NV_NVDLA_SDP_WDMA_cmd.v 48.8 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
// ================================================================
// NVDLA Open Source Project
//
// Copyright(c) 2016 - 2017 NVIDIA Corporation. Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_SDP_WDMA_cmd.v
// ================================================================
// NVDLA Open Source Project
// 
// Copyright(c) 2016 - 2017 NVIDIA Corporation.  Licensed under the
// NVDLA Open Hardware License; Check "LICENSE" which comes with 
// this distribution for more information.
// ================================================================
// File Name: NV_NVDLA_SDP_define.h
`include "simulate_x_tick.vh"
module NV_NVDLA_SDP_WDMA_cmd (
   nvdla_core_clk //|< i
  ,nvdla_core_rstn //|< i
  ,pwrbus_ram_pd //|< i
  ,op_load //|< i
  ,cmd2dat_dma_pd //|> o
  ,cmd2dat_dma_pvld //|> o
  ,cmd2dat_dma_prdy //|< i
  ,cmd2dat_spt_pd //|> o
  ,cmd2dat_spt_pvld //|> o
  ,cmd2dat_spt_prdy //|< i
  ,reg2dp_batch_number //|< i
  ,reg2dp_winograd //|< i
  ,reg2dp_channel //|< i
  ,reg2dp_height //|< i
  ,reg2dp_width //|< i
  ,reg2dp_output_dst //|< i
  ,reg2dp_out_precision //|< i
  ,reg2dp_proc_precision //|< i
  ,reg2dp_dst_base_addr_high //|< i
  ,reg2dp_dst_base_addr_low //|< i
  ,reg2dp_dst_batch_stride //|< i
  ,reg2dp_dst_line_stride //|< i
  ,reg2dp_dst_surface_stride //|< i
  ,reg2dp_ew_alu_algo //|< i
  ,reg2dp_ew_alu_bypass //|< i
  ,reg2dp_ew_bypass //|< i
  );
//
// NV_NVDLA_SDP_WDMA_cmd_ports.v
//
input nvdla_core_clk;
input nvdla_core_rstn;
input [31:0] pwrbus_ram_pd;
input op_load;
output cmd2dat_spt_pvld;
input cmd2dat_spt_prdy;
output [14:0] cmd2dat_spt_pd;
output cmd2dat_dma_pvld;
input cmd2dat_dma_prdy;
output [32 -3 +13 +1:0] cmd2dat_dma_pd;
input [4:0] reg2dp_batch_number;
input reg2dp_winograd;
input [12:0] reg2dp_channel;
input [12:0] reg2dp_height;
input [12:0] reg2dp_width;
input reg2dp_output_dst;
input [1:0] reg2dp_out_precision;
input [1:0] reg2dp_proc_precision;
input [31:0] reg2dp_dst_base_addr_high;
input [31-3:0] reg2dp_dst_base_addr_low;
input [31-3:0] reg2dp_dst_batch_stride;
input [31-3:0] reg2dp_dst_line_stride;
input [31-3:0] reg2dp_dst_surface_stride;
input [1:0] reg2dp_ew_alu_algo;
input reg2dp_ew_alu_bypass;
input reg2dp_ew_bypass;
reg [32 -3 -1:0] base_addr_line;
reg [32 -3 -1:0] base_addr_surf;
reg [32 -3 -1:0] base_addr_width;
reg mon_base_addr_line_c;
reg mon_base_addr_surf_c;
reg mon_base_addr_width_c;
wire cfg_addr_en;
wire cfg_di_int16;
wire cfg_di_int8;
wire cfg_do_int16;
wire cfg_do_int8;
wire cfg_mode_8to16;
wire cfg_mode_1x1_nbatch;
wire cfg_mode_batch;
wire [31-3:0] cfg_dst_batch_stride;
wire cfg_mode_winog;
wire [32 -3 -1:0] cfg_dst_addr;
wire [31-3:0] cfg_dst_line_stride;
wire [31-3:0] cfg_dst_surf_stride;
wire cfg_mode_1x1_pack;
wire cfg_mode_eql;
wire cfg_mode_norml;
wire cfg_mode_pdp;
wire cfg_mode_quite;
reg [13-3:0] count_c;
reg [12:0] count_h;
reg [13:0] count_w;
reg [13-3:0] size_of_surf;
wire [12:0] size_of_height;
reg [13:0] size_of_width;
wire is_cube_end;
wire is_elem_end;
wire is_last_e;
wire is_last_c;
wire is_last_h;
wire is_last_w;
wire is_line_end;
wire is_surf_end;
wire is_last_wg;
wire is_winog_end;
wire is_last_batch;
wire cmd_accept;
reg cmd_vld;
wire cmd_rdy;
wire [32 -3 +13 +1:0] dma_fifo_pd;
wire dma_fifo_prdy;
wire dma_fifo_pvld;
reg [32 -3 -1:0] dma_addr;
reg [12:0] dma_size;
reg [13:0] spt_size;
wire [13-3:0] mode_1x1_dma_size;
wire [13-3:0] mode_1x1_spt_size;
wire is_ftrans;
wire is_ltrans;
wire [12:0] mode_norml_dma_size;
wire [13:0] mode_norml_spt_size;
wire [14:0] spt_fifo_pd;
wire spt_fifo_prdy;
wire spt_fifo_pvld;
////////cfg reg////////////    
assign cfg_dst_addr = reg2dp_dst_base_addr_low;
assign cfg_dst_surf_stride = {reg2dp_dst_surface_stride};
assign cfg_dst_line_stride = {reg2dp_dst_line_stride};
assign cfg_mode_batch = 1'b0;
assign cfg_mode_winog = 1'b0 ;
assign cfg_di_int8 = reg2dp_proc_precision == 0 ;
assign cfg_di_int16 = reg2dp_proc_precision == 1 ;
assign cfg_do_int8 = reg2dp_out_precision == 0 ;
assign cfg_do_int16 = reg2dp_out_precision == 1 ;
assign cfg_mode_8to16 = 1'b0;
assign cfg_mode_norml = !(cfg_mode_batch | cfg_mode_winog | cfg_mode_8to16);
assign cfg_mode_1x1_pack = (reg2dp_width==0) & (reg2dp_height==0);
assign cfg_mode_1x1_nbatch = cfg_mode_1x1_pack & !cfg_mode_batch ;
assign cfg_mode_eql = (reg2dp_ew_bypass== 1'h0 )
                      & (reg2dp_ew_alu_bypass== 1'h0 )
                      & (reg2dp_ew_alu_algo== 2'h3 );
assign cfg_mode_pdp = reg2dp_output_dst== 1'h1 ;
assign cfg_mode_quite = cfg_mode_eql | cfg_mode_pdp;
assign cfg_addr_en = !cfg_mode_quite;
//==============
// Surf is always in unit of ATOMIC (1x1x32B)
always @(
  cfg_di_int8
  or reg2dp_channel
  or cfg_di_int16
  ) begin
    if (cfg_di_int8) begin
        size_of_surf = {1'b0,reg2dp_channel[12:3]};
    end else if (cfg_di_int16) begin
        size_of_surf = reg2dp_channel[12:3 -1];
    end else begin
        size_of_surf = reg2dp_channel[12:3 -1];
    end
end
//=================================================
// Cube Shape
//=================================================
assign is_winog_end = is_last_wg;
assign is_elem_end = cfg_mode_1x1_nbatch | is_last_e;
assign is_line_end = cfg_mode_1x1_nbatch | cfg_mode_norml | (is_last_batch & is_elem_end & is_last_w & is_winog_end);
assign is_surf_end = cfg_mode_1x1_nbatch | is_line_end & is_last_h;
