NV_NVDLA_CSB_MASTER_falcon2csb_fifo.v 34.7 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_CSB_MASTER_falcon2csb_fifo.v
`define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1
`include "simulate_x_tick.vh"
module NV_NVDLA_CSB_MASTER_falcon2csb_fifo (
      wr_clk
    , wr_reset_
    , wr_ready
    , wr_req
`ifdef FV_RAND_WR_PAUSE
    , wr_pause
`endif
    , wr_data
    , rd_clk
    , rd_reset_
    , rd_ready
    , rd_req
    , rd_data
    , pwrbus_ram_pd
    );
// spyglass disable_block W401 -- clock is not input to module
input wr_clk;
input wr_reset_;
output wr_ready;
input wr_req;
`ifdef FV_RAND_WR_PAUSE
input wr_pause;
`endif
input [49:0] wr_data;
input rd_clk;
input rd_reset_;
input rd_ready;
output rd_req;
output [49:0] rd_data;
input [31:0] pwrbus_ram_pd;
//
// DFT clock gate enable qualifier
//
// Write side
wire dft_qualifier_wr_enable;
oneHotClk_async_write_clock fifogenDFTWrQual ( .enable_w( dft_qualifier_wr_enable ) );
wire wr_clk_dft_mgated;
NV_CLK_gate_power wr_clk_wr_dft_mgate( .clk(wr_clk), .reset_(wr_reset_), .clk_en(dft_qualifier_wr_enable), .clk_gated(wr_clk_dft_mgated) );
`ifndef FPGA
// Add a dummy sink to prevent issue related to no fanout on this clock gate
NV_BLKBOX_SINK UJ_BLKBOX_UNUSED_FIFOGEN_dft_wr_clkgate_sink (.A( wr_clk_dft_mgated ) );
`endif
// Read side
wire dft_qualifier_rd_enable;
oneHotClk_async_read_clock fifogenDFTRdQual ( .enable_r( dft_qualifier_rd_enable ) );
wire rd_clk_dft_mgated;
NV_CLK_gate_power rd_clk_rd_dft_mgate( .clk(rd_clk), .reset_(rd_reset_), .clk_en(dft_qualifier_rd_enable), .clk_gated(rd_clk_dft_mgated) );
`ifndef FPGA
// Add a dummy sink to prevent issue related to no fanout on this clock gate
NV_BLKBOX_SINK UJ_BLKBOX_UNUSED_FIFOGEN_dft_rd_clkgate_sink (.A( rd_clk_dft_mgated ) );
`endif
// Master Clock Gating (SLCG)
//
// We gate the clock(s) when idle or stalled.
// This allows us to turn off numerous miscellaneous flops
// that don't get gated during synthesis for one reason or another.
//
// We gate write side and read side separately.
// If the fifo is synchronous, we also gate the ram separately, but if
// -master_clk_gated_unified or -status_reg/-status_logic_reg is specified,
// then we use one clk gate for write, ram, and read.
//
wire wr_clk_wr_mgated_enable; // assigned by code at end of this module
wire wr_clk_wr_mgated;
NV_CLK_gate_power wr_clk_wr_mgate( .clk(wr_clk), .reset_(wr_reset_), .clk_en(wr_clk_wr_mgated_enable), .clk_gated(wr_clk_wr_mgated) );
wire rd_clk_rd_mgated_enable; // assigned by code at end of this module
wire rd_clk_rd_mgated;
NV_CLK_gate_power rd_clk_rd_mgate( .clk(rd_clk), .reset_(rd_reset_), .clk_en(rd_clk_rd_mgated_enable), .clk_gated(rd_clk_rd_mgated) );
//
// WRITE SIDE
//
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
wire wr_pause_rand; // random stalling
`endif
`endif
// synopsys translate_on
wire wr_reserving;
reg wr_req_in; // registered wr_req
reg wr_busy_in; // inputs being held this cycle?
assign wr_ready = !wr_busy_in;
wire wr_busy_next; // fwd: fifo busy next?
// factor for better timing with distant wr_req signal
wire wr_busy_in_next_wr_req_eq_1 = wr_busy_next;
wire wr_busy_in_next_wr_req_eq_0 = (wr_req_in && wr_busy_next) && !wr_reserving;
`ifdef FV_RAND_WR_PAUSE
wire wr_busy_in_next = (wr_req? wr_busy_in_next_wr_req_eq_1 : wr_busy_in_next_wr_req_eq_0)
                             || wr_pause ;
`else
wire wr_busy_in_next = (wr_req? wr_busy_in_next_wr_req_eq_1 : wr_busy_in_next_wr_req_eq_0)
// synopsys translate_off
                            `ifndef SYNTH_LEVEL1_COMPILE
                            `ifndef SYNTHESIS
                            || wr_pause_rand
                            `endif
                            `endif
// synopsys translate_on
                             ;
`endif
wire wr_busy_in_int;
always @( posedge wr_clk_dft_mgated or negedge wr_reset_ ) begin
    if ( !wr_reset_ ) begin
        wr_req_in <= 1'b0;
        wr_busy_in <= 1'b0;
    end else begin
        wr_busy_in <= wr_busy_in_next;
        if ( !wr_busy_in_int ) begin
            wr_req_in <= wr_req && !wr_busy_in;
        end
//synopsys translate_off
            else if ( wr_busy_in_int ) begin
        end else begin
            wr_req_in <= `x_or_0;
        end
//synopsys translate_on
    end
end
reg wr_busy_int; // copy for internal use
assign wr_reserving = wr_req_in && !wr_busy_int; // reserving write space?
