satSolver2.c 62.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/**************************************************************************************************
MiniSat -- Copyright (c) 2005, Niklas Sorensson
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
// Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko

#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <math.h>
26

27 28 29 30
#include "satSolver2.h"

ABC_NAMESPACE_IMPL_START

31
#define SAT_USE_PROOF_LOGGING
32 33 34 35 36 37 38 39

//=================================================================================================
// Debug:

//#define VERBOSEDEBUG

// For derivation output (verbosity level 2)
#define L_IND    "%-*d"
40
#define L_ind    solver2_dlevel(s)*2+2,solver2_dlevel(s)
41 42 43 44 45 46
#define L_LIT    "%sx%d"
#define L_lit(p) lit_sign(p)?"~":"", (lit_var(p))
static void printlits(lit* begin, lit* end)
{
    int i;
    for (i = 0; i < end - begin; i++)
47
        Abc_Print(1,L_LIT" ",L_lit(begin[i]));
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
}

//=================================================================================================
// Random numbers:


// Returns a random float 0 <= x < 1. Seed must never be 0.
static inline double drand(double* seed) {
    int q;
    *seed *= 1389796;
    q = (int)(*seed / 2147483647);
    *seed -= (double)q * 2147483647;
    return *seed / 2147483647; }


// Returns a random integer 0 <= x < size. Seed must never be 0.
static inline int irand(double* seed, int size) {
    return (int)(drand(seed) * size); }

//=================================================================================================
68 69 70 71 72 73
// Variable datatype + minor functions:

static const int var0  = 1;
static const int var1  = 0;
static const int varX  = 3;

74
struct varinfo2_t
75
{
76
//    unsigned val    :  2;  // variable value 
77
    unsigned pol    :  1;  // last polarity
78
    unsigned partA  :  1;  // partA variable
79
    unsigned tag    :  4;  // conflict analysis tags
80
//    unsigned lev    : 24;  // variable level
81 82
};

83 84
int    var_is_partA (sat_solver2* s, int v)              { return s->vi[v].partA;  }
void   var_set_partA(sat_solver2* s, int v, int partA)   { s->vi[v].partA = partA; }
85

86 87 88 89
//static inline int     var_level     (sat_solver2* s, int v)            { return s->vi[v].lev; }
static inline int     var_level     (sat_solver2* s, int v)            { return s->levels[v];  }
//static inline int     var_value     (sat_solver2* s, int v)            { return s->vi[v].val; }
static inline int     var_value     (sat_solver2* s, int v)            { return s->assigns[v]; }
90
static inline int     var_polar     (sat_solver2* s, int v)            { return s->vi[v].pol; }
91

92 93 94 95
//static inline void    var_set_level (sat_solver2* s, int v, int lev)   { s->vi[v].lev = lev;  }
static inline void    var_set_level (sat_solver2* s, int v, int lev)   { s->levels[v] = lev;  }
//static inline void    var_set_value (sat_solver2* s, int v, int val)   { s->vi[v].val = val;  }
static inline void    var_set_value (sat_solver2* s, int v, int val)   { s->assigns[v] = val; }
96
static inline void    var_set_polar (sat_solver2* s, int v, int pol)   { s->vi[v].pol = pol;  }
97 98

// variable tags
99
static inline int     var_tag       (sat_solver2* s, int v)            { return s->vi[v].tag; }
100
static inline void    var_set_tag   (sat_solver2* s, int v, int tag)   {
101
    assert( tag > 0 && tag < 16 );
102 103
    if ( s->vi[v].tag == 0 )
        veci_push( &s->tagged, v );
104
    s->vi[v].tag = tag;
105
}
106
static inline void    var_add_tag   (sat_solver2* s, int v, int tag)   {
107
    assert( tag > 0 && tag < 16 );
108 109
    if ( s->vi[v].tag == 0 )
        veci_push( &s->tagged, v );
110
    s->vi[v].tag |= tag;
111
}
112
static inline void    solver2_clear_tags(sat_solver2* s, int start)    {
113 114 115 116 117
    int i, * tagged = veci_begin(&s->tagged);
    for (i = start; i < veci_size(&s->tagged); i++)
        s->vi[tagged[i]].tag = 0;
    veci_resize(&s->tagged,start);
}
118

119
// level marks
120 121
static inline int     var_lev_mark (sat_solver2* s, int v)             {
    return (veci_begin(&s->trail_lim)[var_level(s,v)] & 0x80000000) > 0;
122
}
123
static inline void    var_lev_set_mark (sat_solver2* s, int v)         {
124 125 126 127 128
    int level = var_level(s,v);
    assert( level < veci_size(&s->trail_lim) );
    veci_begin(&s->trail_lim)[level] |= 0x80000000;
    veci_push(&s->mark_levels, level);
}
129
static inline void    solver2_clear_marks(sat_solver2* s)              {
130 131 132 133 134 135
    int i, * mark_levels = veci_begin(&s->mark_levels);
    for (i = 0; i < veci_size(&s->mark_levels); i++)
        veci_begin(&s->trail_lim)[mark_levels[i]] &= 0x7FFFFFFF;
    veci_resize(&s->mark_levels,0);
}

136
//=================================================================================================
137 138
// Clause datatype + minor functions:

139 140 141
static inline satset* clause_read   (sat_solver2* s, cla h)      { return (h & 1) ? satset_read(&s->learnts, h>>1)  : satset_read(&s->clauses, h>>1);          }
static inline cla     clause_handle (sat_solver2* s, satset* c)  { return c->learnt ? (satset_handle(&s->learnts, c)<<1)|1: satset_handle(&s->clauses, c)<<1;  }
static inline int     clause_check  (sat_solver2* s, satset* c)  { return c->learnt ? satset_check(&s->learnts, c)  : satset_check(&s->clauses, c);            }
142
static inline int     clause_proofid(sat_solver2* s, satset* c, int partA)  { return c->learnt ? (veci_begin(&s->claProofs)[c->Id]<<2) | (partA<<1) : (satset_handle(&s->clauses, c)<<2) | (partA<<1) | 1; }
143
static inline int     clause_is_used(sat_solver2* s, cla h)      { return (h & 1) ? ((h >> 1) < s->hLearntPivot) : ((h >> 1) < s->hClausePivot);               }
144

145 146 147 148 149 150 151
//static inline int     var_reason    (sat_solver2* s, int v)      { return (s->reasons[v]&1) ? 0 : s->reasons[v] >> 1;                   }
//static inline int     lit_reason    (sat_solver2* s, int l)      { return (s->reasons[lit_var(l)&1]) ? 0 : s->reasons[lit_var(l)] >> 1; }
//static inline satset* var_unit_clause(sat_solver2* s, int v)           { return (s->reasons[v]&1) ? clause_read(s, s->reasons[v] >> 1) : NULL;  }
//static inline void    var_set_unit_clause(sat_solver2* s, int v, cla i){ assert(i && !s->reasons[v]); s->reasons[v] = (i << 1) | 1;             }
static inline int     var_reason    (sat_solver2* s, int v)            { return s->reasons[v];           }
static inline int     lit_reason    (sat_solver2* s, int l)            { return s->reasons[lit_var(l)];  }
static inline satset* var_unit_clause(sat_solver2* s, int v)           { return clause_read(s, s->units[v]);                                          }
152 153
static inline void    var_set_unit_clause(sat_solver2* s, int v, cla i){ 
    assert(v >= 0 && v < s->size && !s->units[v]); s->units[v] = i; s->nUnits++; 
154 155
}
//static inline void    var_set_unit_clause(sat_solver2* s, int v, cla i){ assert(v >= 0 && v < s->size); s->units[v] = i; s->nUnits++; }
156 157

// these two only work after creating a clause before the solver is called
158
int    clause_is_partA (sat_solver2* s, int h)                   { return clause_read(s, h)->partA;         }
159 160
void   clause_set_partA(sat_solver2* s, int h, int partA)        { clause_read(s, h)->partA = partA;        }
int    clause_id(sat_solver2* s, int h)                          { return clause_read(s, h)->Id;            }
161

162 163 164 165 166
//=================================================================================================
// Simple helpers:

static inline int     solver2_dlevel(sat_solver2* s)       { return veci_size(&s->trail_lim); }
static inline veci*   solver2_wlist(sat_solver2* s, lit l) { return &s->wlists[l];            }
167 168

//=================================================================================================
169 170 171 172 173 174
// Proof logging:

static inline void proof_chain_start( sat_solver2* s, satset* c )
{
    if ( s->fProofLogging )
    {
175 176 177 178 179 180
        int ProofId = clause_proofid(s, c, 0);
        assert( ProofId > 0 );
        veci_resize( &s->temp_proof, 0 );
        veci_push( &s->temp_proof, 0 );
        veci_push( &s->temp_proof, 0 );
        veci_push( &s->temp_proof, ProofId );
181 182 183
    }
}

184
static inline void proof_chain_resolve( sat_solver2* s, satset* cls, int Var )
185
{
186
    if ( s->fProofLogging )
187
    {
188
        satset* c = cls ? cls : var_unit_clause( s, Var );
189 190 191
        int ProofId = clause_proofid(s, c, var_is_partA(s,Var));
        assert( ProofId > 0 );
        veci_push( &s->temp_proof, ProofId );
192 193 194
    }
}

