Commit d2db956a by Alan Mishchenko

Started experiments with a new solver.

parent 0f594b78
......@@ -1275,6 +1275,14 @@ SOURCE=.\src\sat\bsat\satSolver.h
# End Source File
# Begin Source File
SOURCE=.\src\sat\bsat\satSolver2.c
# End Source File
# Begin Source File
SOURCE=.\src\sat\bsat\satSolver2.h
# End Source File
# Begin Source File
SOURCE=.\src\sat\bsat\satStore.c
# End Source File
# Begin Source File
......
......@@ -20,6 +20,7 @@
#include "cnf.h"
#include "satSolver.h"
#include "satSolver2.h"
#include "zlib.h"
ABC_NAMESPACE_IMPL_START
......@@ -416,6 +417,98 @@ void * Cnf_DataWriteIntoSolver( Cnf_Dat_t * p, int nFrames, int fInit )
/**Function*************************************************************
Synopsis [Writes CNF into a file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void * Cnf_DataWriteIntoSolver2( Cnf_Dat_t * p, int nFrames, int fInit )
{
sat_solver2 * pSat;
int i, f, status;
assert( nFrames > 0 );
pSat = sat_solver2_new();
sat_solver2_setnvars( pSat, p->nVars * nFrames );
for ( i = 0; i < p->nClauses; i++ )
{
if ( !sat_solver2_addclause( pSat, p->pClauses[i], p->pClauses[i+1] ) )
{
sat_solver2_delete( pSat );
return NULL;
}
}
if ( nFrames > 1 )
{
Aig_Obj_t * pObjLo, * pObjLi;
int nLitsAll, * pLits, Lits[2];
nLitsAll = 2 * p->nVars;
pLits = p->pClauses[0];
for ( f = 1; f < nFrames; f++ )
{
// add equality of register inputs/outputs for different timeframes
Aig_ManForEachLiLoSeq( p->pMan, pObjLi, pObjLo, i )
{
Lits[0] = (f-1)*nLitsAll + toLitCond( p->pVarNums[pObjLi->Id], 0 );
Lits[1] = f *nLitsAll + toLitCond( p->pVarNums[pObjLo->Id], 1 );
if ( !sat_solver2_addclause( pSat, Lits, Lits + 2 ) )
{
sat_solver2_delete( pSat );
return NULL;
}
Lits[0]++;
Lits[1]--;
if ( !sat_solver2_addclause( pSat, Lits, Lits + 2 ) )
{
sat_solver2_delete( pSat );
return NULL;
}
}
// add clauses for the next timeframe
for ( i = 0; i < p->nLiterals; i++ )
pLits[i] += nLitsAll;
for ( i = 0; i < p->nClauses; i++ )
{
if ( !sat_solver2_addclause( pSat, p->pClauses[i], p->pClauses[i+1] ) )
{
sat_solver2_delete( pSat );
return NULL;
}
}
}
// return literals to their original state
nLitsAll = (f-1) * nLitsAll;
for ( i = 0; i < p->nLiterals; i++ )
pLits[i] -= nLitsAll;
}
if ( fInit )
{
Aig_Obj_t * pObjLo;
int Lits[1];
Aig_ManForEachLoSeq( p->pMan, pObjLo, i )
{
Lits[0] = toLitCond( p->pVarNums[pObjLo->Id], 1 );
if ( !sat_solver2_addclause( pSat, Lits, Lits + 1 ) )
{
sat_solver2_delete( pSat );
return NULL;
}
}
}
status = sat_solver2_simplify(pSat);
if ( status == 0 )
{
sat_solver2_delete( pSat );
return NULL;
}
return pSat;
}
/**Function*************************************************************
Synopsis [Adds the OR-clause.]
Description []
......@@ -453,6 +546,34 @@ int Cnf_DataWriteOrClause( void * p, Cnf_Dat_t * pCnf )
SeeAlso []
***********************************************************************/
int Cnf_DataWriteOrClause2( void * p, Cnf_Dat_t * pCnf )
{
sat_solver2 * pSat = (sat_solver2 *)p;
Aig_Obj_t * pObj;
int i, * pLits;
pLits = ABC_ALLOC( int, Aig_ManPoNum(pCnf->pMan) );
Aig_ManForEachPo( pCnf->pMan, pObj, i )
pLits[i] = toLitCond( pCnf->pVarNums[pObj->Id], 0 );
if ( !sat_solver2_addclause( pSat, pLits, pLits + Aig_ManPoNum(pCnf->pMan) ) )
{
ABC_FREE( pLits );
return 0;
}
ABC_FREE( pLits );
return 1;
}
/**Function*************************************************************
Synopsis [Adds the OR-clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Cnf_DataWriteAndClauses( void * p, Cnf_Dat_t * pCnf )
{
sat_solver * pSat = (sat_solver *)p;
......
......@@ -286,7 +286,7 @@ static inline int Fra_ImpCreate( int Left, int Right )
////////////////////////////////////////////////////////////////////////
/*=== fraCec.c ========================================================*/
extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fVerbose );
extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fNewSolver, int fVerbose );
extern int Fra_FraigCec( Aig_Man_t ** ppAig, int nConfLimit, int fVerbose );
extern int Fra_FraigCecPartitioned( Aig_Man_t * pMan1, Aig_Man_t * pMan2, int nConfLimit, int nPartSize, int fSmart, int fVerbose );
/*=== fraClass.c ========================================================*/
......