wire wr_popping; // fwd: write side sees pop?
reg [2:0] wr_count; // write-side count
wire [2:0] wr_count_next_wr_popping = wr_reserving ? wr_count : (wr_count - 1'd1); // spyglass disable W164a W484
wire [2:0] wr_count_next_no_wr_popping = wr_reserving ? (wr_count + 1'd1) : wr_count; // spyglass disable W164a W484
wire [2:0] wr_count_next = wr_popping ? wr_count_next_wr_popping :
                                               wr_count_next_no_wr_popping;
wire wr_count_next_no_wr_popping_is_4 = ( wr_count_next_no_wr_popping == 3'd4 );
wire wr_count_next_is_4 = wr_popping ? 1'b0 :
                                          wr_count_next_no_wr_popping_is_4;
wire [2:0] wr_limit_muxed; // muxed with simulation/emulation overrides
wire [2:0] wr_limit_reg = wr_limit_muxed;
// VCS coverage off
assign wr_busy_next = wr_count_next_is_4 || // busy next cycle?
                          (wr_limit_reg != 3'd0 && // check wr_limit if != 0
                           wr_count_next >= wr_limit_reg) ;
// VCS coverage on
assign wr_busy_in_int = wr_req_in && wr_busy_int;
always @( posedge wr_clk_wr_mgated or negedge wr_reset_ ) begin
    if ( !wr_reset_ ) begin
        wr_busy_int <= 1'b0;
        wr_count <= 3'd0;
    end else begin
 wr_busy_int <= wr_busy_next;
 if ( wr_reserving ^ wr_popping ) begin
     wr_count <= wr_count_next;
        end
//synopsys translate_off
            else if ( !(wr_reserving ^ wr_popping) ) begin
        end else begin
            wr_count <= {3{`x_or_0}};
        end
//synopsys translate_on
    end
end
wire wr_pushing = wr_reserving; // data pushed same cycle as wr_req_in
//
// RAM
//
reg [1:0] wr_adr; // current write address
// spyglass disable_block W484
// next wr_adr if wr_pushing=1
wire [1:0] wr_adr_next = wr_adr + 1'd1; // spyglass disable W484
always @( posedge wr_clk_wr_mgated or negedge wr_reset_ ) begin
    if ( !wr_reset_ ) begin
        wr_adr <= 2'd0;
    end else begin
        if ( wr_pushing ) begin
            wr_adr <= wr_adr_next;
        end
    end
end
// spyglass enable_block W484
reg [1:0] rd_adr; // read address this cycle
wire ram_we = wr_pushing; // note: write occurs next cycle
wire ram_iwe = !wr_busy_in && wr_req;
wire [49:0] rd_data_p; // read data out of ram
wire [31 : 0] pwrbus_ram_pd;
// Adding parameter for fifogen to disable wr/rd contention assertion in ramgen.
// Fifogen handles this by ignoring the data on the ram data out for that cycle.
NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50 ram (
      .clk( wr_clk_dft_mgated )
    , .clk_mgated( wr_clk_wr_mgated )
    , .pwrbus_ram_pd ( pwrbus_ram_pd )
    , .di ( wr_data )
    , .iwe ( ram_iwe )
    , .we ( ram_we )
    , .wa ( wr_adr )
    , .ra ( rd_adr )
    , .dout ( rd_data_p )
    );
wire rd_popping; // read side doing pop this cycle?
wire [1:0] rd_adr_next_popping = rd_adr + 1'd1; // spyglass disable W484
always @( posedge rd_clk_rd_mgated or negedge rd_reset_ ) begin
    if ( !rd_reset_ ) begin
        rd_adr <= 2'd0;
    end else begin
        if ( rd_popping ) begin
     rd_adr <= rd_adr_next_popping;
        end
//synopsys translate_off
            else if ( !rd_popping ) begin
        end else begin
            rd_adr <= {2{`x_or_0}};
        end
//synopsys translate_on
    end
end
//
// ASYNCHRONOUS BOUNDARY USING TRADITIONAL SYNCHRONIZERS
//
// Our goal here is to translate wr_pushing pulses into rd_pushing
// pulses on the read side and, conversely, to translate rd_popping
// pulses to wr_popping pulses on the write side.
//
// We don't try to optimize the case where the async fifo depth is
// a power of two. We handle the general case using one scheme to
// avoid maintaining different implementations. We may use a couple
// more counters, but they are quite cheap in the grand scheme of things.
// This wr_pushing/rd_pushing/rd_popping/wr_popping centric scheme also
// fits in well with the case where there is no asynchronous boundary.
//
// The scheme works as follows. For the wr_pushing -> rd_pushing translation,
// we keep an 3-bit gray counter on the write and read sides.
// This counter is initialized to 0 on both sides. When wr_pushing
// is pulsed, the write side gray-increments its counter, registers it,
// then sends it through an 3-bit synchronizer to the other side.