195
static inline int proof_chain_stop( sat_solver2* s )
196 197 198
{
    if ( s->fProofLogging )
    {
199 200 201 202
        int h = Vec_SetAppend( &s->Proofs, veci_begin(&s->temp_proof), veci_size(&s->temp_proof) );
        satset * c = (satset *)Vec_SetEntry( &s->Proofs, h );
        c->nEnts = veci_size(&s->temp_proof) - 2;
        return h;
203
    }
204
    return 0;
205 206 207
}

//=================================================================================================
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
// Variable order functions:

static inline void order_update(sat_solver2* s, int v) // updateorder
{
    int*      orderpos = s->orderpos;
    int*      heap     = veci_begin(&s->order);
    int       i        = orderpos[v];
    int       x        = heap[i];
    int       parent   = (i - 1) / 2;
    assert(s->orderpos[v] != -1);
    while (i != 0 && s->activity[x] > s->activity[heap[parent]]){
        heap[i]           = heap[parent];
        orderpos[heap[i]] = i;
        i                 = parent;
        parent            = (i - 1) / 2;
    }
    heap[i]     = x;
    orderpos[x] = i;
}
227
static inline void order_assigned(sat_solver2* s, int v)
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
{
}
static inline void order_unassigned(sat_solver2* s, int v) // undoorder
{
    int* orderpos = s->orderpos;
    if (orderpos[v] == -1){
        orderpos[v] = veci_size(&s->order);
        veci_push(&s->order,v);
        order_update(s,v);
    }
}
static inline int  order_select(sat_solver2* s, float random_var_freq) // selectvar
{
    int*      heap     = veci_begin(&s->order);
    int*      orderpos = s->orderpos;
    // Random decision:
    if (drand(&s->random_seed) < random_var_freq){
        int next = irand(&s->random_seed,s->size);
        assert(next >= 0 && next < s->size);
247
        if (var_value(s, next) == varX)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            return next;
    }
    // Activity based decision:
    while (veci_size(&s->order) > 0){
        int    next  = heap[0];
        int    size  = veci_size(&s->order)-1;
        int    x     = heap[size];
        veci_resize(&s->order,size);
        orderpos[next] = -1;
        if (size > 0){
            unsigned act   = s->activity[x];
            int      i     = 0;
            int      child = 1;
            while (child < size){
                if (child+1 < size && s->activity[heap[child]] < s->activity[heap[child+1]])
                    child++;
                assert(child < size);
                if (act >= s->activity[heap[child]])
                    break;
                heap[i]           = heap[child];
                orderpos[heap[i]] = i;
                i                 = child;
                child             = 2 * child + 1;
            }
            heap[i]           = x;
            orderpos[heap[i]] = i;
        }
275
        if (var_value(s, next) == varX)
276 277 278 279 280
            return next;
    }
    return var_Undef;
}

281

282 283 284
//=================================================================================================
// Activity functions:

285
#ifdef USE_FLOAT_ACTIVITY2
286 287 288 289

static inline void act_var_rescale(sat_solver2* s)  {
    double* activity = s->activity;
    int i;
290
    for (i = 0; i < s->size; i++)
291 292
        activity[i] *= 1e-100;
    s->var_inc *= 1e-100;
293
}
294 295 296 297 298 299 300
static inline void act_clause_rescale(sat_solver2* s) {
    static int Total = 0;
    float * claActs = (float *)veci_begin(&s->claActs);
    int i, clk = clock();
    for (i = 0; i < veci_size(&s->claActs); i++)
        claActs[i] *= (float)1e-20;
    s->cla_inc *= (float)1e-20;
301

302
    Total += clock() - clk;
303
    Abc_Print(1, "Rescaling...   Cla inc = %10.3f  Conf = %10d   ", s->cla_inc,  s->stats.conflicts );
304
    Abc_PrintTime( 1, "Time", Total );
305
}
306 307
static inline void act_var_bump(sat_solver2* s, int v) {
    s->activity[v] += s->var_inc;
308
    if (s->activity[v] > 1e100)
309 310 311 312
        act_var_rescale(s);
    if (s->orderpos[v] != -1)
        order_update(s,v);
}
313 314 315 316
static inline void act_clause_bump(sat_solver2* s, satset*c) {
    float * claActs = (float *)veci_begin(&s->claActs);
    assert( c->Id < veci_size(&s->claActs) );
    claActs[c->Id] += s->cla_inc;
317
    if (claActs[c->Id] > (float)1e20)
318 319 320 321
        act_clause_rescale(s);
}
static inline void act_var_decay(sat_solver2* s)    { s->var_inc *= s->var_decay; }
static inline void act_clause_decay(sat_solver2* s) { s->cla_inc *= s->cla_decay; }
322

323
#else
324

325 326 327 328 329 330 331 332
static inline void act_var_rescale(sat_solver2* s) {
    unsigned* activity = s->activity;
    int i;
    for (i = 0; i < s->size; i++)
        activity[i] >>= 19;
    s->var_inc >>= 19;
    s->var_inc = Abc_MaxInt( s->var_inc, (1<<4) );
}
333
static inline void act_clause_rescale(sat_solver2* s) {
334 335
//    static int Total = 0;
    int i;//, clk = clock();
336
    unsigned * claActs = (unsigned *)veci_begin(&s->claActs);
337
    for (i = 1; i < veci_size(&s->claActs); i++)
338
        claActs[i] >>= 14;
339 340
    s->cla_inc >>= 14;
    s->cla_inc = Abc_MaxInt( s->cla_inc, (1<<10) );
341

342
//    Total += clock() - clk;
343
//    Abc_Print(1, "Rescaling...   Cla inc = %5d  Conf = %10d   ", s->cla_inc,  s->stats.conflicts );
344
//    Abc_PrintTime( 1, "Time", Total );
345
}
346 347 348 349 350 351 352 353 354
static inline void act_var_bump(sat_solver2* s, int v) {
    s->activity[v] += s->var_inc;
    if (s->activity[v] & 0x80000000)
        act_var_rescale(s);
    if (s->orderpos[v] != -1)
        order_update(s,v);
}
static inline void act_clause_bump(sat_solver2* s, satset*c) {
    unsigned * claActs = (unsigned *)veci_begin(&s->claActs);
355
    assert( c->Id > 0 && c->Id < veci_size(&s->claActs) );
356
    claActs[c->Id] += s->cla_inc;
357
    if (claActs[c->Id] & 0x80000000)
358 359
        act_clause_rescale(s);
}
360
static inline void act_var_decay(sat_solver2* s)    { s->var_inc += (s->var_inc >>  4); }
361 362
static inline void act_clause_decay(sat_solver2* s) { s->cla_inc += (s->cla_inc >> 10); }

363
#endif
364 365

//=================================================================================================
366 367
// Clause functions:

368
static int clause_create_new(sat_solver2* s, lit* begin, lit* end, int learnt, int proof_id)
369 370 371 372 373 374 375 376
{
    satset* c;
    int i, Cid, nLits = end - begin;
    assert(nLits < 1 || begin[0] >= 0);
    assert(nLits < 2 || begin[1] >= 0);
    assert(nLits < 1 || lit_var(begin[0]) < s->size);
    assert(nLits < 2 || lit_var(begin[1]) < s->size);
    // add memory if needed
377

378 379 380
    // assign clause ID
    if ( learnt )
    {
381 382 383 384
        if ( veci_size(&s->learnts) + satset_size(nLits) > s->learnts.cap )
        {
            int nMemAlloc = s->learnts.cap ? 2 * s->learnts.cap : (1 << 20);
            s->learnts.ptr = ABC_REALLOC( int, veci_begin(&s->learnts), nMemAlloc );
385
    //        Abc_Print(1, "Reallocing from %d to %d...\n", s->learnts.cap, nMemAlloc );
386 387 388 389 390 391 392 393 394 395 396 397
            s->learnts.cap = nMemAlloc;
            if ( veci_size(&s->learnts) == 0 )
                veci_push( &s->learnts, -1 );
        }
        // create clause
        c = (satset*)(veci_begin(&s->learnts) + veci_size(&s->learnts));
        ((int*)c)[0] = 0;
        c->learnt = learnt;
        c->nEnts  = nLits;
        for (i = 0; i < nLits; i++)
            c->pEnts[i] = begin[i];
        // count the clause
398 399 400
        s->stats.learnts++;
        s->stats.learnts_literals += nLits;
        c->Id = s->stats.learnts;
401 402 403 404 405 406
        assert( c->Id == veci_size(&s->claActs) );
        veci_push(&s->claActs, 0);
        if ( proof_id )
            veci_push(&s->claProofs, proof_id);
        if ( nLits > 2 )
            act_clause_bump( s,c );
407 408 409 410 411
        // extend storage
        Cid = (veci_size(&s->learnts) << 1) | 1;
        s->learnts.size += satset_size(nLits);
        assert( veci_size(&s->learnts) <= s->learnts.cap );
        assert(((ABC_PTRUINT_T)c & 3) == 0);
412
//        Abc_Print(1, "Clause for proof %d: ", proof_id );
413
//        satset_print( c );
414 415
        // remember the last one
        s->hLearntLast = Cid;
416 417 418
    }
    else
    {
419 420 421 422
        if ( veci_size(&s->clauses) + satset_size(nLits) > s->clauses.cap )
        {
            int nMemAlloc = s->clauses.cap ? 2 * s->clauses.cap : (1 << 20);
            s->clauses.ptr = ABC_REALLOC( int, veci_begin(&s->clauses), nMemAlloc );
423
    //        Abc_Print(1, "Reallocing from %d to %d...\n", s->clauses.cap, nMemAlloc );
424 425 426 427 428 429 430 431 432 433 434 435
            s->clauses.cap = nMemAlloc;
            if ( veci_size(&s->clauses) == 0 )
                veci_push( &s->clauses, -1 );
        }
        // create clause
        c = (satset*)(veci_begin(&s->clauses) + veci_size(&s->clauses));
        ((int*)c)[0] = 0;
        c->learnt = learnt;
        c->nEnts  = nLits;
        for (i = 0; i < nLits; i++)
            c->pEnts[i] = begin[i];
        // count the clause
436 437
        s->stats.clauses++;
        s->stats.clauses_literals += nLits;
438
        c->Id = s->stats.clauses;
439 440 441 442 443
        // extend storage
        Cid = (veci_size(&s->clauses) << 1);
        s->clauses.size += satset_size(nLits);
        assert( veci_size(&s->clauses) <= s->clauses.cap );
        assert(((ABC_PTRUINT_T)c & 3) == 0);
444
    }
445 446 447 448 449
    // watch the clause
    if ( nLits > 1 ){
        veci_push(solver2_wlist(s,lit_neg(begin[0])),Cid);
        veci_push(solver2_wlist(s,lit_neg(begin[1])),Cid);
    }
450 451 452 453
    return Cid;
}