assign is_cube_end = cfg_mode_1x1_nbatch | is_surf_end & is_last_c;
//==============
// Width Count;
//==============
// Norml Mode
wire [2:0] beg_addr_offset = base_addr_line[2:0];
wire is_beg_addr_odd = beg_addr_offset[0]==1'b1;
wire [3:0] end_addr_offset = beg_addr_offset + reg2dp_width[2:0];
wire is_end_addr_odd = end_addr_offset[0]==1'b0;
wire odd = ((is_ftrans & is_beg_addr_odd) || (is_ltrans && is_end_addr_odd));
//================================
// SIZE of Trans
//================================
assign is_last_wg = 1'b1;
always @(
  reg2dp_width
  ) begin
        size_of_width = {1'b0, reg2dp_width};
end
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    count_w <= {14{1'b0}};
  end else begin
    if (cmd_accept) begin
        if (is_line_end) begin
            count_w <= 0;
        end else if (is_last_batch & is_winog_end) begin
            count_w <= count_w + 1'b1;
        end
    end
  end
end
assign is_ltrans = (count_w==size_of_width);
assign is_ftrans = (count_w==0);
assign is_last_w = is_ltrans;
assign is_last_e = 1'b1;
//==============
// HEIGHT Count:
//==============
assign size_of_height = reg2dp_height;
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    count_h <= {13{1'b0}};
  end else begin
    if (cmd_accept) begin
        if (is_last_batch) begin
            if (is_surf_end) begin
                count_h <= 0;
            end else if (is_line_end) begin
                count_h <= count_h + 1;
            end
        end
    end
  end
end
assign is_last_h = count_h==size_of_height;
//==============
// CHANNEL Count
//==============
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    count_c <= {9{1'b0}};
  end else begin
    if (cmd_accept) begin
        if (is_last_batch) begin
            if (is_cube_end) begin
                count_c <= 0;
            end else if (is_surf_end) begin
                count_c <= count_c + 1;
            end
        end
    end
  end
end
assign is_last_c = (count_c==size_of_surf);
assign is_last_batch = 1'b1;
//==========================================
// DMA Req : ADDR PREPARE
//==========================================
// WIDTH
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    {mon_base_addr_width_c,base_addr_width} <= {(32 -3 +1){1'b0}};
  end else begin
    if (cfg_addr_en) begin
        if (op_load) begin
            {mon_base_addr_width_c,base_addr_width} <= {1'b0,cfg_dst_addr};
        end else if (cmd_accept) begin
            begin
                if (is_surf_end) begin
                    {mon_base_addr_width_c,base_addr_width} <= base_addr_surf + cfg_dst_surf_stride;
                end else if (is_line_end) begin
                    {mon_base_addr_width_c,base_addr_width} <= base_addr_line + cfg_dst_line_stride;
                end
            end
        end
    end
  end
end
// LINE
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    {mon_base_addr_line_c,base_addr_line} <= {(32 -3 +1){1'b0}};
  end else begin
    if (cfg_addr_en) begin
        if (op_load) begin
            {mon_base_addr_line_c,base_addr_line} <= {1'b0,cfg_dst_addr};
        end else if (cmd_accept) begin
            begin
                if (is_surf_end) begin
                    {mon_base_addr_line_c,base_addr_line} <= base_addr_surf + cfg_dst_surf_stride;
                end else if (is_line_end) begin
                    {mon_base_addr_line_c,base_addr_line} <= base_addr_line + cfg_dst_line_stride;
                end
            end
        end
    end
  end
end
// SURF
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    {mon_base_addr_surf_c,base_addr_surf} <= {(32 -3 +1){1'b0}};
  end else begin
    if (cfg_addr_en) begin
        if (op_load) begin
            {mon_base_addr_surf_c,base_addr_surf} <= {1'b0,cfg_dst_addr};
        end else if (cmd_accept) begin
            begin
                if (is_surf_end) begin
                    {mon_base_addr_surf_c,base_addr_surf} <= base_addr_surf + cfg_dst_surf_stride;
                end
            end
        end
    end
  end
end
//==========================================
// DMA Req : SIZE
//==========================================
always @(
  base_addr_line
  ) begin
    begin
        dma_addr = base_addr_line;
    end
end
//========================
// Output: one for data write spt_; and one for data read dma_
//========================
// spt_size is to tell how many data from dp2wdma for a corresponding DMA req to MC/CF if
// spt_size is in unit of cycle on dp2wdma
assign mode_1x1_spt_size = (cfg_do_int8 | cfg_di_int8) ? {1'b0,reg2dp_channel[12:3]} : reg2dp_channel[12:3 -1];
assign mode_norml_spt_size[13:0] = {1'b0,reg2dp_width};
always @(
  cfg_mode_1x1_nbatch
  or mode_1x1_spt_size
  or mode_norml_spt_size
  ) begin
    if (cfg_mode_1x1_nbatch)
        spt_size = {{3{1'b0}}, mode_1x1_spt_size};
    else
        spt_size = mode_norml_spt_size;
end
//========================
// Output: one for data write spt_; and one for data read dma_
//========================
assign mode_1x1_dma_size = size_of_surf;
assign mode_norml_dma_size = reg2dp_width;
always @(
  cfg_mode_1x1_nbatch
  or mode_1x1_dma_size
  or mode_norml_dma_size
  ) begin
    if (cfg_mode_1x1_nbatch)
        dma_size = {{3 -1{1'b0}}, mode_1x1_dma_size};
    else
        dma_size = mode_norml_dma_size;
end
//=================================================
// OUTPUT FIFO: SPT & DMA channel
