f & cdp_rdma2dp_ready & dp2reg_done_flag) ? 1'b1 : 1'b0;
assign eg2ig_done = (cdp_rdma2dp_valid_f & cdp_rdma2dp_ready & eg2ig_done_flag) ? 1'b1 : 1'b0;
//==============
//function points
//==============
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    reg funcpoint_cover_off;
    initial begin
        if ( $test$plusargs( "cover_off" ) ) begin
            funcpoint_cover_off = 1'b1;
        end else begin
            funcpoint_cover_off = 1'b0;
        end
    end
    property CDP_RDMA_eg__bsync_end_stall__0_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        is_b_sync & (~dp_rdy);
    endproperty
// Cover 0 : "is_b_sync & (~dp_rdy)"
    FUNCPOINT_CDP_RDMA_eg__bsync_end_stall__0_COV : cover property (CDP_RDMA_eg__bsync_end_stall__0_cov);
  `endif
`endif
//VCS coverage on
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    property CDP_RDMA_eg__widthe_end_stall__1_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        is_last_w & (~dp_rdy);
    endproperty
// Cover 1 : "is_last_w & (~dp_rdy)"
    FUNCPOINT_CDP_RDMA_eg__widthe_end_stall__1_COV : cover property (CDP_RDMA_eg__widthe_end_stall__1_cov);
  `endif
`endif
//VCS coverage on
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    property CDP_RDMA_eg__cube_end_stall__2_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        is_last_h & (~dp_rdy);
    endproperty
// Cover 2 : "is_last_h & (~dp_rdy)"
    FUNCPOINT_CDP_RDMA_eg__cube_end_stall__2_COV : cover property (CDP_RDMA_eg__cube_end_stall__2_cov);
  `endif
`endif
//VCS coverage on
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    property CDP_RDMA_eg__channel_end_stall__3_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        is_last_c & (~dp_rdy);
    endproperty
// Cover 3 : "is_last_c & (~dp_rdy)"
    FUNCPOINT_CDP_RDMA_eg__channel_end_stall__3_COV : cover property (CDP_RDMA_eg__channel_end_stall__3_cov);
  `endif
`endif
//VCS coverage on
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    property CDP_RDMA_eg_backpressure_cq__4_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        tran_rdy & (~tran_vld) & (~is_cube_end);
    endproperty
// Cover 4 : "tran_rdy & (~tran_vld) & (~is_cube_end)"
    FUNCPOINT_CDP_RDMA_eg_backpressure_cq__4_COV : cover property (CDP_RDMA_eg_backpressure_cq__4_cov);
  `endif
`endif
//VCS coverage on
endmodule // NV_NVDLA_CDP_RDMA_eg
//
// AUTOMATICALLY GENERATED -- DO NOT EDIT OR CHECK IN
//
// /home/nvtools/engr/2017/03/11_05_00_06/nvtools/scripts/fifogen
// fifogen -input_config_yaml ../../../../../../../socd/ip_chip_tools/1.0/defs/public/fifogen/golden/tlit5/fifogen.yml -no_make_ram -no_make_ram -stdout -m NV_NVDLA_CDP_RDMA_lat_fifo -clk_name nvdla_core_clk -reset_name nvdla_core_rstn -wr_pipebus lat_wr -rd_pipebus lat_rd -rd_reg -d 61 -w 514 -ram ra2 [Chosen ram type: ra2 - ramgen_generic (user specified, thus no other ram type is allowed)]