//=================================================================================================
454 455
// Minor (solver) functions:

456
static inline int solver2_enqueue(sat_solver2* s, lit l, cla from)
457
{
458
    int v = lit_var(l);
459
#ifdef VERBOSEDEBUG
460
    Abc_Print(1,L_IND"enqueue("L_LIT")\n", L_ind, L_lit(l));
461
#endif
462 463 464 465
    if (var_value(s, v) != varX)
        return var_value(s, v) == lit_sign(l);
    else
    {  // New fact -- store it.
466
#ifdef VERBOSEDEBUG
467
        Abc_Print(1,L_IND"bind("L_LIT")\n", L_ind, L_lit(l));
468
#endif
469
        var_set_value( s, v, lit_sign(l) );
470
        var_set_level( s, v, solver2_dlevel(s) );
471
        s->reasons[v] = from;  //  = from << 1;
472 473
        s->trail[s->qtail++] = l;
        order_assigned(s, v);
474 475 476 477
/*
        if ( solver2_dlevel(s) == 0 )
        {
            satset * c = from ? clause_read( s, from ) : NULL;
478
            Abc_Print(1, "Enqueing var %d on level %d with reason clause  ", v, solver2_dlevel(s) );
479 480 481
            if ( c )
                satset_print( c );
            else
482
                Abc_Print(1, "<none>\n" );           
483 484
        }
*/
485 486 487 488
        return true;
    }
}

489
static inline int solver2_assume(sat_solver2* s, lit l)
490
{
491
    assert(s->qtail == s->qhead);
492
    assert(var_value(s, lit_var(l)) == varX);
493
#ifdef VERBOSEDEBUG
494 495
    Abc_Print(1,L_IND"assume("L_LIT")  ", L_ind, L_lit(l));
    Abc_Print(1, "act = %.20f\n", s->activity[lit_var(l)] );
496 497
#endif
    veci_push(&s->trail_lim,s->qtail);
498
    return solver2_enqueue(s,l,0);
499 500
}

501
static void solver2_canceluntil(sat_solver2* s, int level) {
502 503
    int      bound;
    int      lastLev;
504
    int      c, x;
505

506
    if (solver2_dlevel(s) <= level)
507
        return;
508
    assert( solver2_dlevel(s) > 0 );
509 510 511 512

    bound   = (veci_begin(&s->trail_lim))[level];
    lastLev = (veci_begin(&s->trail_lim))[veci_size(&s->trail_lim)-1];

513
    for (c = s->qtail-1; c >= bound; c--)
514
    {
515
        x = lit_var(s->trail[c]);
516
        var_set_value(s, x, varX);
517
        s->reasons[x] = 0;
518
        s->units[x] = 0; // temporary?
519
        if ( c < lastLev )
520
            var_set_polar(s, x, !lit_sign(s->trail[c]));
521 522 523
    }

    for (c = s->qhead-1; c >= bound; c--)
524
        order_unassigned(s,lit_var(s->trail[c]));
525 526 527 528 529

    s->qhead = s->qtail = bound;
    veci_resize(&s->trail_lim,level);
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static void solver2_canceluntil_rollback(sat_solver2* s, int NewBound) {
    int      c, x;
   
    assert( solver2_dlevel(s) == 0 );
    assert( s->qtail == s->qhead );
    assert( s->qtail >= NewBound );

    for (c = s->qtail-1; c >= NewBound; c--) 
    {
        x = lit_var(s->trail[c]);
        var_set_value(s, x, varX);
        s->reasons[x] = 0;
        s->units[x] = 0; // temporary?
    }

    for (c = s->qhead-1; c >= NewBound; c--)
        order_unassigned(s,lit_var(s->trail[c]));

    s->qhead = s->qtail = NewBound;
}

551

552
static void solver2_record(sat_solver2* s, veci* cls, int proof_id)
553
{
554 555
    lit* begin = veci_begin(cls);
    lit* end   = begin + veci_size(cls);
556
    cla  Cid   = clause_create_new(s,begin,end,1, proof_id);
557
    assert(veci_size(cls) > 0);
558 559
    if ( veci_size(cls) == 1 )
    {
560
        if ( s->fProofLogging )
561
            var_set_unit_clause(s, lit_var(begin[0]), Cid);
562
        Cid = 0;
563
    }
564
    solver2_enqueue(s, begin[0], Cid);
565 566 567
}


568
static double solver2_progress(sat_solver2* s)
569
{
570 571
    int i;
    double progress = 0.0, F = 1.0 / s->size;
572
    for (i = 0; i < s->size; i++)
573 574
        if (var_value(s, i) != varX)
            progress += pow(F, var_level(s, i));
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    return progress / s->size;
}

//=================================================================================================
// Major methods:

/*_________________________________________________________________________________________________
|
|  analyzeFinal : (p : Lit)  ->  [void]
|  
|  Description:
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
|    stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
/*
591
void Solver::analyzeFinal(satset* confl, bool skip_first)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
    // -- NOTE! This code is relatively untested. Please report bugs!
    conflict.clear();
    if (root_level == 0) return;

    vec<char>& seen  = analyze_seen;
    for (int i = skip_first ? 1 : 0; i < confl->size(); i++){
        Var x = var((*confl)[i]);
        if (level[x] > 0)
            seen[x] = 1;
    }

    int start = (root_level >= trail_lim.size()) ? trail.size()-1 : trail_lim[root_level];
    for (int i = start; i >= trail_lim[0]; i--){
        Var     x = var(trail[i]);
        if (seen[x]){
            GClause r = reason[x];
            if (r == GClause_NULL){
                assert(level[x] > 0);
                conflict.push(~trail[i]);
            }else{
                if (r.isLit()){
                    Lit p = r.lit();
                    if (level[var(p)] > 0)
                        seen[var(p)] = 1;
                }else{
                    Clause& c = *r.clause();
                    for (int j = 1; j < c.size(); j++)
                        if (level[var(c[j])] > 0)
                            seen[var(c[j])] = 1;
                }
            }
            seen[x] = 0;
        }
    }
}
*/

630
static int solver2_analyze_final(sat_solver2* s, satset* conf, int skip_first)
631
{
632
    int i, j, x;//, start;
633 634
    veci_resize(&s->conf_final,0);
    if ( s->root_level == 0 )
635
        return s->hProofLast;
636
    proof_chain_start( s, conf );
637
    assert( veci_size(&s->tagged) == 0 );
638
    satset_foreach_var( conf, x, i, skip_first ){
639 640
        if ( var_level(s,x) )
            var_set_tag(s, x, 1);
641 642
        else
            proof_chain_resolve( s, NULL, x );
643
    }
644 645 646
    assert( s->root_level >= veci_size(&s->trail_lim) );
//    start = (s->root_level >= veci_size(&s->trail_lim))? s->qtail-1 : (veci_begin(&s->trail_lim))[s->root_level];
    for (i = s->qtail-1; i >= (veci_begin(&s->trail_lim))[0]; i--){
647 648
        x = lit_var(s->trail[i]);
        if (var_tag(s,x)){
649
            satset* c = clause_read(s, var_reason(s,x));
650
            if (c){
651
                proof_chain_resolve( s, c, x );
652
                satset_foreach_var( c, x, j, 1 ){
653 654 655 656
                    if ( var_level(s,x) )
                        var_set_tag(s, x, 1);
                    else
                        proof_chain_resolve( s, NULL, x );
657
                }
658 659 660
            }else {
                assert( var_level(s,x) );
                veci_push(&s->conf_final,lit_neg(s->trail[i]));
661 662 663
            }
        }
    }
664
    solver2_clear_tags(s,0);
665
    return proof_chain_stop( s );
666 667
}

668
static int solver2_lit_removable_rec(sat_solver2* s, int v)
669
{
670 671 672 673 674 675 676 677 678 679 680 681
    // tag[0]: True if original conflict clause literal.
    // tag[1]: Processed by this procedure
    // tag[2]: 0=non-removable, 1=removable

    satset* c;
    int i, x;

    // skip visited
    if (var_tag(s,v) & 2)
        return (var_tag(s,v) & 4) > 0;

    // skip decisions on a wrong level
682
    c = clause_read(s, var_reason(s,v));
683 684 685 686 687
    if ( c == NULL ){
        var_add_tag(s,v,2);
        return 0;
    }