//=================================================
always @(posedge nvdla_core_clk or negedge nvdla_core_rstn) begin
  if (!nvdla_core_rstn) begin
    cmd_vld <= 1'b0;
  end else begin
    if (op_load) begin
        cmd_vld <= 1'b1;
    end else if (cmd_accept) begin
        if (is_cube_end) begin
            cmd_vld <= 1'b0;
        end
    end
  end
end
assign spt_fifo_pvld = cmd_vld & dma_fifo_prdy;
assign dma_fifo_pvld = cmd_vld & spt_fifo_prdy;
assign cmd_rdy = dma_fifo_prdy & spt_fifo_prdy;
assign cmd_accept = cmd_vld & cmd_rdy;
assign spt_fifo_pd[13:0] = spt_size[13:0];
assign spt_fifo_pd[14] = odd ;
assign dma_fifo_pd[32 -3 -1:0] = dma_addr[32 -3 -1:0];
assign dma_fifo_pd[32 -3 +13 -1:32 -3] = dma_size[12:0];
assign dma_fifo_pd[32 -3 +13] = odd ;
assign dma_fifo_pd[32 -3 +13 +1] = is_cube_end ;
NV_NVDLA_SDP_WDMA_CMD_sfifo u_sfifo (
   .nvdla_core_clk (nvdla_core_clk)
  ,.nvdla_core_rstn (nvdla_core_rstn)
  ,.spt_fifo_prdy (spt_fifo_prdy)
  ,.spt_fifo_pvld (spt_fifo_pvld)
  ,.spt_fifo_pd (spt_fifo_pd[14:0])
  ,.cmd2dat_spt_prdy (cmd2dat_spt_prdy)
  ,.cmd2dat_spt_pvld (cmd2dat_spt_pvld)
  ,.cmd2dat_spt_pd (cmd2dat_spt_pd[14:0])
  ,.pwrbus_ram_pd (pwrbus_ram_pd[31:0])
  );
NV_NVDLA_SDP_WDMA_CMD_dfifo u_dfifo (
   .nvdla_core_clk (nvdla_core_clk)
  ,.nvdla_core_rstn (nvdla_core_rstn)
  ,.dma_fifo_prdy (dma_fifo_prdy)
  ,.dma_fifo_pvld (dma_fifo_pvld)
  ,.dma_fifo_pd (dma_fifo_pd[32 -3 +13 +1:0])
  ,.cmd2dat_dma_prdy (cmd2dat_dma_prdy)
  ,.cmd2dat_dma_pvld (cmd2dat_dma_pvld)
  ,.cmd2dat_dma_pd (cmd2dat_dma_pd[32 -3 +13 +1:0])
  ,.pwrbus_ram_pd (pwrbus_ram_pd[31:0])
  );
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
// VCS coverage off
  nv_assert_never #(0,0,"SDP_WDMA: no overflow is allowed") zzz_assert_never_3x (nvdla_core_clk, `ASSERT_RESET, mon_base_addr_width_c); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
// VCS coverage off
  nv_assert_never #(0,0,"SDP_WDMA: no overflow is allowed") zzz_assert_never_4x (nvdla_core_clk, `ASSERT_RESET, mon_base_addr_line_c); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass disable_block NoWidthInBasedNum-ML
// spyglass disable_block STARC-2.10.3.2a
// spyglass disable_block STARC05-2.1.3.1
// spyglass disable_block STARC-2.1.4.6
// spyglass disable_block W116
// spyglass disable_block W154
// spyglass disable_block W239
// spyglass disable_block W362
// spyglass disable_block WRN_58
// spyglass disable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
`ifdef ASSERT_ON
`ifdef FV_ASSERT_ON
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef SYNTHESIS
`define ASSERT_RESET nvdla_core_rstn
`else
`ifdef ASSERT_OFF_RESET_IS_X
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b0 : nvdla_core_rstn)
`else
`define ASSERT_RESET ((1'bx === nvdla_core_rstn) ? 1'b1 : nvdla_core_rstn)
`endif // ASSERT_OFF_RESET_IS_X
`endif // SYNTHESIS
`endif // FV_ASSERT_ON
// VCS coverage off
  nv_assert_never #(0,0,"SDP_WDMA: no overflow is allowed") zzz_assert_never_5x (nvdla_core_clk, `ASSERT_RESET, mon_base_addr_surf_c); // spyglass disable W504 SelfDeterminedExpr-ML 
// VCS coverage on
`undef ASSERT_RESET
`endif // ASSERT_ON
`ifdef SPYGLASS_ASSERT_ON
`else
// spyglass enable_block NoWidthInBasedNum-ML
// spyglass enable_block STARC-2.10.3.2a
// spyglass enable_block STARC05-2.1.3.1
// spyglass enable_block STARC-2.1.4.6
// spyglass enable_block W116
// spyglass enable_block W154
// spyglass enable_block W239
// spyglass enable_block W362
// spyglass enable_block WRN_58
// spyglass enable_block WRN_61
`endif // SPYGLASS_ASSERT_ON
//========================
// FUNCTION POINT
//========================
//VCS coverage off
`ifndef DISABLE_FUNCPOINT
  `ifdef ENABLE_FUNCPOINT
    reg funcpoint_cover_off;
    initial begin
        if ( $test$plusargs( "cover_off" ) ) begin
            funcpoint_cover_off = 1'b1;
        end else begin
            funcpoint_cover_off = 1'b0;
        end
    end
    property sdp_wdma_cmd__odd_address__0_cov;
        disable iff((nvdla_core_rstn !== 1) || funcpoint_cover_off)
        @(posedge nvdla_core_clk)
        ((cmd_vld) && nvdla_core_rstn) |-> (odd);
    endproperty
// Cover 0 : "odd"
    FUNCPOINT_sdp_wdma_cmd__odd_address__0_COV : cover property (sdp_wdma_cmd__odd_address__0_cov);
  `endif
`endif
//VCS coverage on
endmodule // NV_NVDLA_SDP_WDMA_cmd
`define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1
`include "simulate_x_tick.vh"
module NV_NVDLA_SDP_WDMA_CMD_sfifo (
      nvdla_core_clk
    , nvdla_core_rstn
    , spt_fifo_prdy
    , spt_fifo_pvld
    , spt_fifo_pd
    , cmd2dat_spt_prdy
    , cmd2dat_spt_pvld
    , cmd2dat_spt_pd
    , pwrbus_ram_pd
    );
// spyglass disable_block W401 -- clock is not input to module
input nvdla_core_clk;
input nvdla_core_rstn;
output spt_fifo_prdy;
input spt_fifo_pvld;
input [14:0] spt_fifo_pd;
input cmd2dat_spt_prdy;
output cmd2dat_spt_pvld;
output [14:0] cmd2dat_spt_pd;
input [31:0] pwrbus_ram_pd;
// Master Clock Gating (SLCG)
//
// We gate the clock(s) when idle or stalled.
// This allows us to turn off numerous miscellaneous flops
// that don't get gated during synthesis for one reason or another.
//
// We gate write side and read side separately.
// If the fifo is synchronous, we also gate the ram separately, but if
// -master_clk_gated_unified or -status_reg/-status_logic_reg is specified,
// then we use one clk gate for write, ram, and read.