// Whenever the read side sees the new gray counter not equal to its
// copy of the gray counter, it gray-increments its counter and pulses
// rd_pushing=1. The actual value of the gray counter is irrelevant.
// It must be a power-of-2 to make the gray code work. Otherwise,
// we're just looking for changes in the gray value.
//
// The same technique is used for the rd_popping -> wr_popping translation.
//
// The gray counter algorithm uses a 1-bit polarity register that starts
// off as 0 and is inverted whenever the gray counter is incremented.
//
// In plain English, the next gray counter is determined as follows:
// if the current polarity register is 0, invert bit 0 (the lsb); otherwise,
// find the rightmost one bit and invert the bit to the left of the one bit
// if the one bit is not the msb else invert the msb one bit. The
// general expression is thus:
//
// { gray[n-1] ^ (polarity & ~gray[n-3] & ~gray[n-4] & ... ),
// gray[n-2] ^ (polarity & gray[n-3] & ~gray[n-4] & ~gray[n-5] & ... ),
// gray[n-3] ^ (polarity & gray[n-4] & ~gray[n-5] & ~gray[n-6] & ... ),
// ...
// gray[0] ^ (~polarity) }
//
// For n == 1, the next gray value is obviously just ~gray.
//
// The wr_pushing/rd_popping signal does not affect the registered
// gray counter until the next cycle. However, for non-FF-type rams,
// the write will not complete until the end of the next cycle, so
// we must delay wr_pushing yet another more cycle,
// unless the -rd_clk_le_2x_wr_clk option was given
// (or the -rd_clk_le_2x_wr_clk_dynamic option was given
// and the rd_clk_le_2x_wr_clk signal is 1).
//
// clk gating of strict synchronizers
//
wire wr_clk_wr_mgated_strict_snd_gated;
NV_CLK_gate_power wr_clk_wr_mgated_snd_gate( .clk(wr_clk), .reset_(wr_reset_), .clk_en(dft_qualifier_wr_enable && (wr_pushing)), .clk_gated(wr_clk_wr_mgated_strict_snd_gated) );
//
// wr_pushing -> rd_pushing translation
//
wire [2:0] wr_pushing_gray_cntr;
wire [2:0] wr_pushing_gray_cntr_next;
NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr_strict wr_pushing_gray (
`ifdef NV_FPGA_FIFOGEN
      .inc ( wr_pushing ) ,
`endif
      .gray ( wr_pushing_gray_cntr )
    , .gray_next ( wr_pushing_gray_cntr_next )
    );
wire [2:0] wr_pushing_gray_cntr_sync;
p_STRICTSYNC3DOTM_C_PPP NV_AFIFO_wr_pushing_sync0 (
      .SRC_CLK ( wr_clk_wr_mgated_strict_snd_gated )
    , .SRC_CLRN ( wr_reset_ )
    , .SRC_D_NEXT ( wr_pushing_gray_cntr_next[0] )
    , .SRC_D ( wr_pushing_gray_cntr[0] )
    , .DST_CLK ( rd_clk_dft_mgated )
    , .DST_CLRN ( rd_reset_ )
    , .DST_Q ( wr_pushing_gray_cntr_sync[0] )
    , .ATPG_CTL ( 1'b0 )
    , .TEST_MODE ( 1'b0 )
    );
p_STRICTSYNC3DOTM_C_PPP NV_AFIFO_wr_pushing_sync1 (
      .SRC_CLK ( wr_clk_wr_mgated_strict_snd_gated )
    , .SRC_CLRN ( wr_reset_ )
    , .SRC_D_NEXT ( wr_pushing_gray_cntr_next[1] )
    , .SRC_D ( wr_pushing_gray_cntr[1] )
    , .DST_CLK ( rd_clk_dft_mgated )
    , .DST_CLRN ( rd_reset_ )
    , .DST_Q ( wr_pushing_gray_cntr_sync[1] )
    , .ATPG_CTL ( 1'b0 )
    , .TEST_MODE ( 1'b0 )
    );
p_STRICTSYNC3DOTM_C_PPP NV_AFIFO_wr_pushing_sync2 (
      .SRC_CLK ( wr_clk_wr_mgated_strict_snd_gated )
    , .SRC_CLRN ( wr_reset_ )
    , .SRC_D_NEXT ( wr_pushing_gray_cntr_next[2] )
    , .SRC_D ( wr_pushing_gray_cntr[2] )
    , .DST_CLK ( rd_clk_dft_mgated )
    , .DST_CLRN ( rd_reset_ )
    , .DST_Q ( wr_pushing_gray_cntr_sync[2] )
    , .ATPG_CTL ( 1'b0 )
    , .TEST_MODE ( 1'b0 )
    );
wire [2:0] rd_pushing_gray_cntr;
wire rd_pushing = wr_pushing_gray_cntr_sync != rd_pushing_gray_cntr;
NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr rd_pushing_gray (
      .clk ( rd_clk_rd_mgated )
    , .reset_ ( rd_reset_ )
    , .inc ( rd_pushing )
    , .gray ( rd_pushing_gray_cntr )
    );
// clk gating of strict synchronizers
//
wire rd_clk_rd_mgated_strict_snd_gated;
NV_CLK_gate_power rd_clk_rd_mgated_snd_gate( .clk(rd_clk), .reset_(rd_reset_), .clk_en(dft_qualifier_rd_enable && (rd_popping)), .clk_gated(rd_clk_rd_mgated_strict_snd_gated) );
wire wr_clk_strict_rcv_gated;