688
    satset_foreach_var( c, x, i, 1 ){
689
        if (var_tag(s,x) & 1)
690
            solver2_lit_removable_rec(s, x);
691 692
        else{
            if (var_level(s,x) == 0 || var_tag(s,x) == 6) continue;     // -- 'x' checked before, found to be removable (or belongs to the toplevel)
693
            if (var_tag(s,x) == 2 || !var_lev_mark(s,x) || !solver2_lit_removable_rec(s, x))
694
            {  // -- 'x' checked before, found NOT to be removable, or it belongs to a wrong level, or cannot be removed
695 696
                var_add_tag(s,v,2);
                return 0;
697 698 699
            }
        }
    }
700 701
    if ( s->fProofLogging && (var_tag(s,v) & 1) )
        veci_push(&s->min_lit_order, v );
702 703 704 705
    var_add_tag(s,v,6);
    return 1;
}

706
static int solver2_lit_removable(sat_solver2* s, int x)
707 708 709 710 711 712 713 714 715 716 717
{
    satset* c;
    int i, top;
    if ( !var_reason(s,x) )
        return 0;
    if ( var_tag(s,x) & 2 )
    {
        assert( var_tag(s,x) & 1 );
        return 1;
    }
    top = veci_size(&s->tagged);
718
    veci_resize(&s->stack,0);
719 720
    veci_push(&s->stack, x << 1);
    while (veci_size(&s->stack))
721
    {
722 723 724 725 726 727
        x = veci_pop(&s->stack);
        if ( s->fProofLogging ){
            if ( x & 1 ){
                if ( var_tag(s,x >> 1) & 1 )
                    veci_push(&s->min_lit_order, x >> 1 );
                continue;
728
            }
729 730 731
            veci_push(&s->stack, x ^ 1 );
        }
        x >>= 1;
732
        c = clause_read(s, var_reason(s,x));
733
        satset_foreach_var( c, x, i, 1 ){
734 735 736 737 738 739 740 741
            if (var_tag(s,x) || !var_level(s,x))
                continue;
            if (!var_reason(s,x) || !var_lev_mark(s,x)){
                solver2_clear_tags(s, top);
                return 0;
            }
            veci_push(&s->stack, x << 1);
            var_set_tag(s, x, 2);
742 743
        }
    }
744
    return 1;
745 746
}

747
static void solver2_logging_order(sat_solver2* s, int x)
748
{
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    satset* c;
    int i;
    if ( (var_tag(s,x) & 4) )
        return;
    var_add_tag(s, x, 4);
    veci_resize(&s->stack,0);
    veci_push(&s->stack,x << 1);
    while (veci_size(&s->stack))
    {
        x = veci_pop(&s->stack);
        if ( x & 1 ){
            veci_push(&s->min_step_order, x >> 1 );
            continue;
        }
        veci_push(&s->stack, x ^ 1 );
        x >>= 1;
765
        c = clause_read(s, var_reason(s,x));
766
//        if ( !c )
767
//            Abc_Print(1, "solver2_logging_order(): Error in conflict analysis!!!\n" );
768
        satset_foreach_var( c, x, i, 1 ){
769 770 771 772 773 774 775
            if ( !var_level(s,x) || (var_tag(s,x) & 1) )
                continue;
            veci_push(&s->stack, x << 1);
            var_add_tag(s, x, 4);
        }
    }
}
776

777 778 779 780 781 782 783
static void solver2_logging_order_rec(sat_solver2* s, int x)
{
    satset* c;
    int i, y;
    if ( (var_tag(s,x) & 8) )
        return;
    c = clause_read(s, var_reason(s,x));
784
    satset_foreach_var( c, y, i, 1 )
785 786 787 788 789 790
        if ( var_level(s,y) && (var_tag(s,y) & 1) == 0 )
            solver2_logging_order_rec(s, y);
    var_add_tag(s, x, 8);
    veci_push(&s->min_step_order, x);
}

791
static int solver2_analyze(sat_solver2* s, satset* c, veci* learnt)
792
{
793
    int cnt      = 0;
794
    lit p        = 0;
795 796
    int x, ind   = s->qtail-1;
    int proof_id = 0;
797 798 799
    lit* lits,* vars, i, j, k;
    assert( veci_size(&s->tagged) == 0 );
    // tag[0] - visited by conflict analysis (afterwards: literals of the learned clause)
800 801
    // tag[1] - visited by solver2_lit_removable() with success
    // tag[2] - visited by solver2_logging_order()
802

803 804 805 806
    proof_chain_start( s, c );
    veci_push(learnt,lit_Undef);
    while ( 1 ){
        assert(c != 0);
807
        if (c->learnt)
808
            act_clause_bump(s,c);
809
        satset_foreach_var( c, x, j, (int)(p > 0) ){
810 811 812 813 814
            assert(x >= 0 && x < s->size);
            if ( var_tag(s, x) )
                continue;
            if ( var_level(s,x) == 0 )
            {
815
                proof_chain_resolve( s, NULL, x );
816 817 818 819 820 821 822
                continue;
            }
            var_set_tag(s, x, 1);
            act_var_bump(s,x);
            if (var_level(s,x) == solver2_dlevel(s))
                cnt++;
            else
823
                veci_push(learnt,c->pEnts[j]);
824 825 826 827 828
        }

        while (!var_tag(s, lit_var(s->trail[ind--])));

        p = s->trail[ind+1];
829
        c = clause_read(s, lit_reason(s,p));
830 831 832 833 834
        cnt--;
        if ( cnt == 0 )
            break;
        proof_chain_resolve( s, c, lit_var(p) );
    }
835 836
    *veci_begin(learnt) = lit_neg(p);

837 838
    // mark levels
    assert( veci_size(&s->mark_levels) == 0 );
839
    lits = veci_begin(learnt);
840
    for (i = 1; i < veci_size(learnt); i++)
841
        var_lev_set_mark(s, lit_var(lits[i]));
842 843

    // simplify (full)
844
    veci_resize(&s->min_lit_order, 0);
845
    for (i = j = 1; i < veci_size(learnt); i++){
846
//        if (!solver2_lit_removable( s,lit_var(lits[i])))
847
        if (!solver2_lit_removable_rec(s,lit_var(lits[i]))) // changed to vars!!!
848
            lits[j++] = lits[i];
849
    }
850 851 852 853 854 855 856 857

    // record the proof
    if ( s->fProofLogging )
    {
        // collect additional clauses to resolve
        veci_resize(&s->min_step_order, 0);
        vars = veci_begin(&s->min_lit_order);
        for (i = 0; i < veci_size(&s->min_lit_order); i++)
858 859
//            solver2_logging_order(s, vars[i]);
            solver2_logging_order_rec(s, vars[i]);
860 861 862 863

        // add them in the reverse order
        vars = veci_begin(&s->min_step_order);
        for (i = veci_size(&s->min_step_order); i > 0; ) { i--;
864
            c = clause_read(s, var_reason(s,vars[i]));
865
            proof_chain_resolve( s, c, vars[i] );
866
            satset_foreach_var(c, x, k, 1)
867
                if ( var_level(s,x) == 0 )
868
                    proof_chain_resolve( s, NULL, x );
869
        }
870
        proof_id = proof_chain_stop( s );
871 872
    }

873 874 875
    // unmark levels
    solver2_clear_marks( s );

876 877 878 879 880
    // update size of learnt + statistics
    veci_resize(learnt,j);
    s->stats.tot_literals += j;

    // clear tags
881
    solver2_clear_tags(s,0);
882 883 884

#ifdef DEBUG
    for (i = 0; i < s->size; i++)
885
        assert(!var_tag(s, i));
886 887 888
#endif

#ifdef VERBOSEDEBUG
889 890
    Abc_Print(1,L_IND"Learnt {", L_ind);
    for (i = 0; i < veci_size(learnt); i++) Abc_Print(1," "L_LIT, L_lit(lits[i]));
891 892 893
#endif
    if (veci_size(learnt) > 1){
        lit tmp;
894 895
        int max_i = 1;
        int max   = var_level(s, lit_var(lits[1]));
896
        for (i = 2; i < veci_size(learnt); i++)
897 898
            if (max < var_level(s, lit_var(lits[i]))) {
                max = var_level(s, lit_var(lits[i]));
899 900 901 902 903 904 905 906 907
                max_i = i;
            }

        tmp         = lits[1];
        lits[1]     = lits[max_i];
        lits[max_i] = tmp;
    }
#ifdef VERBOSEDEBUG
    {
908
        int lev = veci_size(learnt) > 1 ? var_level(s, lit_var(lits[1])) : 0;
909
        Abc_Print(1," } at level %d\n", lev);
910 911
    }
#endif
912
    return proof_id;
913 914
}

915
satset* solver2_propagate(sat_solver2* s)
916
{
917
    satset* c, * confl  = NULL;
918 919 920
    veci* ws;
    lit* lits, false_lit, p, * stop, * k;
    cla* begin,* end, *i, *j;
921
    int Lit;
922

923
    while (confl == 0 && s->qtail - s->qhead > 0){
924

925
        p  = s->trail[s->qhead++];
926
        ws = solver2_wlist(s,p);
927 928
        begin = (cla*)veci_begin(ws);
        end   = begin + veci_size(ws);
929 930 931

        s->stats.propagations++;
        for (i = j = begin; i < end; ){
932 933
            c = clause_read(s,*i);
            lits = c->pEnts;
934 935 936 937 938 939 940 941 942 943 944 945 946 947