//
wire nvdla_core_clk_mgated_enable; // assigned by code at end of this module
wire nvdla_core_clk_mgated; // used only in synchronous fifos
NV_CLK_gate_power nvdla_core_clk_mgate( .clk(nvdla_core_clk), .reset_(nvdla_core_rstn), .clk_en(nvdla_core_clk_mgated_enable), .clk_gated(nvdla_core_clk_mgated) );
//
// WRITE SIDE
//
wire wr_reserving;
reg spt_fifo_busy_int; // copy for internal use
assign spt_fifo_prdy = !spt_fifo_busy_int;
assign wr_reserving = spt_fifo_pvld && !spt_fifo_busy_int; // reserving write space?
wire wr_popping; // fwd: write side sees pop?
reg [2:0] spt_fifo_count; // write-side count
wire [2:0] wr_count_next_wr_popping = wr_reserving ? spt_fifo_count : (spt_fifo_count - 1'd1); // spyglass disable W164a W484
wire [2:0] wr_count_next_no_wr_popping = wr_reserving ? (spt_fifo_count + 1'd1) : spt_fifo_count; // spyglass disable W164a W484
wire [2:0] wr_count_next = wr_popping ? wr_count_next_wr_popping :
                                               wr_count_next_no_wr_popping;
wire wr_count_next_no_wr_popping_is_4 = ( wr_count_next_no_wr_popping == 3'd4 );
wire wr_count_next_is_4 = wr_popping ? 1'b0 :
                                          wr_count_next_no_wr_popping_is_4;
wire [2:0] wr_limit_muxed; // muxed with simulation/emulation overrides
wire [2:0] wr_limit_reg = wr_limit_muxed;
// VCS coverage off
wire spt_fifo_busy_next = wr_count_next_is_4 || // busy next cycle?
                          (wr_limit_reg != 3'd0 && // check spt_fifo_limit if != 0
                           wr_count_next >= wr_limit_reg) ;
// VCS coverage on
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        spt_fifo_busy_int <= 1'b0;
        spt_fifo_count <= 3'd0;
    end else begin
 spt_fifo_busy_int <= spt_fifo_busy_next;
 if ( wr_reserving ^ wr_popping ) begin
     spt_fifo_count <= wr_count_next;
        end
//synopsys translate_off
            else if ( !(wr_reserving ^ wr_popping) ) begin
        end else begin
            spt_fifo_count <= {3{`x_or_0}};
        end
//synopsys translate_on
    end
end
wire wr_pushing = wr_reserving; // data pushed same cycle as spt_fifo_pvld
//
// RAM
//
reg [1:0] spt_fifo_adr; // current write address
// spyglass disable_block W484
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        spt_fifo_adr <= 2'd0;
    end else begin
        if ( wr_pushing ) begin
     spt_fifo_adr <= spt_fifo_adr + 1'd1;
        end
    end
end
// spyglass enable_block W484
wire rd_popping;
reg [1:0] cmd2dat_spt_adr; // read address this cycle
wire ram_we = wr_pushing && (spt_fifo_count > 3'd0 || !rd_popping); // note: write occurs next cycle
wire [14:0] cmd2dat_spt_pd; // read data out of ram
wire [31 : 0] pwrbus_ram_pd;
// Adding parameter for fifogen to disable wr/rd contention assertion in ramgen.
// Fifogen handles this by ignoring the data on the ram data out for that cycle.
NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15 ram (
      .clk( nvdla_core_clk_mgated )
    , .pwrbus_ram_pd ( pwrbus_ram_pd )
    , .di ( spt_fifo_pd )
    , .we ( ram_we )
    , .wa ( spt_fifo_adr )
    , .ra ( (spt_fifo_count == 0) ? 3'd4 : {1'b0,cmd2dat_spt_adr} )
    , .dout ( cmd2dat_spt_pd )
    );
wire [1:0] rd_adr_next_popping = cmd2dat_spt_adr + 1'd1; // spyglass disable W484
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        cmd2dat_spt_adr <= 2'd0;
    end else begin
        if ( rd_popping ) begin
     cmd2dat_spt_adr <= rd_adr_next_popping;
        end
//synopsys translate_off
            else if ( !rd_popping ) begin
        end else begin
            cmd2dat_spt_adr <= {2{`x_or_0}};
        end
//synopsys translate_on
    end
end
//
// SYNCHRONOUS BOUNDARY
//
assign wr_popping = rd_popping; // let it be seen immediately
wire rd_pushing = wr_pushing; // let it be seen immediately
//
// READ SIDE
//
wire cmd2dat_spt_pvld; // data out of fifo is valid
assign rd_popping = cmd2dat_spt_pvld && cmd2dat_spt_prdy;
reg [2:0] cmd2dat_spt_count; // read-side fifo count
// spyglass disable_block W164a W484
wire [2:0] rd_count_next_rd_popping = rd_pushing ? cmd2dat_spt_count :
                                                                (cmd2dat_spt_count - 1'd1);
wire [2:0] rd_count_next_no_rd_popping = rd_pushing ? (cmd2dat_spt_count + 1'd1) :
                                                                    cmd2dat_spt_count;
// spyglass enable_block W164a W484
wire [2:0] rd_count_next = rd_popping ? rd_count_next_rd_popping :
                                                     rd_count_next_no_rd_popping;
assign cmd2dat_spt_pvld = cmd2dat_spt_count != 0 || rd_pushing;
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        cmd2dat_spt_count <= 3'd0;
    end else begin
        if ( rd_pushing || rd_popping ) begin
     cmd2dat_spt_count <= rd_count_next;
        end
//synopsys translate_off
            else if ( !(rd_pushing || rd_popping ) ) begin
        end else begin
            cmd2dat_spt_count <= {3{`x_or_0}};
        end
//synopsys translate_on
    end
end
// Master Clock Gating (SLCG) Enables
//
// plusarg for disabling this stuff:
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0;
`endif
`endif
// synopsys translate_on
assign nvdla_core_clk_mgated_enable = ((wr_reserving || wr_pushing || wr_popping || (spt_fifo_pvld && !spt_fifo_busy_int) || (spt_fifo_busy_int != spt_fifo_busy_next)) || (rd_pushing || rd_popping || (cmd2dat_spt_pvld && cmd2dat_spt_prdy)) || (wr_pushing))
                               `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED
                               || 1'b1
                               `endif
// synopsys translate_off
          `ifndef SYNTH_LEVEL1_COMPILE
          `ifndef SYNTHESIS
                               || master_clk_gating_disabled
          `endif
          `endif
// synopsys translate_on
                               ;
// Simulation and Emulation Overrides of wr_limit(s)
//
`ifdef EMU
`ifdef EMU_FIFO_CFG
// Emulation Global Config Override
//
assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_SDP_WDMA_CMD_sfifo_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_SDP_WDMA_CMD_sfifo_wr_limit : 3'd0;
`else
// No Global Override for Emulation
//
assign wr_limit_muxed = 3'd0;
`endif // EMU_FIFO_CFG
`else // !EMU
`ifdef SYNTH_LEVEL1_COMPILE
// No Override for GCS Compiles
//
assign wr_limit_muxed = 3'd0;
`else
`ifdef SYNTHESIS
// No Override for RTL Synthesis
//
assign wr_limit_muxed = 3'd0;
`else
// RTL Simulation Plusarg Override
// VCS coverage off
reg wr_limit_override;
reg [2:0] wr_limit_override_value;
assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 3'd0;
`ifdef NV_ARCHPRO
event reinit;
initial begin
    $display("fifogen reinit initial block %m");
    -> reinit;
end
`endif
`ifdef NV_ARCHPRO
always @( reinit ) begin
`else
initial begin
`endif
    wr_limit_override = 0;
    wr_limit_override_value = 0; // to keep viva happy with dangles
    if ( $test$plusargs( "NV_NVDLA_SDP_WDMA_CMD_sfifo_wr_limit" ) ) begin
        wr_limit_override = 1;
        $value$plusargs( "NV_NVDLA_SDP_WDMA_CMD_sfifo_wr_limit=%d", wr_limit_override_value);
    end
end
// VCS coverage on
`endif
`endif
`endif
//
// Histogram of fifo depth (from write side's perspective)
//
// NOTE: it will reference `SIMTOP.perfmon_enabled, so that
// has to at least be defined, though not initialized.