NV_CLK_gate_power wr_clk_rcv_gate( .clk(wr_clk), .reset_(wr_reset_), .clk_en(dft_qualifier_wr_enable && (wr_count_next_no_wr_popping != 3'd0)), .clk_gated(wr_clk_strict_rcv_gated) );
//
// rd_popping -> wr_popping translation
//
wire [2:0] rd_popping_gray_cntr;
wire [2:0] rd_popping_gray_cntr_next;
NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr_strict rd_popping_gray (
`ifdef NV_FPGA_FIFOGEN
      .inc ( rd_popping ) ,
`endif
      .gray ( rd_popping_gray_cntr )
    , .gray_next ( rd_popping_gray_cntr_next )
    );
wire [2:0] rd_popping_gray_cntr_sync;
p_STRICTSYNC3DOTM_C_PPP NV_AFIFO_rd_popping_sync0 (
      .SRC_CLK ( rd_clk_rd_mgated_strict_snd_gated )
    , .SRC_CLRN ( rd_reset_ )
    , .SRC_D_NEXT ( rd_popping_gray_cntr_next[0] )
    , .SRC_D ( rd_popping_gray_cntr[0] )
    , .DST_CLK ( wr_clk_strict_rcv_gated )
    , .DST_CLRN ( wr_reset_ )
    , .DST_Q ( rd_popping_gray_cntr_sync[0] )
    , .ATPG_CTL ( 1'b0 )
    , .TEST_MODE ( 1'b0 )
    );
p_STRICTSYNC3DOTM_C_PPP NV_AFIFO_rd_popping_sync1 (
      .SRC_CLK ( rd_clk_rd_mgated_strict_snd_gated )
    , .SRC_CLRN ( rd_reset_ )
    , .SRC_D_NEXT ( rd_popping_gray_cntr_next[1] )
    , .SRC_D ( rd_popping_gray_cntr[1] )
    , .DST_CLK ( wr_clk_strict_rcv_gated )
    , .DST_CLRN ( wr_reset_ )
    , .DST_Q ( rd_popping_gray_cntr_sync[1] )
    , .ATPG_CTL ( 1'b0 )
    , .TEST_MODE ( 1'b0 )
    );
p_STRICTSYNC3DOTM_C_PPP NV_AFIFO_rd_popping_sync2 (
      .SRC_CLK ( rd_clk_rd_mgated_strict_snd_gated )
    , .SRC_CLRN ( rd_reset_ )
    , .SRC_D_NEXT ( rd_popping_gray_cntr_next[2] )
    , .SRC_D ( rd_popping_gray_cntr[2] )
    , .DST_CLK ( wr_clk_strict_rcv_gated )
    , .DST_CLRN ( wr_reset_ )
    , .DST_Q ( rd_popping_gray_cntr_sync[2] )
    , .ATPG_CTL ( 1'b0 )
    , .TEST_MODE ( 1'b0 )
    );
wire [2:0] wr_popping_gray_cntr;
assign wr_popping = rd_popping_gray_cntr_sync != wr_popping_gray_cntr;
NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr wr_popping_gray (
      .clk ( wr_clk_wr_mgated )
    , .reset_ ( wr_reset_ )
    , .inc ( wr_popping )
    , .gray ( wr_popping_gray_cntr )
    );
//
// READ SIDE
//
wire rd_req_p; // data out of fifo is valid
reg rd_req_int; // internal copy of rd_req
assign rd_req = rd_req_int;
assign rd_popping = rd_req_p && !(rd_req_int && !rd_ready);
reg [2:0] rd_count_p; // read-side fifo count
// spyglass disable_block W164a W484
wire [2:0] rd_count_p_next_rd_popping = rd_pushing ? rd_count_p :
                                                                (rd_count_p - 1'd1);
wire [2:0] rd_count_p_next_no_rd_popping = rd_pushing ? (rd_count_p + 1'd1) :
                                                                    rd_count_p;
// spyglass enable_block W164a W484
wire [2:0] rd_count_p_next = rd_popping ? rd_count_p_next_rd_popping :
                                                     rd_count_p_next_no_rd_popping;
assign rd_req_p = rd_count_p != 0 || rd_pushing;
always @( posedge rd_clk_rd_mgated or negedge rd_reset_ ) begin
    if ( !rd_reset_ ) begin
        rd_count_p <= 3'd0;
    end else begin
        if ( rd_pushing || rd_popping ) begin
     rd_count_p <= rd_count_p_next;
        end
//synopsys translate_off
            else if ( !(rd_pushing || rd_popping ) ) begin
        end else begin
            rd_count_p <= {3{`x_or_0}};
        end
//synopsys translate_on
    end
end
reg [49:0] NV_AFIFO_rd_data; // output data register
wire rd_req_next = (rd_req_p || (rd_req_int && !rd_ready)) ;
always @( posedge rd_clk_rd_mgated or negedge rd_reset_ ) begin
    if ( !rd_reset_ ) begin
        rd_req_int <= 1'b0;
    end else begin
        rd_req_int <= rd_req_next;
    end
end
always @( posedge rd_clk_rd_mgated ) begin
    if ( (rd_popping) ) begin
        NV_AFIFO_rd_data <= rd_data_p;
    end
//synopsys translate_off
        else if ( !((rd_popping)) ) begin
    end else begin
        NV_AFIFO_rd_data <= {50{`x_or_0}};
    end
//synopsys translate_on
end
assign rd_data = NV_AFIFO_rd_data;
// Master Clock Gating (SLCG) Enables
//
// plusarg for disabling this stuff:
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0;
`endif
`endif
// synopsys translate_on
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg wr_pause_rand_dly;