            // Make sure the false literal is data[1]:
            false_lit = lit_neg(p);
            if (lits[0] == false_lit){
                lits[0] = lits[1];
                lits[1] = false_lit;
            }
            assert(lits[1] == false_lit);

            // If 0th watch is true, then clause is already satisfied.
            if (var_value(s, lit_var(lits[0])) == lit_sign(lits[0]))
                *j++ = *i;
            else{
                // Look for new watch:
948
                stop = lits + c->nEnts;
949 950 951 952 953 954
                for (k = lits + 2; k < stop; k++){
                    if (var_value(s, lit_var(*k)) != !lit_sign(*k)){
                        lits[1] = *k;
                        *k = false_lit;
                        veci_push(solver2_wlist(s,lit_neg(lits[1])),*i);
                        goto WatchFound; }
955
                }
956

957
                // Did not find watch -- clause is unit under assignment:
958
                Lit = lits[0];
959
                if (s->fProofLogging && solver2_dlevel(s) == 0){
960
                    int k, x, proof_id, Cid, Var = lit_var(Lit);
961
                    int fLitIsFalse = (var_value(s, Var) == !lit_sign(Lit));
962 963
                    // Log production of top-level unit clause:
                    proof_chain_start( s, c );
964
                    satset_foreach_var( c, x, k, 1 ){
965 966 967 968 969
                        assert( var_level(s, x) == 0 );
                        proof_chain_resolve( s, NULL, x );
                    }
                    proof_id = proof_chain_stop( s );
                    // get a new clause
970
                    Cid = clause_create_new( s, &Lit, &Lit + 1, 1, proof_id );
971
                    assert( (var_unit_clause(s, Var) == NULL) != fLitIsFalse );
972 973 974 975 976 977
                    // if variable already has unit clause, it must be with the other polarity 
                    // in this case, we should derive the empty clause here
                    if ( var_unit_clause(s, Var) == NULL )
                        var_set_unit_clause(s, Var, Cid);
                    else{
                        // Empty clause derived:
978
                        proof_chain_start( s, clause_read(s,Cid) );
979 980
                        proof_chain_resolve( s, NULL, Var );
                        proof_id = proof_chain_stop( s );
981 982
                        s->hProofLast = proof_id;
//                        clause_create_new( s, &Lit, &Lit, 1, proof_id );
983
                    }
984
                }
985 986 987

                *j++ = *i;
                // Clause is unit under assignment:
988
                if (!solver2_enqueue(s,Lit, *i)){
989
                    confl = clause_read(s,*i++);
990 991 992 993
                    // Copy the remaining watches:
                    while (i < end)
                        *j++ = *i++;
                }
994
            }
995
WatchFound: i++;
996
        }
997 998
        s->stats.inspects += j - (int*)veci_begin(ws);
        veci_resize(ws,j - (int*)veci_begin(ws));
999 1000 1001 1002 1003
    }

    return confl;
}

1004 1005
int sat_solver2_simplify(sat_solver2* s)
{
1006
    assert(solver2_dlevel(s) == 0);
1007
    return (solver2_propagate(s) == NULL);
1008
}
1009 1010

static lbool solver2_search(sat_solver2* s, ABC_INT64_T nof_conflicts)
1011 1012 1013 1014 1015
{
    double  random_var_freq = s->fNotUseRandom ? 0.0 : 0.02;

    ABC_INT64_T  conflictC       = 0;
    veci    learnt_clause;
1016
    int     proof_id;
1017

1018
    assert(s->root_level == solver2_dlevel(s));
1019 1020

    s->stats.starts++;
1021 1022
//    s->var_decay = (float)(1 / 0.95   );
//    s->cla_decay = (float)(1 / 0.999);
1023 1024 1025
    veci_new(&learnt_clause);

    for (;;){
1026
        satset* confl = solver2_propagate(s);
1027 1028 1029 1030 1031
        if (confl != 0){
            // CONFLICT
            int blevel;

#ifdef VERBOSEDEBUG
1032
            Abc_Print(1,L_IND"**CONFLICT**\n", L_ind);
1033 1034
#endif
            s->stats.conflicts++; conflictC++;
1035 1036
            if (solver2_dlevel(s) <= s->root_level){
                proof_id = solver2_analyze_final(s, confl, 0);
1037
                assert( proof_id > 0 );
1038
                s->hProofLast = proof_id;
1039 1040 1041 1042 1043
                veci_delete(&learnt_clause);
                return l_False;
            }

            veci_resize(&learnt_clause,0);
1044
            proof_id = solver2_analyze(s, confl, &learnt_clause);
1045
            blevel = veci_size(&learnt_clause) > 1 ? var_level(s, lit_var(veci_begin(&learnt_clause)[1])) : s->root_level;
1046
            blevel = s->root_level > blevel ? s->root_level : blevel;
1047
            solver2_canceluntil(s,blevel);
1048
            solver2_record(s,&learnt_clause, proof_id);
1049 1050
            // if (learnt_clause.size() == 1) level[var(learnt_clause[0])] = 0;    
            // (this is ugly (but needed for 'analyzeFinal()') -- in future versions, we will backtrack past the 'root_level' and redo the assumptions)
1051
            if ( learnt_clause.size == 1 )
1052
                var_set_level( s, lit_var(learnt_clause.ptr[0]), 0 );
1053 1054 1055 1056 1057 1058 1059 1060 1061
            act_var_decay(s);
            act_clause_decay(s);

        }else{
            // NO CONFLICT
            int next;

            if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
                // Reached bound on number of conflicts:
1062 1063
                s->progress_estimate = solver2_progress(s);
                solver2_canceluntil(s,s->root_level);
1064 1065 1066 1067 1068 1069 1070 1071
                veci_delete(&learnt_clause);
                return l_Undef; }

            if ( (s->nConfLimit && s->stats.conflicts > s->nConfLimit) ||
//                 (s->nInsLimit  && s->stats.inspects  > s->nInsLimit) )
                 (s->nInsLimit  && s->stats.propagations > s->nInsLimit) )
            {
                // Reached bound on number of conflicts:
1072 1073
                s->progress_estimate = solver2_progress(s);
                solver2_canceluntil(s,s->root_level);
1074
                veci_delete(&learnt_clause);
1075
                return l_Undef;
1076 1077
            }

1078
//            if (solver2_dlevel(s) == 0 && !s->fSkipSimplify)
1079
                // Simplify the set of problem clauses:
1080
//                sat_solver2_simplify(s);
1081

1082 1083 1084 1085
            // Reduce the set of learnt clauses:
//            if (s->nLearntMax > 0 && s->stats.learnts >= (unsigned)s->nLearntMax)
//                sat_solver2_reducedb(s);

1086 1087 1088 1089 1090 1091 1092
            // New variable decision:
            s->stats.decisions++;
            next = order_select(s,(float)random_var_freq);

            if (next == var_Undef){
                // Model found:
                int i;
1093 1094 1095
                for (i = 0; i < s->size; i++)
                {
                    assert( var_value(s,i) != varX );
1096
                    s->model[i] = (var_value(s,i)==var1 ? l_True : l_False);
1097
                }
1098
                solver2_canceluntil(s,s->root_level);
1099 1100 1101 1102
                veci_delete(&learnt_clause);
                return l_True;
            }

1103
            if ( var_polar(s, next) ) // positive polarity
1104
                solver2_assume(s,toLit(next));
1105
            else
1106
                solver2_assume(s,lit_neg(toLit(next)));
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        }
    }

    return l_Undef; // cannot happen
}

//=================================================================================================
// External solver functions:

sat_solver2* sat_solver2_new(void)
{
1118
    sat_solver2* s = (sat_solver2 *)ABC_CALLOC( char, sizeof(sat_solver2) );
1119

1120
#ifdef USE_FLOAT_ACTIVITY2
1121 1122 1123 1124 1125 1126
    s->var_inc        = 1;
    s->cla_inc        = 1;
    s->var_decay      = (float)(1 / 0.95  );
    s->cla_decay      = (float)(1 / 0.999 );
//    s->cla_decay      = 1;
//    s->var_decay      = 1;
1127
#else
1128 1129
    s->var_inc        = (1 <<  5);
    s->cla_inc        = (1 << 11);
1130
#endif
1131
    s->random_seed    = 91648253;
1132 1133

#ifdef SAT_USE_PROOF_LOGGING
1134
    s->fProofLogging  =  1;
1135
#else
1136
    s->fProofLogging  =  0;
1137
#endif
1138 1139
    s->fSkipSimplify  =  1;
    s->fNotUseRandom  =  0;
1140 1141
    s->nLearntMax     =  0;
    s->fVerbose       =  0;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151
    // initialize vectors
    veci_new(&s->order);
    veci_new(&s->trail_lim);
    veci_new(&s->tagged);
    veci_new(&s->stack);
    veci_new(&s->temp_clause);
    veci_new(&s->temp_proof);
    veci_new(&s->conf_final);
    veci_new(&s->mark_levels);
1152
    veci_new(&s->min_lit_order);
1153 1154 1155 1156 1157
    veci_new(&s->min_step_order);
    veci_new(&s->learnt_live);
    veci_new(&s->claActs);    veci_push(&s->claActs,   -1);
    veci_new(&s->claProofs);  veci_push(&s->claProofs, -1);
    if ( s->fProofLogging )
1158
        Vec_SetAlloc_( &s->Proofs, 20 );
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    // prealloc clause
    assert( !s->clauses.ptr );
    s->clauses.cap = (1 << 20);
    s->clauses.ptr = ABC_ALLOC( int, s->clauses.cap );
    veci_push(&s->clauses, -1);
    // prealloc learnt
    assert( !s->learnts.ptr );
    s->learnts.cap = (1 << 20);
    s->learnts.ptr = ABC_ALLOC( int, s->learnts.cap );
    veci_push(&s->learnts, -1);
1170