// tbgen testbenches have it already and various
// ways to turn it on and off.
//
`ifdef PERFMON_HISTOGRAM
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
perfmon_histogram perfmon (
      .clk ( nvdla_core_clk )
    , .max ( {29'd0, (wr_limit_reg == 3'd0) ? 3'd4 : wr_limit_reg} )
    , .curr ( {29'd0, spt_fifo_count} )
    );
`endif
`endif
// synopsys translate_on
`endif
// spyglass disable_block W164a W164b W116 W484 W504
`ifdef SPYGLASS
`else
`ifdef FV_ASSERT_ON
`else
// synopsys translate_off
`endif
`ifdef ASSERT_ON
`ifdef SPYGLASS
wire disable_assert_plusarg = 1'b0;
`else
`ifdef FV_ASSERT_ON
wire disable_assert_plusarg = 1'b0;
`else
wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS");
`endif
`endif
wire assert_enabled = 1'b1 && !disable_assert_plusarg;
`endif
`ifdef FV_ASSERT_ON
`else
// synopsys translate_on
`endif
`ifdef ASSERT_ON
//synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
always @(assert_enabled) begin
    if ( assert_enabled === 1'b0 ) begin
        $display("Asserts are disabled for %m");
    end
end
`endif
`endif
//synopsys translate_on
`endif
`endif
// spyglass enable_block W164a W164b W116 W484 W504
//The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH
// define is set. This is to aid fifogen team search for fifogen fifo
// instance and module names in a given design.
`ifdef FIFOGEN_MODULE_SEARCH
NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y());
`endif
// spyglass enable_block W401 -- clock is not input to module
// synopsys dc_script_begin
// set_boundary_optimization find(design, "NV_NVDLA_SDP_WDMA_CMD_sfifo") true
// synopsys dc_script_end
endmodule // NV_NVDLA_SDP_WDMA_CMD_sfifo
//
// Flop-Based RAM
//
module NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15 (
      clk
    , pwrbus_ram_pd
    , di
    , we
    , wa
    , ra
    , dout
    );
input clk; // write clock
input [31 : 0] pwrbus_ram_pd;
input [14:0] di;
input we;
input [1:0] wa;
input [2:0] ra;
output [14:0] dout;
`ifndef FPGA
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_0 (.A(pwrbus_ram_pd[0]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_1 (.A(pwrbus_ram_pd[1]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_2 (.A(pwrbus_ram_pd[2]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_3 (.A(pwrbus_ram_pd[3]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_4 (.A(pwrbus_ram_pd[4]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_5 (.A(pwrbus_ram_pd[5]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_6 (.A(pwrbus_ram_pd[6]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_7 (.A(pwrbus_ram_pd[7]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_8 (.A(pwrbus_ram_pd[8]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_9 (.A(pwrbus_ram_pd[9]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_10 (.A(pwrbus_ram_pd[10]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_11 (.A(pwrbus_ram_pd[11]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_12 (.A(pwrbus_ram_pd[12]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_13 (.A(pwrbus_ram_pd[13]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_14 (.A(pwrbus_ram_pd[14]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_15 (.A(pwrbus_ram_pd[15]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_16 (.A(pwrbus_ram_pd[16]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_17 (.A(pwrbus_ram_pd[17]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_18 (.A(pwrbus_ram_pd[18]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_19 (.A(pwrbus_ram_pd[19]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_20 (.A(pwrbus_ram_pd[20]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_21 (.A(pwrbus_ram_pd[21]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_22 (.A(pwrbus_ram_pd[22]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_23 (.A(pwrbus_ram_pd[23]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_24 (.A(pwrbus_ram_pd[24]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_25 (.A(pwrbus_ram_pd[25]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_26 (.A(pwrbus_ram_pd[26]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_27 (.A(pwrbus_ram_pd[27]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_28 (.A(pwrbus_ram_pd[28]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_29 (.A(pwrbus_ram_pd[29]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_30 (.A(pwrbus_ram_pd[30]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_31 (.A(pwrbus_ram_pd[31]));
`endif
`ifdef EMU
wire [14:0] dout_p;
// we use an emulation ram here to save flops on the emulation board
// so that the monstrous chip can fit :-)
//
reg [1:0] Wa0_vmw;
reg we0_vmw;
reg [14:0] Di0_vmw;
always @( posedge clk ) begin
    Wa0_vmw <= wa;
    we0_vmw <= we;
    Di0_vmw <= di;
end
vmw_NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15 emu_ram (
     .Wa0( Wa0_vmw )
   , .we0( we0_vmw )
   , .Di0( Di0_vmw )
   , .Ra0( ra[1:0] )
   , .Do0( dout_p )
   );
assign dout = (ra == 4) ? di : dout_p;
`else
reg [14:0] ram_ff0;
reg [14:0] ram_ff1;
reg [14:0] ram_ff2;
reg [14:0] ram_ff3;
always @( posedge clk ) begin
    if ( we && wa == 2'd0 ) begin
 ram_ff0 <= di;
    end
    if ( we && wa == 2'd1 ) begin
 ram_ff1 <= di;
    end
    if ( we && wa == 2'd2 ) begin
 ram_ff2 <= di;
    end
    if ( we && wa == 2'd3 ) begin
 ram_ff3 <= di;
    end
end
reg [14:0] dout;
always @(*) begin
    case( ra )
    3'd0: dout = ram_ff0;
    3'd1: dout = ram_ff1;
    3'd2: dout = ram_ff2;
    3'd3: dout = ram_ff3;
    3'd4: dout = di;
//VCS coverage off
    default: dout = {15{`x_or_0}};
//VCS coverage on
    endcase
end
`endif // EMU
endmodule // NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15
// emulation model of flopram guts
//
`ifdef EMU
module vmw_NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15 (
   Wa0, we0, Di0,
   Ra0, Do0
   );
input [1:0] Wa0;
input we0;
input [14:0] Di0;
input [1:0] Ra0;
output [14:0] Do0;
// Only visible during Spyglass to avoid blackboxes.