always @( posedge wr_clk_dft_mgated or negedge wr_reset_ ) begin
    if ( !wr_reset_ ) begin
        wr_pause_rand_dly <= 1'b0;
    end else begin
        wr_pause_rand_dly <= wr_pause_rand;
    end
end
`endif
`endif
// synopsys translate_on
assign wr_clk_wr_mgated_enable = dft_qualifier_wr_enable && (wr_reserving || wr_pushing || wr_popping || wr_popping || (wr_req_in && !wr_busy_int) || (wr_busy_int != wr_busy_next))
                               `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED
                               || 1'b1
                               `endif
// synopsys translate_off
          `ifndef SYNTH_LEVEL1_COMPILE
          `ifndef SYNTHESIS
                               || master_clk_gating_disabled || (wr_pause_rand != wr_pause_rand_dly)
          `endif
          `endif
// synopsys translate_on
                               ;
assign rd_clk_rd_mgated_enable = dft_qualifier_rd_enable && ((rd_pushing || rd_popping || (rd_req_int && rd_ready)))
                               `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED
                               || 1'b1
                               `endif
// synopsys translate_off
          `ifndef SYNTH_LEVEL1_COMPILE
          `ifndef SYNTHESIS
                               || master_clk_gating_disabled
          `endif
          `endif
// synopsys translate_on
                               ;
// Simulation and Emulation Overrides of wr_limit(s)
//
`ifdef EMU
`ifdef EMU_FIFO_CFG
// Emulation Global Config Override
//
assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_CSB_MASTER_falcon2csb_fifo_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_CSB_MASTER_falcon2csb_fifo_wr_limit : 3'd0;
`else
// No Global Override for Emulation
//
assign wr_limit_muxed = 3'd0;
`endif // EMU_FIFO_CFG
`else // !EMU
`ifdef SYNTH_LEVEL1_COMPILE
// No Override for GCS Compiles
//
assign wr_limit_muxed = 3'd0;
`else
`ifdef SYNTHESIS
// No Override for RTL Synthesis
//
assign wr_limit_muxed = 3'd0;
`else
// RTL Simulation Plusarg Override
// VCS coverage off
reg wr_limit_override;
reg [2:0] wr_limit_override_value;
assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 3'd0;
`ifdef NV_ARCHPRO
event reinit;
initial begin
    $display("fifogen reinit initial block %m");
    -> reinit;
end
`endif
`ifdef NV_ARCHPRO
always @( reinit ) begin
`else
initial begin
`endif
    wr_limit_override = 0;
    wr_limit_override_value = 0; // to keep viva happy with dangles
    if ( $test$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_wr_limit" ) ) begin
        wr_limit_override = 1;
        $value$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_wr_limit=%d", wr_limit_override_value);
    end
end
// VCS coverage on
`endif
`endif
`endif
// Random Write-Side Stalling
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
// VCS coverage off
// leda W339 OFF -- Non synthesizable operator
// leda W372 OFF -- Undefined PLI task
// leda W373 OFF -- Undefined PLI function
// leda W599 OFF -- This construct is not supported by Synopsys
// leda W430 OFF -- Initial statement is not synthesizable
// leda W182 OFF -- Illegal statement for synthesis
// leda W639 OFF -- For synthesis, operands of a division or modulo operation need to be constants
// leda DCVER_274_NV OFF -- This system task is not supported by DC
integer stall_probability; // prob of stalling
integer stall_cycles_min; // min cycles to stall
integer stall_cycles_max; // max cycles to stall
integer stall_cycles_left; // stall cycles left
`ifdef NV_ARCHPRO
always @( reinit ) begin
`else
initial begin
`endif
    stall_probability = 0; // no stalling by default
    stall_cycles_min = 1;
    stall_cycles_max = 10;
`ifdef NO_PLI
`else
    if ( $test$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_probability" ) ) begin
        $value$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_probability=%d", stall_probability);
    end else if ( $test$plusargs( "default_fifo_stall_probability" ) ) begin
        $value$plusargs( "default_fifo_stall_probability=%d", stall_probability);