1171
    // initialize clause pointers
1172 1173 1174 1175 1176 1177 1178 1179 1180
    s->hLearntLast            = -1; // the last learnt clause 
    s->hProofLast             = -1; // the last proof ID
    // initialize rollback
    s->iVarPivot              =  0; // the pivot for variables
    s->iTrailPivot            =  0; // the pivot for trail
    s->iProofPivot            =  0; // the pivot for proof records
    s->hClausePivot           =  1; // the pivot for problem clause
    s->hLearntPivot           =  1; // the pivot for learned clause
    s->hProofPivot            =  1; // the pivot for proof records
1181 1182 1183
    return s;
}

1184

1185 1186 1187 1188 1189
void sat_solver2_setnvars(sat_solver2* s,int n)
{
    int var;

    if (s->cap < n){
1190
        int old_cap = s->cap;
1191 1192 1193
        while (s->cap < n) s->cap = s->cap*2+1;

        s->wlists    = ABC_REALLOC(veci,     s->wlists,   s->cap*2);
1194
        s->vi        = ABC_REALLOC(varinfo2, s->vi,       s->cap);
1195 1196
        s->levels    = ABC_REALLOC(int,      s->levels,   s->cap);
        s->assigns   = ABC_REALLOC(char,     s->assigns,  s->cap);
1197
        s->trail     = ABC_REALLOC(lit,      s->trail,    s->cap);
1198 1199
        s->orderpos  = ABC_REALLOC(int,      s->orderpos, s->cap);
        s->reasons   = ABC_REALLOC(cla,      s->reasons,  s->cap);
1200 1201
        if ( s->fProofLogging )
        s->units     = ABC_REALLOC(cla,      s->units,    s->cap);
1202
#ifdef USE_FLOAT_ACTIVITY2
1203 1204 1205 1206
        s->activity  = ABC_REALLOC(double,   s->activity, s->cap);
#else
        s->activity  = ABC_REALLOC(unsigned, s->activity, s->cap);
#endif
1207
        s->model     = ABC_REALLOC(int,      s->model,    s->cap);
1208
        memset( s->wlists + 2*old_cap, 0, 2*(s->cap-old_cap)*sizeof(vecp) );
1209 1210 1211
    }

    for (var = s->size; var < n; var++){
1212 1213 1214 1215 1216 1217
        assert(!s->wlists[2*var].size);
        assert(!s->wlists[2*var+1].size);
        if ( s->wlists[2*var].ptr == NULL )
            veci_new(&s->wlists[2*var]);
        if ( s->wlists[2*var+1].ptr == NULL )
            veci_new(&s->wlists[2*var+1]);
1218 1219 1220
        *((int*)s->vi + var) = 0; //s->vi[var].val = varX;
        s->levels  [var] = 0;
        s->assigns [var] = varX;
1221
        s->reasons [var] = 0;
1222
        if ( s->fProofLogging )
1223
        s->units   [var] = 0;
1224 1225 1226
#ifdef USE_FLOAT_ACTIVITY2
        s->activity[var] = 0;
#else
1227
        s->activity[var] = (1<<10);
1228
#endif
1229
        s->model   [var] = 0;
1230 1231
        // does not hold because variables enqueued at top level will not be reinserted in the heap
        // assert(veci_size(&s->order) == var); 
1232
        s->orderpos[var] = veci_size(&s->order);
1233 1234 1235 1236 1237
        veci_push(&s->order,var);
        order_update(s, var);
    }
    s->size = n > s->size ? n : s->size;
}
1238 1239 1240

void sat_solver2_delete(sat_solver2* s)
{
1241 1242 1243
    int fVerify = 0;
    if ( fVerify )
    {
1244
        veci * pCore = (veci *)Sat_ProofCore( s );
1245
        Abc_Print(1, "UNSAT core contains %d clauses (%6.2f %%).\n", veci_size(pCore), 100.0*veci_size(pCore)/veci_size(&s->clauses) );
1246
        veci_delete( pCore );
1247
        ABC_FREE( pCore );
1248 1249 1250
        if ( s->fProofLogging )
            Sat_ProofCheck( s );
    }
1251

1252
    // report statistics
1253
    Abc_Print(1, "Used %6.2f Mb for proof-logging.   Unit clauses = %d.\n", 1.0 * Vec_SetMemory(&s->Proofs) / (1<<20), s->nUnits );
1254

1255 1256 1257 1258 1259 1260
    // delete vectors
    veci_delete(&s->order);
    veci_delete(&s->trail_lim);
    veci_delete(&s->tagged);
    veci_delete(&s->stack);
    veci_delete(&s->temp_clause);
1261
    veci_delete(&s->temp_proof);
1262
    veci_delete(&s->conf_final);
1263 1264 1265
    veci_delete(&s->mark_levels);
    veci_delete(&s->min_lit_order);
    veci_delete(&s->min_step_order);
1266
    veci_delete(&s->learnt_live);
1267 1268
    veci_delete(&s->claActs);
    veci_delete(&s->claProofs);
1269
    veci_delete(&s->clauses);
1270
    veci_delete(&s->learnts);
1271 1272
//    veci_delete(&s->proofs);
    Vec_SetFree_( &s->Proofs );
1273 1274

    // delete arrays
1275
    if (s->vi != 0){
1276
        int i;
1277
        if ( s->wlists )
1278
            for (i = 0; i < s->cap*2; i++)
1279
                veci_delete(&s->wlists[i]);
1280
        ABC_FREE(s->wlists   );
1281
        ABC_FREE(s->vi       );
1282 1283
        ABC_FREE(s->levels   );
        ABC_FREE(s->assigns  );
1284
        ABC_FREE(s->trail    );
1285 1286
        ABC_FREE(s->orderpos );
        ABC_FREE(s->reasons  );
1287
        ABC_FREE(s->units    );
1288
        ABC_FREE(s->activity );
1289
        ABC_FREE(s->model    );
1290 1291 1292 1293 1294
    }
    ABC_FREE(s);
}


1295
int sat_solver2_addclause(sat_solver2* s, lit* begin, lit* end)
1296
{
1297 1298 1299 1300 1301
    cla Cid;
    lit *i,*j,*iFree = NULL;
    int maxvar, count, temp;
    assert( solver2_dlevel(s) == 0 );
    assert( begin < end );
1302 1303

    // copy clause into storage
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    veci_resize( &s->temp_clause, 0 );
    for ( i = begin; i < end; i++ )
        veci_push( &s->temp_clause, *i );
    begin = veci_begin( &s->temp_clause );
    end = begin + veci_size( &s->temp_clause );

    // insertion sort
    maxvar = lit_var(*begin);
    for (i = begin + 1; i < end; i++){
        lit l = *i;
        maxvar = lit_var(l) > maxvar ? lit_var(l) : maxvar;
        for (j = i; j > begin && *(j-1) > l; j--)
            *j = *(j-1);
        *j = l;
    }
    sat_solver2_setnvars(s,maxvar+1);

1321 1322 1323
    // coount the number of 0-literals
    count = 0;
    for ( i = begin; i < end; i++ )
1324
    {
1325 1326 1327 1328 1329 1330 1331 1332 1333
        // make sure all literals are unique
        assert( i == begin || lit_var(*(i-1)) != lit_var(*i) );
        // consider the value of this literal
        if ( var_value(s, lit_var(*i)) == lit_sign(*i) ) // this clause is always true
            return clause_create_new( s, begin, end, 0, 0 ); // add it anyway, to preserve proper clause count       
        if ( var_value(s, lit_var(*i)) == varX ) // unassigned literal
            iFree = i;
        else
            count++; // literal is 0
1334
    }
1335
    assert( count < end-begin ); // the clause cannot be UNSAT
1336

1337 1338 1339 1340
    // swap variables to make sure the clause is watched using unassigned variable
    temp   = *iFree;
    *iFree = *begin;
    *begin = temp;
1341 1342

    // create a new clause
1343
    Cid = clause_create_new( s, begin, end, 0, 0 );
1344

1345
    // handle unit clause
1346
    if ( count+1 == end-begin )
1347 1348
    {
        if ( s->fProofLogging )
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
        {
            if ( count == 0 ) // original learned clause
            {
                var_set_unit_clause( s, lit_var(begin[0]), Cid );
                if ( !solver2_enqueue(s,begin[0],0) )
                    assert( 0 );
            }
            else
            {
                // Log production of top-level unit clause:
                int x, k, proof_id, CidNew;
                satset* c = clause_read(s, Cid);
                proof_chain_start( s, c );
                satset_foreach_var( c, x, k, 1 )
                    proof_chain_resolve( s, NULL, x );
                proof_id = proof_chain_stop( s );
                // generate a new clause
                CidNew = clause_create_new( s, begin, begin+1, 1, proof_id );
                var_set_unit_clause( s, lit_var(begin[0]), CidNew );
                if ( !solver2_enqueue(s,begin[0],Cid) )
                    assert( 0 );
            }
        }
1372
    }
1373
    return Cid;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
}


double luby2(double y, int x)
{
    int size, seq;
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size + 1);
    while (size-1 != x){
        size = (size-1) >> 1;
        seq--;
        x = x % size;
    }
    return pow(y, (double)seq);
1387
}
1388 1389 1390 1391 1392

void luby2_test()
{
    int i;
    for ( i = 0; i < 20; i++ )
1393 1394 1395
        Abc_Print(1, "%d ", (int)luby2(2,i) );
    Abc_Print(1, "\n" );
}
1396