// chip config vars: assertion_module_prefix=nv_ strict_synchronizers=1 strict_synchronizers_use_lib_cells=1 strict_synchronizers_use_tm_lib_cells=1 strict_sync_randomizer=1 assertion_message_prefix=FIFOGEN_ASSERTION allow_async_fifola=0 ignore_ramgen_fifola_variant=1 uses_p_SSYNC=0 uses_prand=1 uses_rammake_inc=1 use_x_or_0=1 force_wr_reg_gated=1 no_force_reset=1 no_timescale=1 no_pli_ifdef=1 requires_full_throughput=1 ram_auto_ff_bits_cutoff=16 ram_auto_ff_width_cutoff=2 ram_auto_ff_width_cutoff_max_depth=32 ram_auto_ff_depth_cutoff=-1 ram_auto_ff_no_la2_depth_cutoff=5 ram_auto_la2_width_cutoff=8 ram_auto_la2_width_cutoff_max_depth=56 ram_auto_la2_depth_cutoff=16 flopram_emu_model=1 dslp_single_clamp_port=1 dslp_clamp_port=1 slp_single_clamp_port=1 slp_clamp_port=1 master_clk_gated=1 clk_gate_module=NV_CLK_gate_power redundant_timing_flops=0 hot_reset_async_force_ports_and_loopback=1 ram_sleep_en_width=1 async_cdc_reg_id=NV_AFIFO_ rd_reg_default_for_async=1 async_ram_instance_prefix=NV_ASYNC_RAM_ allow_rd_busy_reg_warning=0 do_dft_xelim_gating=1 add_dft_xelim_wr_clkgate=1 add_dft_xelim_rd_clkgate=1
//
// leda B_3208_NV OFF -- Unequal length LHS and RHS in assignment
// leda B_1405 OFF -- 2 asynchronous resets in this unit detected
`define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1
`include "simulate_x_tick.vh"
// Re-Order Data
// if we have rd_reg, then depth = required - 1 ,so depth=4-1=3
//
// AUTOMATICALLY GENERATED -- DO NOT EDIT OR CHECK IN
//
// /home/nvtools/engr/2017/03/11_05_00_06/nvtools/scripts/fifogen
// fifogen -input_config_yaml ../../../../../../../socd/ip_chip_tools/1.0/defs/public/fifogen/golden/tlit5/fifogen.yml -no_make_ram -no_make_ram -stdout -m NV_NVDLA_CDP_RDMA_ro_fifo -clk_name nvdla_core_clk -reset_name nvdla_core_rstn -wr_pipebus ro_wr -rd_pipebus ro_rd -rd_reg -rand_none -ram_bypass -d 4 -w 64 -ram ff [Chosen ram type: ff - fifogen_flops (user specified, thus no other ram type is allowed)]
// chip config vars: assertion_module_prefix=nv_ strict_synchronizers=1 strict_synchronizers_use_lib_cells=1 strict_synchronizers_use_tm_lib_cells=1 strict_sync_randomizer=1 assertion_message_prefix=FIFOGEN_ASSERTION allow_async_fifola=0 ignore_ramgen_fifola_variant=1 uses_p_SSYNC=0 uses_prand=1 uses_rammake_inc=1 use_x_or_0=1 force_wr_reg_gated=1 no_force_reset=1 no_timescale=1 no_pli_ifdef=1 requires_full_throughput=1 ram_auto_ff_bits_cutoff=16 ram_auto_ff_width_cutoff=2 ram_auto_ff_width_cutoff_max_depth=32 ram_auto_ff_depth_cutoff=-1 ram_auto_ff_no_la2_depth_cutoff=5 ram_auto_la2_width_cutoff=8 ram_auto_la2_width_cutoff_max_depth=56 ram_auto_la2_depth_cutoff=16 flopram_emu_model=1 dslp_single_clamp_port=1 dslp_clamp_port=1 slp_single_clamp_port=1 slp_clamp_port=1 master_clk_gated=1 clk_gate_module=NV_CLK_gate_power redundant_timing_flops=0 hot_reset_async_force_ports_and_loopback=1 ram_sleep_en_width=1 async_cdc_reg_id=NV_AFIFO_ rd_reg_default_for_async=1 async_ram_instance_prefix=NV_ASYNC_RAM_ allow_rd_busy_reg_warning=0 do_dft_xelim_gating=1 add_dft_xelim_wr_clkgate=1 add_dft_xelim_rd_clkgate=1
//
// leda B_3208_NV OFF -- Unequal length LHS and RHS in assignment
// leda B_1405 OFF -- 2 asynchronous resets in this unit detected
`define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1
`include "simulate_x_tick.vh"