    end
    if ( $test$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_cycles_min" ) ) begin
        $value$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_cycles_min=%d", stall_cycles_min);
    end else if ( $test$plusargs( "default_fifo_stall_cycles_min" ) ) begin
        $value$plusargs( "default_fifo_stall_cycles_min=%d", stall_cycles_min);
    end
    if ( $test$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_cycles_max" ) ) begin
        $value$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_cycles_max=%d", stall_cycles_max);
    end else if ( $test$plusargs( "default_fifo_stall_cycles_max" ) ) begin
        $value$plusargs( "default_fifo_stall_cycles_max=%d", stall_cycles_max);
    end
`endif
    if ( stall_cycles_min < 1 ) begin
        stall_cycles_min = 1;
    end
    if ( stall_cycles_min > stall_cycles_max ) begin
        stall_cycles_max = stall_cycles_min;
    end
end
`ifdef NO_PLI
`else
// randomization globals
`ifdef SIMTOP_RANDOMIZE_STALLS
  always @( `SIMTOP_RANDOMIZE_STALLS.global_stall_event ) begin
    if ( ! $test$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_probability" ) ) stall_probability = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_probability;
    if ( ! $test$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_cycles_min" ) ) stall_cycles_min = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_cycles_min;
    if ( ! $test$plusargs( "NV_NVDLA_CSB_MASTER_falcon2csb_fifo_fifo_stall_cycles_max" ) ) stall_cycles_max = `SIMTOP_RANDOMIZE_STALLS.global_stall_fifo_cycles_max;
  end
`endif
`endif
always @( negedge wr_clk_dft_mgated or negedge wr_reset_ ) begin
    if ( !wr_reset_ ) begin
        stall_cycles_left <= 0;
    end else begin
`ifdef NO_PLI
            stall_cycles_left <= 0;
`else
            if ( wr_req && !(!wr_ready)
                 && stall_probability != 0 ) begin
                if ( prand_inst0(1, 100) <= stall_probability ) begin
                    stall_cycles_left <= prand_inst1(stall_cycles_min, stall_cycles_max);
                end else if ( stall_cycles_left !== 0 ) begin
                    stall_cycles_left <= stall_cycles_left - 1;
                end
            end else if ( stall_cycles_left !== 0 ) begin
                stall_cycles_left <= stall_cycles_left - 1;
            end
`endif
    end
end
assign wr_pause_rand = (stall_cycles_left !== 0) ;
// VCS coverage on
`endif
`endif
// synopsys translate_on
// VCS coverage on
// leda W339 ON
// leda W372 ON
// leda W373 ON
// leda W599 ON
// leda W430 ON
// leda W182 ON
// leda W639 ON
// leda DCVER_274_NV ON
//
// Histogram of fifo depth (from write side's perspective)
//
// NOTE: it will reference `SIMTOP.perfmon_enabled, so that
// has to at least be defined, though not initialized.
// tbgen testbenches have it already and various
// ways to turn it on and off.
//
`ifdef PERFMON_HISTOGRAM
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
perfmon_histogram perfmon (
      .clk ( wr_clk )
    , .max ( {29'd0, (wr_limit_reg == 3'd0) ? 3'd4 : wr_limit_reg} )
    , .curr ( {29'd0, wr_count} )
    );
`endif
`endif
// synopsys translate_on
`endif
// spyglass disable_block W164a W164b W116 W484 W504
`ifdef SPYGLASS
`else
`ifdef FV_ASSERT_ON
`else
// synopsys translate_off
`endif
`ifdef ASSERT_ON
`ifdef SPYGLASS
wire disable_assert_plusarg = 1'b0;
`else
`ifdef FV_ASSERT_ON
wire disable_assert_plusarg = 1'b0;
`else
wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS");
`endif
`endif
wire assert_enabled = 1'b1 && !disable_assert_plusarg;
`endif
`ifdef FV_ASSERT_ON
`else
// synopsys translate_on
`endif
`ifdef ASSERT_ON
//synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
always @(assert_enabled) begin
    if ( assert_enabled === 1'b0 ) begin
        $display("Asserts are disabled for %m");
    end
end
`endif
`endif
//synopsys translate_on
`endif
`endif
// spyglass enable_block W164a W164b W116 W484 W504
//The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH
// define is set. This is to aid fifogen team search for fifogen fifo
// instance and module names in a given design.