1397 1398

// updates clauses, watches, units, and proof
1399
void sat_solver2_reducedb(sat_solver2* s)
1400
{
1401 1402
    static int TimeTotal = 0;
    satset * c, * pivot;
1403 1404
    cla h,* pArray,* pArray2;
    int * pPerm, * pClaAct, nClaAct, ActCutOff;
1405 1406
    int i, j, k, hTemp, hHandle, LastSize = 0;
    int Counter, CounterStart, clk = clock();
1407

1408
    // check if it is time to reduce
1409 1410 1411
    if ( s->nLearntMax == 0 || s->stats.learnts < (unsigned)s->nLearntMax )
        return;
    s->nLearntMax = s->nLearntMax * 11 / 10;
1412

1413 1414 1415 1416 1417 1418
    // preserve 1/10 of last clauses
    CounterStart  = s->stats.learnts - (s->nLearntMax / 10);

    // preserve 1/10 of most active clauses
    pClaAct = veci_begin(&s->claActs) + 1;
    nClaAct = veci_size(&s->claActs) - 1;
1419
    pPerm = Abc_MergeSortCost( pClaAct, nClaAct );
1420 1421 1422 1423 1424 1425
    assert( pClaAct[pPerm[0]] <= pClaAct[pPerm[nClaAct-1]] );
    ActCutOff = pClaAct[pPerm[nClaAct*9/10]];
    ABC_FREE( pPerm );
//    ActCutOff = ABC_INFINITY;

    // mark learned clauses to remove
1426
    Counter = 0;
1427 1428
    veci_resize( &s->learnt_live, 0 );
    sat_solver_foreach_learnt( s, c, h )
1429
    {
1430
        if ( Counter++ > CounterStart || c->nEnts < 3 || pClaAct[c->Id-1] >= ActCutOff || s->reasons[lit_var(c->pEnts[0])] == (h<<1)+1 )
1431 1432 1433
            veci_push( &s->learnt_live, h );
        else
            c->mark = 1;
1434
    }
1435
    // report the results
1436
    if ( s->fVerbose )
1437
    Abc_Print(1, "reduceDB: Keeping %7d out of %7d clauses (%5.2f %%)  ",
1438 1439 1440
        veci_size(&s->learnt_live), s->stats.learnts, 100.0 * veci_size(&s->learnt_live) / s->stats.learnts );

    // remap clause proofs and clauses
1441 1442
    hHandle = 1;
    pArray  = s->fProofLogging ? veci_begin(&s->claProofs) : NULL;
1443
    pArray2 = veci_begin(&s->claActs);
1444
    satset_foreach_entry_vec( &s->learnt_live, &s->learnts, c, i )
1445
    {
1446
        if ( pArray )
1447 1448 1449 1450
        pArray[i+1]  = pArray[c->Id];
        pArray2[i+1] = pArray2[c->Id];
        c->Id = hHandle; hHandle += satset_size(c->nEnts);
    }
1451
    if ( s->fProofLogging )
1452 1453 1454
    veci_resize(&s->claProofs,veci_size(&s->learnt_live)+1);
    veci_resize(&s->claActs,veci_size(&s->learnt_live)+1);

1455 1456 1457 1458 1459 1460 1461 1462 1463
    // update reason clauses
    for ( i = 0; i < s->size; i++ )
        if ( s->reasons[i] && (s->reasons[i] & 1) )
        {
            c = clause_read( s, s->reasons[i] );
            assert( c->mark == 0 );
            s->reasons[i] = (c->Id << 1) | 1;
        }

1464
    // compact watches
1465 1466 1467 1468
    for ( i = 0; i < s->size*2; i++ )
    {
        pArray = veci_begin(&s->wlists[i]);
        for ( j = k = 0; k < veci_size(&s->wlists[i]); k++ )
1469
            if ( !(pArray[k] & 1) ) // problem clause
1470
                pArray[j++] = pArray[k];
1471 1472
            else if ( !(c = clause_read(s, pArray[k]))->mark ) // useful learned clause
                pArray[j++] = (c->Id << 1) | 1;
1473 1474 1475
        veci_resize(&s->wlists[i],j);
    }
    // compact units
1476
    if ( s->fProofLogging )
1477
    for ( i = 0; i < s->size; i++ )
1478
        if ( s->units[i] && (s->units[i] & 1) )
1479 1480 1481 1482 1483
        {
            c = clause_read( s, s->units[i] );
            assert( c->mark == 0 );
            s->units[i] = (c->Id << 1) | 1;
        }
1484
    // compact clauses
1485
    pivot = satset_read( &s->learnts, s->hLearntPivot );
1486
    s->hLearntPivot = hTemp = hHandle;
1487
    satset_foreach_entry_vec( &s->learnt_live, &s->learnts, c, i )
1488 1489
    {
        hTemp = c->Id; c->Id = i + 1;
1490 1491
        LastSize = satset_size(c->nEnts);
        memmove( veci_begin(&s->learnts) + hTemp, c, sizeof(int)*LastSize );
1492 1493 1494 1495 1496
        if ( pivot && pivot <= c )
        {
            s->hLearntPivot = hTemp;
            pivot = NULL;
        }
1497
    }
1498
    assert( hHandle == hTemp + LastSize );
1499
    veci_resize(&s->learnts,hHandle);
1500
    s->stats.learnts = veci_size(&s->learnt_live);
1501 1502
    assert( s->hLearntPivot <= veci_size(&s->learnts) );
    assert( s->hClausePivot <= veci_size(&s->clauses) );
1503 1504

    // compact proof (compacts 'proofs' and update 'claProofs')
1505
    if ( s->fProofLogging )
1506
        Sat_ProofReduce( s );
1507 1508

    TimeTotal += clock() - clk;
1509
    if ( s->fVerbose )
1510 1511 1512
    Abc_PrintTime( 1, "Time", TimeTotal );
}

1513 1514 1515 1516
// reverses to the previously bookmarked point
void sat_solver2_rollback( sat_solver2* s )
{
    int i, k, j;
1517
    assert( s->iVarPivot >= 0 && s->iVarPivot <= s->size );
1518 1519
    assert( s->iTrailPivot >= 0 && s->iTrailPivot <= s->qtail );
    assert( s->iProofPivot >= 0 && s->iProofPivot <= Vec_SetEntryNum(&s->Proofs) );
1520
    assert( s->hClausePivot >= 1 && s->hClausePivot <= veci_size(&s->clauses) );
1521
    assert( s->hLearntPivot >= 1 && s->hLearntPivot <= veci_size(&s->learnts) );
1522
    assert( s->hProofPivot >= 1 && s->hProofPivot <= Vec_SetHandCurrent(&s->Proofs) );
1523
    // reset implication queue
1524
    solver2_canceluntil_rollback( s, s->iTrailPivot );
1525 1526
    // update order 
    if ( s->iVarPivot < s->size )
1527
    { 
1528
        veci_resize(&s->order, 0);
1529 1530 1531 1532 1533 1534 1535 1536
        for ( i = 0; i < s->iVarPivot; i++ )
        {
            if ( var_value(s, i) != varX )
                continue;
            s->orderpos[i] = veci_size(&s->order);
            veci_push(&s->order,i);
            order_update(s, i);
        }
1537 1538 1539 1540
    }
    // compact watches
    if ( s->hClausePivot > 1 || s->hLearntPivot > 1 )
    {
1541 1542 1543 1544 1545 1546 1547 1548 1549
        for ( i = 0; i < s->size*2; i++ )
        {
            cla* pArray = veci_begin(&s->wlists[i]);
            for ( j = k = 0; k < veci_size(&s->wlists[i]); k++ )
                if ( clause_is_used(s, pArray[k]) )
                    pArray[j++] = pArray[k];
            veci_resize(&s->wlists[i],j);
        }
    }
1550
    // reset problem clauses
1551 1552 1553
    if ( s->hClausePivot < veci_size(&s->clauses) )
    {
        satset* first = satset_read(&s->clauses, s->hClausePivot);
1554
        s->stats.clauses = first->Id-1;
1555 1556
        veci_resize(&s->clauses, s->hClausePivot);
    }
1557
    // resetn learned clauses
1558
    if ( s->hLearntPivot < veci_size(&s->learnts) )
1559
    { 
1560
        satset* first = satset_read(&s->learnts, s->hLearntPivot);
1561
        veci_resize(&s->claActs,   first->Id);
1562
        if ( s->fProofLogging ) {
1563
            veci_resize(&s->claProofs, first->Id);
1564 1565 1566
//            Vec_SetWriteEntryNum(&s->Proofs, s->iProofPivot); // <- some bug here
//            Vec_SetShrink(&s->Proofs, s->hProofPivot);
            Sat_ProofReduce( s );
1567
        }
1568
        s->stats.learnts = first->Id-1;
1569
        veci_resize(&s->learnts, s->hLearntPivot);
1570
    }
1571
    // reset watcher lists
1572
    for ( i = 2*s->iVarPivot; i < 2*s->size; i++ )
1573
        s->wlists[i].size = 0;
1574