`ifdef SPYGLASS_FLOPRAM
assign Do0 = 15'd0;
wire dummy = 1'b0 | (|Wa0) | (|we0) | (|Di0) | (|Ra0);
`endif
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg [14:0] mem[3:0];
// expand mem for debug ease
`ifdef EMU_EXPAND_FLOPRAM_MEM
wire [14:0] Q0 = mem[0];
wire [14:0] Q1 = mem[1];
wire [14:0] Q2 = mem[2];
wire [14:0] Q3 = mem[3];
`endif
// asynchronous ram writes
always @(*) begin
  if ( we0 == 1'b1 ) begin
    #0.1;
    mem[Wa0] = Di0;
  end
end
assign Do0 = mem[Ra0];
`endif
`endif
// synopsys translate_on
// synopsys dc_script_begin
// synopsys dc_script_end
// g2c if { [find / -null_ok -subdesign vmw_NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15] != {} } { set_attr preserve 1 [find / -subdesign vmw_NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15] }
endmodule // vmw_NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15
//vmw: Memory vmw_NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15
//vmw: Address-size 2
//vmw: Data-size 15
//vmw: Sensitivity level 1
//vmw: Ports W R
//vmw: terminal we0 WriteEnable0
//vmw: terminal Wa0 address0
//vmw: terminal Di0[14:0] data0[14:0]
//vmw:
//vmw: terminal Ra0 address1
//vmw: terminal Do0[14:0] data1[14:0]
//vmw:
//qt: CELL vmw_NV_NVDLA_SDP_WDMA_CMD_sfifo_flopram_rwsa_4x15
//qt: TERMINAL we0 TYPE=WE POLARITY=H PORT=1
//qt: TERMINAL Wa0[%d] TYPE=ADDRESS DIR=W BIT=%1 PORT=1
//qt: TERMINAL Di0[%d] TYPE=DATA DIR=I BIT=%1 PORT=1
//qt:
//qt: TERMINAL Ra0[%d] TYPE=ADDRESS DIR=R BIT=%1 PORT=1
//qt: TERMINAL Do0[%d] TYPE=DATA DIR=O BIT=%1 PORT=1
//qt:
`endif // EMU
`define FORCE_CONTENTION_ASSERTION_RESET_ACTIVE 1'b1
`include "simulate_x_tick.vh"
module NV_NVDLA_SDP_WDMA_CMD_dfifo (
      nvdla_core_clk
    , nvdla_core_rstn
    , dma_fifo_prdy
    , dma_fifo_pvld
    , dma_fifo_pd
    , cmd2dat_dma_prdy
    , cmd2dat_dma_pvld
    , cmd2dat_dma_pd
    , pwrbus_ram_pd
    );
// spyglass disable_block W401 -- clock is not input to module
input nvdla_core_clk;
input nvdla_core_rstn;
output dma_fifo_prdy;
input dma_fifo_pvld;
input [43:0] dma_fifo_pd;
input cmd2dat_dma_prdy;
output cmd2dat_dma_pvld;
output [43:0] cmd2dat_dma_pd;
input [31:0] pwrbus_ram_pd;
// Master Clock Gating (SLCG)
//
// We gate the clock(s) when idle or stalled.
// This allows us to turn off numerous miscellaneous flops
// that don't get gated during synthesis for one reason or another.
//
// We gate write side and read side separately.
// If the fifo is synchronous, we also gate the ram separately, but if
// -master_clk_gated_unified or -status_reg/-status_logic_reg is specified,
// then we use one clk gate for write, ram, and read.
//
wire nvdla_core_clk_mgated_enable; // assigned by code at end of this module
wire nvdla_core_clk_mgated; // used only in synchronous fifos
NV_CLK_gate_power nvdla_core_clk_mgate( .clk(nvdla_core_clk), .reset_(nvdla_core_rstn), .clk_en(nvdla_core_clk_mgated_enable), .clk_gated(nvdla_core_clk_mgated) );
//
// WRITE SIDE
//
wire wr_reserving;
reg dma_fifo_busy_int; // copy for internal use
assign dma_fifo_prdy = !dma_fifo_busy_int;
assign wr_reserving = dma_fifo_pvld && !dma_fifo_busy_int; // reserving write space?
wire wr_popping; // fwd: write side sees pop?
reg [2:0] dma_fifo_count; // write-side count
wire [2:0] wr_count_next_wr_popping = wr_reserving ? dma_fifo_count : (dma_fifo_count - 1'd1); // spyglass disable W164a W484
wire [2:0] wr_count_next_no_wr_popping = wr_reserving ? (dma_fifo_count + 1'd1) : dma_fifo_count; // spyglass disable W164a W484
wire [2:0] wr_count_next = wr_popping ? wr_count_next_wr_popping :
                                               wr_count_next_no_wr_popping;
wire wr_count_next_no_wr_popping_is_4 = ( wr_count_next_no_wr_popping == 3'd4 );
wire wr_count_next_is_4 = wr_popping ? 1'b0 :
                                          wr_count_next_no_wr_popping_is_4;
wire [2:0] wr_limit_muxed; // muxed with simulation/emulation overrides
wire [2:0] wr_limit_reg = wr_limit_muxed;
// VCS coverage off
wire dma_fifo_busy_next = wr_count_next_is_4 || // busy next cycle?
                          (wr_limit_reg != 3'd0 && // check dma_fifo_limit if != 0
                           wr_count_next >= wr_limit_reg) ;
// VCS coverage on
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        dma_fifo_busy_int <= 1'b0;
        dma_fifo_count <= 3'd0;
    end else begin
 dma_fifo_busy_int <= dma_fifo_busy_next;
 if ( wr_reserving ^ wr_popping ) begin
     dma_fifo_count <= wr_count_next;
        end
//synopsys translate_off
            else if ( !(wr_reserving ^ wr_popping) ) begin
        end else begin
            dma_fifo_count <= {3{`x_or_0}};
        end
//synopsys translate_on
    end
end
wire wr_pushing = wr_reserving; // data pushed same cycle as dma_fifo_pvld
//
// RAM
//
reg [1:0] dma_fifo_adr; // current write address
// spyglass disable_block W484
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        dma_fifo_adr <= 2'd0;
    end else begin
        if ( wr_pushing ) begin
     dma_fifo_adr <= dma_fifo_adr + 1'd1;
        end
    end
end
// spyglass enable_block W484
wire rd_popping;
reg [1:0] cmd2dat_dma_adr; // read address this cycle
wire ram_we = wr_pushing && (dma_fifo_count > 3'd0 || !rd_popping); // note: write occurs next cycle
wire [43:0] cmd2dat_dma_pd; // read data out of ram
wire [31 : 0] pwrbus_ram_pd;
// Adding parameter for fifogen to disable wr/rd contention assertion in ramgen.
// Fifogen handles this by ignoring the data on the ram data out for that cycle.
NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44 ram (
      .clk( nvdla_core_clk_mgated )
    , .pwrbus_ram_pd ( pwrbus_ram_pd )
    , .di ( dma_fifo_pd )
    , .we ( ram_we )
    , .wa ( dma_fifo_adr )
    , .ra ( (dma_fifo_count == 0) ? 3'd4 : {1'b0,cmd2dat_dma_adr} )
    , .dout ( cmd2dat_dma_pd )
    );
wire [1:0] rd_adr_next_popping = cmd2dat_dma_adr + 1'd1; // spyglass disable W484
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        cmd2dat_dma_adr <= 2'd0;
    end else begin
        if ( rd_popping ) begin
     cmd2dat_dma_adr <= rd_adr_next_popping;
        end
//synopsys translate_off
            else if ( !rd_popping ) begin
        end else begin
            cmd2dat_dma_adr <= {2{`x_or_0}};
        end
//synopsys translate_on
    end
end
//
// SYNCHRONOUS BOUNDARY
//
assign wr_popping = rd_popping; // let it be seen immediately
wire rd_pushing = wr_pushing; // let it be seen immediately
//
// READ SIDE
//
wire cmd2dat_dma_pvld; // data out of fifo is valid
assign rd_popping = cmd2dat_dma_pvld && cmd2dat_dma_prdy;
reg [2:0] cmd2dat_dma_count; // read-side fifo count
// spyglass disable_block W164a W484
wire [2:0] rd_count_next_rd_popping = rd_pushing ? cmd2dat_dma_count :
                                                                (cmd2dat_dma_count - 1'd1);
wire [2:0] rd_count_next_no_rd_popping = rd_pushing ? (cmd2dat_dma_count + 1'd1) :
                                                                    cmd2dat_dma_count;
// spyglass enable_block W164a W484
wire [2:0] rd_count_next = rd_popping ? rd_count_next_rd_popping :
                                                     rd_count_next_no_rd_popping;
assign cmd2dat_dma_pvld = cmd2dat_dma_count != 0 || rd_pushing;
always @( posedge nvdla_core_clk_mgated or negedge nvdla_core_rstn ) begin
    if ( !nvdla_core_rstn ) begin
        cmd2dat_dma_count <= 3'd0;
    end else begin
        if ( rd_pushing || rd_popping ) begin
     cmd2dat_dma_count <= rd_count_next;
        end
//synopsys translate_off
            else if ( !(rd_pushing || rd_popping ) ) begin
        end else begin
            cmd2dat_dma_count <= {3{`x_or_0}};
        end
//synopsys translate_on
    end
end
// Master Clock Gating (SLCG) Enables
//
// plusarg for disabling this stuff:
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg master_clk_gating_disabled; initial master_clk_gating_disabled = $test$plusargs( "fifogen_disable_master_clk_gating" ) != 0;
`endif
`endif
// synopsys translate_on
assign nvdla_core_clk_mgated_enable = ((wr_reserving || wr_pushing || wr_popping || (dma_fifo_pvld && !dma_fifo_busy_int) || (dma_fifo_busy_int != dma_fifo_busy_next)) || (rd_pushing || rd_popping || (cmd2dat_dma_pvld && cmd2dat_dma_prdy)) || (wr_pushing))
                               `ifdef FIFOGEN_MASTER_CLK_GATING_DISABLED
                               || 1'b1
                               `endif
// synopsys translate_off
          `ifndef SYNTH_LEVEL1_COMPILE
          `ifndef SYNTHESIS
                               || master_clk_gating_disabled
          `endif
          `endif
// synopsys translate_on
                               ;
// Simulation and Emulation Overrides of wr_limit(s)
//
`ifdef EMU
`ifdef EMU_FIFO_CFG
// Emulation Global Config Override
//
assign wr_limit_muxed = `EMU_FIFO_CFG.NV_NVDLA_SDP_WDMA_CMD_dfifo_wr_limit_override ? `EMU_FIFO_CFG.NV_NVDLA_SDP_WDMA_CMD_dfifo_wr_limit : 3'd0;
`else
// No Global Override for Emulation
//
assign wr_limit_muxed = 3'd0;
`endif // EMU_FIFO_CFG
`else // !EMU
`ifdef SYNTH_LEVEL1_COMPILE
// No Override for GCS Compiles
//
assign wr_limit_muxed = 3'd0;
`else
`ifdef SYNTHESIS
// No Override for RTL Synthesis
//
assign wr_limit_muxed = 3'd0;
`else
// RTL Simulation Plusarg Override
// VCS coverage off
reg wr_limit_override;
reg [2:0] wr_limit_override_value;
assign wr_limit_muxed = wr_limit_override ? wr_limit_override_value : 3'd0;
`ifdef NV_ARCHPRO
event reinit;
initial begin
    $display("fifogen reinit initial block %m");
    -> reinit;
end
`endif
`ifdef NV_ARCHPRO
always @( reinit ) begin
`else
initial begin
`endif
    wr_limit_override = 0;
    wr_limit_override_value = 0; // to keep viva happy with dangles
    if ( $test$plusargs( "NV_NVDLA_SDP_WDMA_CMD_dfifo_wr_limit" ) ) begin
        wr_limit_override = 1;
        $value$plusargs( "NV_NVDLA_SDP_WDMA_CMD_dfifo_wr_limit=%d", wr_limit_override_value);
    end
end
// VCS coverage on
`endif
`endif
`endif
//
// Histogram of fifo depth (from write side's perspective)
//
// NOTE: it will reference `SIMTOP.perfmon_enabled, so that
// has to at least be defined, though not initialized.
// tbgen testbenches have it already and various
// ways to turn it on and off.
//
`ifdef PERFMON_HISTOGRAM
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
perfmon_histogram perfmon (
      .clk ( nvdla_core_clk )
    , .max ( {29'd0, (wr_limit_reg == 3'd0) ? 3'd4 : wr_limit_reg} )
    , .curr ( {29'd0, dma_fifo_count} )
    );
`endif
`endif
// synopsys translate_on
`endif
// spyglass disable_block W164a W164b W116 W484 W504
`ifdef SPYGLASS
`else
`ifdef FV_ASSERT_ON
`else
// synopsys translate_off
`endif
`ifdef ASSERT_ON
`ifdef SPYGLASS
wire disable_assert_plusarg = 1'b0;
`else
`ifdef FV_ASSERT_ON
wire disable_assert_plusarg = 1'b0;
`else
wire disable_assert_plusarg = $test$plusargs("DISABLE_NESS_FLOW_ASSERTIONS");
`endif
`endif
wire assert_enabled = 1'b1 && !disable_assert_plusarg;
`endif
`ifdef FV_ASSERT_ON
`else
// synopsys translate_on
`endif
`ifdef ASSERT_ON
//synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
always @(assert_enabled) begin
    if ( assert_enabled === 1'b0 ) begin
        $display("Asserts are disabled for %m");
    end
end
`endif
`endif
//synopsys translate_on
`endif
`endif
// spyglass enable_block W164a W164b W116 W484 W504
//The NV_BLKBOX_SRC0 module is only present when the FIFOGEN_MODULE_SEARCH
// define is set. This is to aid fifogen team search for fifogen fifo
// instance and module names in a given design.