`ifdef FIFOGEN_MODULE_SEARCH
NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y());
`endif
// spyglass enable_block W401 -- clock is not input to module
// synopsys dc_script_begin
// set_boundary_optimization find(design, "NV_NVDLA_CSB_MASTER_falcon2csb_fifo") true
// synopsys dc_script_end
`ifdef SYNTH_LEVEL1_COMPILE
`else
`ifdef SYNTHESIS
`else
`ifdef PRAND_VERILOG
// Only verilog needs any local variables
reg [47:0] prand_local_seed0;
reg prand_initialized0;
reg prand_no_rollpli0;
`endif
`endif
`endif
function [31:0] prand_inst0;
//VCS coverage off
    input [31:0] min;
    input [31:0] max;
    reg [32:0] diff;
    begin
`ifdef SYNTH_LEVEL1_COMPILE
        prand_inst0 = min;
`else
`ifdef SYNTHESIS
        prand_inst0 = min;
`else
`ifdef PRAND_VERILOG
        if (prand_initialized0 !== 1'b1) begin
            prand_no_rollpli0 = $test$plusargs("NO_ROLLPLI");
            if (!prand_no_rollpli0)
                prand_local_seed0 = {$prand_get_seed(0), 16'b0};
            prand_initialized0 = 1'b1;
        end
        if (prand_no_rollpli0) begin
            prand_inst0 = min;
        end else begin
            diff = max - min + 1;
            prand_inst0 = min + prand_local_seed0[47:16] % diff;
// magic numbers taken from Java's random class (same as lrand48)
            prand_local_seed0 = prand_local_seed0 * 48'h5deece66d + 48'd11;
        end
`else
`ifdef PRAND_OFF
        prand_inst0 = min;
`else
        prand_inst0 = $RollPLI(min, max, "auto");
`endif
`endif
`endif
`endif
    end
//VCS coverage on
endfunction
`ifdef SYNTH_LEVEL1_COMPILE
`else
`ifdef SYNTHESIS
`else
`ifdef PRAND_VERILOG
// Only verilog needs any local variables
reg [47:0] prand_local_seed1;
reg prand_initialized1;
reg prand_no_rollpli1;
`endif
`endif
`endif
function [31:0] prand_inst1;
//VCS coverage off
    input [31:0] min;
    input [31:0] max;
    reg [32:0] diff;
    begin
`ifdef SYNTH_LEVEL1_COMPILE
        prand_inst1 = min;
`else
`ifdef SYNTHESIS
        prand_inst1 = min;
`else
`ifdef PRAND_VERILOG
        if (prand_initialized1 !== 1'b1) begin
            prand_no_rollpli1 = $test$plusargs("NO_ROLLPLI");
            if (!prand_no_rollpli1)
                prand_local_seed1 = {$prand_get_seed(1), 16'b0};
            prand_initialized1 = 1'b1;
        end
        if (prand_no_rollpli1) begin
            prand_inst1 = min;
        end else begin
            diff = max - min + 1;
            prand_inst1 = min + prand_local_seed1[47:16] % diff;
// magic numbers taken from Java's random class (same as lrand48)
            prand_local_seed1 = prand_local_seed1 * 48'h5deece66d + 48'd11;
        end
`else
`ifdef PRAND_OFF
        prand_inst1 = min;
`else
        prand_inst1 = $RollPLI(min, max, "auto");
`endif
`endif
`endif
`endif
    end
//VCS coverage on
endfunction
endmodule // NV_NVDLA_CSB_MASTER_falcon2csb_fifo
//
// Flop-Based RAM (with internal wr_reg)
//
module NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50 (
      clk
    , clk_mgated
    , pwrbus_ram_pd
    , di
    , iwe
    , we
    , wa
    , ra
    , dout
    );
input clk; // write clock
input clk_mgated; // write clock mgated
input [31 : 0] pwrbus_ram_pd;
input [49:0] di;
input iwe;
input we;
input [1:0] wa;
input [1:0] ra;
output [49:0] dout;
`ifndef FPGA
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_0 (.A(pwrbus_ram_pd[0]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_1 (.A(pwrbus_ram_pd[1]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_2 (.A(pwrbus_ram_pd[2]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_3 (.A(pwrbus_ram_pd[3]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_4 (.A(pwrbus_ram_pd[4]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_5 (.A(pwrbus_ram_pd[5]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_6 (.A(pwrbus_ram_pd[6]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_7 (.A(pwrbus_ram_pd[7]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_8 (.A(pwrbus_ram_pd[8]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_9 (.A(pwrbus_ram_pd[9]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_10 (.A(pwrbus_ram_pd[10]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_11 (.A(pwrbus_ram_pd[11]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_12 (.A(pwrbus_ram_pd[12]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_13 (.A(pwrbus_ram_pd[13]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_14 (.A(pwrbus_ram_pd[14]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_15 (.A(pwrbus_ram_pd[15]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_16 (.A(pwrbus_ram_pd[16]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_17 (.A(pwrbus_ram_pd[17]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_18 (.A(pwrbus_ram_pd[18]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_19 (.A(pwrbus_ram_pd[19]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_20 (.A(pwrbus_ram_pd[20]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_21 (.A(pwrbus_ram_pd[21]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_22 (.A(pwrbus_ram_pd[22]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_23 (.A(pwrbus_ram_pd[23]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_24 (.A(pwrbus_ram_pd[24]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_25 (.A(pwrbus_ram_pd[25]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_26 (.A(pwrbus_ram_pd[26]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_27 (.A(pwrbus_ram_pd[27]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_28 (.A(pwrbus_ram_pd[28]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_29 (.A(pwrbus_ram_pd[29]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_30 (.A(pwrbus_ram_pd[30]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_31 (.A(pwrbus_ram_pd[31]));
`endif
reg [49:0] di_d; // -wr_reg
always @( posedge clk ) begin
    if ( iwe ) begin
        di_d <= di; // -wr_reg
    end
end
`ifdef EMU
// we use an emulation ram here to save flops on the emulation board
// so that the monstrous chip can fit :-)
//
reg [1:0] Wa0_vmw;
reg we0_vmw;
reg [49:0] Di0_vmw;
always @( posedge clk ) begin
    Wa0_vmw <= wa;
    we0_vmw <= we;
    Di0_vmw <= di_d;
end
vmw_NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50 emu_ram (
     .Wa0( Wa0_vmw )
   , .we0( we0_vmw )
   , .Di0( Di0_vmw )
   , .Ra0( ra )
   , .Do0( dout )
   );
`else
reg [49:0] ram_ff0;
reg [49:0] ram_ff1;
reg [49:0] ram_ff2;
reg [49:0] ram_ff3;
always @( posedge clk_mgated ) begin
    if ( we && wa == 2'd0 ) begin
 ram_ff0 <= di_d;
    end
    if ( we && wa == 2'd1 ) begin
 ram_ff1 <= di_d;
    end
    if ( we && wa == 2'd2 ) begin
 ram_ff2 <= di_d;
    end
    if ( we && wa == 2'd3 ) begin
 ram_ff3 <= di_d;
    end
end
reg [49:0] dout;
always @(*) begin
    case( ra ) // synopsys infer_mux_override
    2'd0: dout = ram_ff0;
    2'd1: dout = ram_ff1;
    2'd2: dout = ram_ff2;
    2'd3: dout = ram_ff3;
//VCS coverage off
    default: dout = {50{`x_or_0}};
//VCS coverage on
    endcase
end
`endif // EMU
endmodule // NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50
// emulation model of flopram guts
//
`ifdef EMU
module vmw_NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50 (
   Wa0, we0, Di0,
   Ra0, Do0
   );
input [1:0] Wa0;
input we0;
input [49:0] Di0;
input [1:0] Ra0;
output [49:0] Do0;
// Only visible during Spyglass to avoid blackboxes.