1575
    // initialize other vars
1576
    s->size = s->iVarPivot;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    if ( s->size == 0 )
    {
    //    s->size                   = 0;
    //    s->cap                    = 0;
        s->qhead                  = 0;
        s->qtail                  = 0;
#ifdef USE_FLOAT_ACTIVITY
        s->var_inc                = 1;
        s->cla_inc                = 1;
        s->var_decay              = (float)(1 / 0.95  );
        s->cla_decay              = (float)(1 / 0.999 );
#else
        s->var_inc                = (1 <<  5);
        s->cla_inc                = (1 << 11);
#endif
        s->root_level             = 0;
        s->random_seed            = 91648253;
        s->progress_estimate      = 0;
        s->verbosity              = 0;

        s->stats.starts           = 0;
        s->stats.decisions        = 0;
        s->stats.propagations     = 0;
        s->stats.inspects         = 0;
        s->stats.conflicts        = 0;
        s->stats.clauses          = 0;
        s->stats.clauses_literals = 0;
        s->stats.learnts          = 0;
        s->stats.learnts_literals = 0;
        s->stats.tot_literals     = 0;
1607
        // initialize clause pointers
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
        s->hLearntLast            = -1; // the last learnt clause 
        s->hProofLast             = -1; // the last proof ID

        // initialize rollback
        s->iVarPivot              =  0; // the pivot for variables
        s->iTrailPivot            =  0; // the pivot for trail
        s->iProofPivot            =  0; // the pivot for proof records
        s->hClausePivot           =  1; // the pivot for problem clause
        s->hLearntPivot           =  1; // the pivot for learned clause
        s->hProofPivot            =  1; // the pivot for proof records
1618 1619 1620
    }
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
// find the clause in the watcher lists
int sat_solver2_find_clause( sat_solver2* s, int Hand, int fVerbose )
{
    int i, k, Found = 0;
    if ( Hand >= s->clauses.size )
        return 1;
    for ( i = 0; i < s->size*2; i++ )
    {
        cla* pArray = veci_begin(&s->wlists[i]);
        for ( k = 0; k < veci_size(&s->wlists[i]); k++ )
            if ( (pArray[k] >> 1) == Hand )
            {
                if ( fVerbose )
1634
                Abc_Print(1, "Clause found in list %d at position %d.\n", i, k );
1635 1636 1637 1638 1639 1640 1641
                Found = 1;
                break;
            }
    }
    if ( Found == 0 )
    {
        if ( fVerbose )
1642
        Abc_Print(1, "Clause with handle %d is not found.\n", Hand );
1643 1644 1645 1646
    }
    return Found;
}

1647
// verify that all problem clauses are satisfied
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
void sat_solver2_verify( sat_solver2* s )
{
    satset * c;
    int i, k, v, Counter = 0;
    satset_foreach_entry( &s->clauses, c, i, 1 )
    {
        for ( k = 0; k < (int)c->nEnts; k++ )
        {
            v = lit_var(c->pEnts[k]);
            if ( sat_solver2_var_value(s, v) ^ lit_sign(c->pEnts[k]) )
                break;
        }
        if ( k == (int)c->nEnts )
        {
1662
            Abc_Print(1, "Clause %d is not satisfied.   ", c->Id );
1663 1664 1665 1666 1667
            satset_print( c );
            sat_solver2_find_clause( s, satset_handle(&s->clauses, c), 1 );
            Counter++;
        }
    }
1668
    if ( Counter != 0 )
1669
        Abc_Print(1, "Verification failed!\n" );
1670
//    else
1671
//        Abc_Print(1, "Verification passed.\n" );
1672 1673 1674
}


1675 1676 1677 1678
int sat_solver2_solve(sat_solver2* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal)
{
    int restart_iter = 0;
    ABC_INT64_T  nof_conflicts;
1679 1680 1681
    lbool status = l_Undef;
    int proof_id;
    lit * i;
1682

1683
    s->hLearntLast = -1;
1684
    s->hProofLast = -1;
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
    // set the external limits
//    s->nCalls++;
//    s->nRestarts  = 0;
    s->nConfLimit = 0;
    s->nInsLimit  = 0;
    if ( nConfLimit )
        s->nConfLimit = s->stats.conflicts + nConfLimit;
    if ( nInsLimit )
//        s->nInsLimit = s->stats.inspects + nInsLimit;
        s->nInsLimit = s->stats.propagations + nInsLimit;
    if ( nConfLimitGlobal && (s->nConfLimit == 0 || s->nConfLimit > nConfLimitGlobal) )
        s->nConfLimit = nConfLimitGlobal;
    if ( nInsLimitGlobal && (s->nInsLimit == 0 || s->nInsLimit > nInsLimitGlobal) )
        s->nInsLimit = nInsLimitGlobal;

/*
    // Perform assumptions:
    root_level = assumps.size();
    for (int i = 0; i < assumps.size(); i++){
        Lit p = assumps[i];
        assert(var(p) < nVars());
1707
        if (!solver2_assume(p)){
1708 1709
            GClause r = reason[var(p)];
            if (r != GClause_NULL){
1710
                satset* confl;
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
                if (r.isLit()){
                    confl = propagate_tmpbin;
                    (*confl)[1] = ~p;
                    (*confl)[0] = r.lit();
                }else
                    confl = r.clause();
                analyzeFinal(confl, true);
                conflict.push(~p);
            }else
                conflict.clear(),
                conflict.push(~p);
            cancelUntil(0);
            return false; }
1724
        satset* confl = propagate();
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
        if (confl != NULL){
            analyzeFinal(confl), assert(conflict.size() > 0);
            cancelUntil(0);
            return false; }
    }
    assert(root_level == decisionLevel());
*/

    // Perform assumptions:
    s->root_level = end - begin;
    for ( i = begin; i < end; i++ )
    {
        lit p = *i;
        assert(lit_var(p) < s->size);
        veci_push(&s->trail_lim,s->qtail);
1740
        if (!solver2_enqueue(s,p,0))
1741
        {
1742
            satset* r = clause_read(s, lit_reason(s,p));
1743 1744
            if (r != NULL)
            {
1745
                satset* confl = r;
1746
                proof_id = solver2_analyze_final(s, confl, 1);
1747 1748 1749 1750
                veci_push(&s->conf_final, lit_neg(p));
            }
            else
            {
1751
                assert( 0 );
1752
                proof_id = -1; // the only case when ProofId is not assigned (conflicting assumptions)
1753 1754
                veci_resize(&s->conf_final,0);
                veci_push(&s->conf_final, lit_neg(p));
1755
                // the two lines below are a bug fix by Siert Wieringa 
1756
                if (var_level(s, lit_var(p)) > 0)
1757
                    veci_push(&s->conf_final, p);
1758
            }
1759
            s->hProofLast = proof_id;
1760
            solver2_canceluntil(s, 0);
1761
            return l_False;
1762 1763 1764
        }
        else
        {
1765
            satset* confl = solver2_propagate(s);
1766
            if (confl != NULL){
1767
                proof_id = solver2_analyze_final(s, confl, 0);
1768
                assert(s->conf_final.size > 0);
1769
                s->hProofLast = proof_id;
1770
                solver2_canceluntil(s, 0);
1771
                return l_False;
1772
            }
1773 1774
        }
    }
1775
    assert(s->root_level == solver2_dlevel(s));
1776 1777

    if (s->verbosity >= 1){
1778 1779 1780 1781
        Abc_Print(1,"==================================[MINISAT]===================================\n");
        Abc_Print(1,"| Conflicts |     ORIGINAL     |              LEARNT              | Progress |\n");
        Abc_Print(1,"|           | Clauses Literals |   Limit Clauses Literals  Lit/Cl |          |\n");
        Abc_Print(1,"==============================================================================\n");
1782 1783 1784 1785 1786
    }

    while (status == l_Undef){
        if (s->verbosity >= 1)
        {
1787
            Abc_Print(1,"| %9.0f | %7.0f %8.0f | %7.0f %7.0f %8.0f %7.1f | %6.3f %% |\n",
1788
                (double)s->stats.conflicts,
1789
                (double)s->stats.clauses,
1790
                (double)s->stats.clauses_literals,
1791 1792
                (double)s->nLearntMax,
                (double)s->stats.learnts,
1793
                (double)s->stats.learnts_literals,
1794
                (s->stats.learnts == 0)? 0.0 : (double)s->stats.learnts_literals / s->stats.learnts,
1795 1796 1797
                s->progress_estimate*100);
            fflush(stdout);
        }
1798 1799
        if ( s->nRuntimeLimit && time(NULL) > s->nRuntimeLimit )
            break;
1800 1801
        // reduce the set of learnt clauses:
        sat_solver2_reducedb(s);
1802
        // perform next run
1803
        nof_conflicts = (ABC_INT64_T)( 100 * luby2(2, restart_iter++) );
1804
        status = solver2_search(s, nof_conflicts);
1805 1806 1807 1808 1809 1810 1811
        // quit the loop if reached an external limit
        if ( s->nConfLimit && s->stats.conflicts > s->nConfLimit )
            break;
        if ( s->nInsLimit  && s->stats.propagations > s->nInsLimit )
            break;
    }
    if (s->verbosity >= 1)
1812
        Abc_Print(1,"==============================================================================\n");
1813

1814
    solver2_canceluntil(s,0);
1815
//    assert( s->qhead == s->qtail );
1816 1817
//    if ( status == l_True )
//        sat_solver2_verify( s );
1818 1819 1820 1821 1822
    return status;
}


ABC_NAMESPACE_IMPL_END