`ifdef FIFOGEN_MODULE_SEARCH
NV_BLKBOX_SRC0 dummy_breadcrumb_fifogen_blkbox (.Y());
`endif
// spyglass enable_block W401 -- clock is not input to module
// synopsys dc_script_begin
// set_boundary_optimization find(design, "NV_NVDLA_SDP_WDMA_CMD_dfifo") true
// synopsys dc_script_end
endmodule // NV_NVDLA_SDP_WDMA_CMD_dfifo
//
// Flop-Based RAM
//
module NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44 (
      clk
    , pwrbus_ram_pd
    , di
    , we
    , wa
    , ra
    , dout
    );
input clk; // write clock
input [31 : 0] pwrbus_ram_pd;
input [43:0] di;
input we;
input [1:0] wa;
input [2:0] ra;
output [43:0] dout;
`ifndef FPGA
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_0 (.A(pwrbus_ram_pd[0]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_1 (.A(pwrbus_ram_pd[1]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_2 (.A(pwrbus_ram_pd[2]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_3 (.A(pwrbus_ram_pd[3]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_4 (.A(pwrbus_ram_pd[4]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_5 (.A(pwrbus_ram_pd[5]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_6 (.A(pwrbus_ram_pd[6]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_7 (.A(pwrbus_ram_pd[7]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_8 (.A(pwrbus_ram_pd[8]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_9 (.A(pwrbus_ram_pd[9]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_10 (.A(pwrbus_ram_pd[10]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_11 (.A(pwrbus_ram_pd[11]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_12 (.A(pwrbus_ram_pd[12]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_13 (.A(pwrbus_ram_pd[13]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_14 (.A(pwrbus_ram_pd[14]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_15 (.A(pwrbus_ram_pd[15]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_16 (.A(pwrbus_ram_pd[16]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_17 (.A(pwrbus_ram_pd[17]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_18 (.A(pwrbus_ram_pd[18]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_19 (.A(pwrbus_ram_pd[19]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_20 (.A(pwrbus_ram_pd[20]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_21 (.A(pwrbus_ram_pd[21]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_22 (.A(pwrbus_ram_pd[22]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_23 (.A(pwrbus_ram_pd[23]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_24 (.A(pwrbus_ram_pd[24]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_25 (.A(pwrbus_ram_pd[25]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_26 (.A(pwrbus_ram_pd[26]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_27 (.A(pwrbus_ram_pd[27]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_28 (.A(pwrbus_ram_pd[28]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_29 (.A(pwrbus_ram_pd[29]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_30 (.A(pwrbus_ram_pd[30]));
NV_BLKBOX_SINK UJ_BBOX2UNIT_UNUSED_pwrbus_31 (.A(pwrbus_ram_pd[31]));
`endif
`ifdef EMU
wire [43:0] dout_p;
// we use an emulation ram here to save flops on the emulation board
// so that the monstrous chip can fit :-)
//
reg [1:0] Wa0_vmw;
reg we0_vmw;
reg [43:0] Di0_vmw;
always @( posedge clk ) begin
    Wa0_vmw <= wa;
    we0_vmw <= we;
    Di0_vmw <= di;
end
vmw_NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44 emu_ram (
     .Wa0( Wa0_vmw )
   , .we0( we0_vmw )
   , .Di0( Di0_vmw )
   , .Ra0( ra[1:0] )
   , .Do0( dout_p )
   );
assign dout = (ra == 4) ? di : dout_p;
`else
reg [43:0] ram_ff0;
reg [43:0] ram_ff1;
reg [43:0] ram_ff2;
reg [43:0] ram_ff3;
always @( posedge clk ) begin
    if ( we && wa == 2'd0 ) begin
 ram_ff0 <= di;
    end
    if ( we && wa == 2'd1 ) begin
 ram_ff1 <= di;
    end
    if ( we && wa == 2'd2 ) begin
 ram_ff2 <= di;
    end
    if ( we && wa == 2'd3 ) begin
 ram_ff3 <= di;
    end
end
reg [43:0] dout;
always @(*) begin
    case( ra )
    3'd0: dout = ram_ff0;
    3'd1: dout = ram_ff1;
    3'd2: dout = ram_ff2;
    3'd3: dout = ram_ff3;
    3'd4: dout = di;
//VCS coverage off
    default: dout = {44{`x_or_0}};
//VCS coverage on
    endcase
end
`endif // EMU
endmodule // NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44
// emulation model of flopram guts
//
`ifdef EMU
module vmw_NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44 (
   Wa0, we0, Di0,
   Ra0, Do0
   );
input [1:0] Wa0;
input we0;
input [43:0] Di0;
input [1:0] Ra0;
output [43:0] Do0;
// Only visible during Spyglass to avoid blackboxes.
`ifdef SPYGLASS_FLOPRAM
assign Do0 = 44'd0;
wire dummy = 1'b0 | (|Wa0) | (|we0) | (|Di0) | (|Ra0);
`endif
// synopsys translate_off
`ifndef SYNTH_LEVEL1_COMPILE
`ifndef SYNTHESIS
reg [43:0] mem[3:0];
// expand mem for debug ease
`ifdef EMU_EXPAND_FLOPRAM_MEM
wire [43:0] Q0 = mem[0];
wire [43:0] Q1 = mem[1];
wire [43:0] Q2 = mem[2];
wire [43:0] Q3 = mem[3];
`endif
// asynchronous ram writes
always @(*) begin
  if ( we0 == 1'b1 ) begin
    #0.1;
    mem[Wa0] = Di0;
  end
end
assign Do0 = mem[Ra0];
`endif
`endif
// synopsys translate_on
// synopsys dc_script_begin
// synopsys dc_script_end
// g2c if { [find / -null_ok -subdesign vmw_NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44] != {} } { set_attr preserve 1 [find / -subdesign vmw_NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44] }
endmodule // vmw_NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44
//vmw: Memory vmw_NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44
//vmw: Address-size 2
//vmw: Data-size 44
//vmw: Sensitivity level 1
//vmw: Ports W R
//vmw: terminal we0 WriteEnable0
//vmw: terminal Wa0 address0
//vmw: terminal Di0[43:0] data0[43:0]
//vmw:
//vmw: terminal Ra0 address1
//vmw: terminal Do0[43:0] data1[43:0]
//vmw:
//qt: CELL vmw_NV_NVDLA_SDP_WDMA_CMD_dfifo_flopram_rwsa_4x44
//qt: TERMINAL we0 TYPE=WE POLARITY=H PORT=1
//qt: TERMINAL Wa0[%d] TYPE=ADDRESS DIR=W BIT=%1 PORT=1
//qt: TERMINAL Di0[%d] TYPE=DATA DIR=I BIT=%1 PORT=1
//qt:
//qt: TERMINAL Ra0[%d] TYPE=ADDRESS DIR=R BIT=%1 PORT=1
//qt: TERMINAL Do0[%d] TYPE=DATA DIR=O BIT=%1 PORT=1
//qt:
`endif // EMU