`ifdef SPYGLASS_FLOPRAM
assign Do0 = 50'd0;
wire dummy = 1'b0 | (|Wa0) | (|we0) | (|Di0) | (|Ra0);
`endif
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg [49:0] mem[3:0];
// expand mem for debug ease
`ifdef EMU_EXPAND_FLOPRAM_MEM
wire [49:0] Q0 = mem[0];
wire [49:0] Q1 = mem[1];
wire [49:0] Q2 = mem[2];
wire [49:0] Q3 = mem[3];
`endif
// asynchronous ram writes
always @(*) begin
  if ( we0 == 1'b1 ) begin
    #0.1;
    mem[Wa0] = Di0;
  end
end
assign Do0 = mem[Ra0];
`endif
`endif
// synopsys translate_on
// synopsys dc_script_begin
// synopsys dc_script_end
// g2c if { [find / -null_ok -subdesign vmw_NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50] != {} } { set_attr preserve 1 [find / -subdesign vmw_NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50] }
endmodule // vmw_NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50
//vmw: Memory vmw_NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50
//vmw: Address-size 2
//vmw: Data-size 50
//vmw: Sensitivity level 1
//vmw: Ports W R
//vmw: terminal we0 WriteEnable0
//vmw: terminal Wa0 address0
//vmw: terminal Di0[49:0] data0[49:0]
//vmw:
//vmw: terminal Ra0 address1
//vmw: terminal Do0[49:0] data1[49:0]
//vmw:
//qt: CELL vmw_NV_NVDLA_CSB_MASTER_falcon2csb_fifo_flopram_rwa_4x50
//qt: TERMINAL we0 TYPE=WE POLARITY=H PORT=1
//qt: TERMINAL Wa0[%d] TYPE=ADDRESS DIR=W BIT=%1 PORT=1
//qt: TERMINAL Di0[%d] TYPE=DATA DIR=I BIT=%1 PORT=1
//qt:
//qt: TERMINAL Ra0[%d] TYPE=ADDRESS DIR=R BIT=%1 PORT=1
//qt: TERMINAL Do0[%d] TYPE=DATA DIR=O BIT=%1 PORT=1
//qt:
`endif // EMU
//
// See the ASYNCHONROUS BOUNDARY section above for details on the
// gray counter implementation.
//
module NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr_strict (
`ifdef NV_FPGA_FIFOGEN
      inc ,
`endif
      gray
    , gray_next
    );
`ifdef NV_FPGA_FIFOGEN
input inc;
`endif
input [2:0] gray;
output [2:0] gray_next;
wire polarity; // polarity of gray counter bits
assign polarity = gray[0] ^ gray[1] ^ gray[2];
assign gray_next =
`ifdef NV_FPGA_FIFOGEN
 (~inc) ? gray :
`endif
                         { gray[2]^(polarity &~gray[0]),
                         gray[1]^(polarity&gray[0]),
                         gray[0]^(~polarity) };
endmodule // NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr_strict
module NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr (
      clk
    , reset_
    , inc
    , gray
    );
input clk;
input reset_;
input inc;
output [2:0] gray;
reg [2:0] gray; // gray counter
wire polarity; // polarity of gray counter bits
assign polarity = gray[0] ^ gray[1] ^ gray[2];
  always @( posedge clk or negedge reset_ ) begin
    if ( !reset_ ) begin
 gray <= 3'd0;
    end else if ( inc ) begin
        gray <= { gray[2]^(polarity &~gray[0]),
                         gray[1]^(polarity&gray[0]),
                         gray[0]^(~polarity) };
    end
end
endmodule // NV_NVDLA_CSB_MASTER_falcon2csb_fifo_gray_cntr