......@@ -568,11 +568,11 @@ void Gia_ManSeqCleanupClasses( Gia_Man_t * p, int fConst, int fEquiv, int fVerbo
***********************************************************************/
int Gia_ManSolveSat( Gia_Man_t * p )
{
// extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fVerbose );
// extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fNewSolver, int fVerbose );
Aig_Man_t * pNew;
int RetValue, clk = clock();
pNew = Gia_ManToAig( p, 0 );
RetValue = Fra_FraigSat( pNew, 10000000, 0, 1, 1, 0 );
RetValue = Fra_FraigSat( pNew, 10000000, 0, 1, 1, 0, 0 );
if ( RetValue == 0 )
{
Gia_Obj_t * pObj;
......
......@@ -57,7 +57,7 @@ int Inter_ManCheckContainment( Aig_Man_t * pNew, Aig_Man_t * pOld )
pAigTemp = Fra_FraigEquivence( pMiter, 1000000, 1 );
RetValue = Fra_FraigMiterStatus( pAigTemp );
Aig_ManStop( pAigTemp );
// RetValue = Fra_FraigSat( pMiter, 1000000, 0, 0, 0 );
// RetValue = Fra_FraigSat( pMiter, 1000000, 0, 0, 0, 0 );
}
assert( RetValue != -1 );
Aig_ManStop( pMiter );
......@@ -88,7 +88,7 @@ int Inter_ManCheckEquivalence( Aig_Man_t * pNew, Aig_Man_t * pOld )
pAigTemp = Fra_FraigEquivence( pMiter, 1000000, 1 );
RetValue = Fra_FraigMiterStatus( pAigTemp );
Aig_ManStop( pAigTemp );
// RetValue = Fra_FraigSat( pMiter, 1000000, 0, 0, 0 );
// RetValue = Fra_FraigSat( pMiter, 1000000, 0, 0, 0, 0 );
}
assert( RetValue != -1 );
Aig_ManStop( pMiter );
......
......@@ -2907,14 +2907,14 @@ printf( "***************\n" );
***********************************************************************/
int Ivy_FraigCheckCone( Ivy_FraigMan_t * pGlo, Ivy_Man_t * p, Ivy_Obj_t * pObj1, Ivy_Obj_t * pObj2, int nConfLimit )
{
extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fVerbose );
extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fNewSolver, int fVerbose );
Vec_Int_t * vLeaves;
Aig_Man_t * pMan;
Aig_Obj_t * pObj;
int i, RetValue;
vLeaves = Vec_IntAlloc( 100 );
pMan = Ivy_FraigExtractCone( p, pObj1, pObj2, vLeaves );
RetValue = Fra_FraigSat( pMan, nConfLimit, 0, 0, 0, 1 );
RetValue = Fra_FraigSat( pMan, nConfLimit, 0, 0, 0, 0, 1 );
if ( RetValue == 0 )
{
int Counter = 0;
......
......@@ -558,6 +558,7 @@ Vec_Int_t * Aig_Gla2ManPerform( Aig_Man_t * pAig, int nStart, int nFramesMax, in
Aig_Gla2Man_t * p;
Vec_Int_t * vCore, * vResult;
int nTimeToStop = time(NULL) + TimeLimit;
int clk, clk2 = clock();
assert( Saig_ManPoNum(pAig) == 1 );
Abc_Clock(0,1);
......@@ -570,6 +571,7 @@ Vec_Int_t * Aig_Gla2ManPerform( Aig_Man_t * pAig, int nStart, int nFramesMax, in
}
// start the solver
clk = clock();
Abc_Clock(1,1);
p = Aig_Gla2ManStart( pAig, nStart, nFramesMax, fVerbose );
if ( !Aig_Gla2CreateSatSolver( p ) )
......@@ -579,13 +581,15 @@ Vec_Int_t * Aig_Gla2ManPerform( Aig_Man_t * pAig, int nStart, int nFramesMax, in
return NULL;
}
sat_solver_set_random( p->pSat, fSkipRand );
p->timePre += (Abc_Clock(1,0)/ABC_CPS)*CLOCKS_PER_SEC;
// p->timePre += (Abc_Clock(1,0)/ABC_CPS)*CLOCKS_PER_SEC;
p->timePre += clock() - clk;
// set runtime limit
if ( TimeLimit )
sat_solver_set_runtime_limit( p->pSat, nTimeToStop );
// compute UNSAT core
clk = clock();
Abc_Clock(1,1);
vCore = Saig_AbsSolverUnsatCore( p->pSat, nConfLimit, fVerbose, NULL );
if ( vCore == NULL )
......@@ -593,8 +597,10 @@ Vec_Int_t * Aig_Gla2ManPerform( Aig_Man_t * pAig, int nStart, int nFramesMax, in
Aig_Gla2ManStop( p );
return NULL;
}
p->timeSat += (Abc_Clock(1,0)/ABC_CPS)*CLOCKS_PER_SEC;
p->timeTotal = (Abc_Clock(0,0)/ABC_CPS)*CLOCKS_PER_SEC;
// p->timeSat += (Abc_Clock(1,0)/ABC_CPS)*CLOCKS_PER_SEC;
// p->timeTotal = (Abc_Clock(0,0)/ABC_CPS)*CLOCKS_PER_SEC;
p->timeSat += clock() - clk;
p->timeTotal += clock() - clk2;
// print stats
if ( fVerbose )
......
......@@ -17038,7 +17038,7 @@ int Abc_CommandDCec( Abc_Frame_t * pAbc, int argc, char ** argv )
int fPartition;
int fMiter;
extern int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fVerbose );
extern int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fNewSolver, int fVerbose );
extern int Abc_NtkDarCec( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nConfLimit, int fPartition, int fVerbose );
pNtk = Abc_FrameReadNtk(pAbc);
......@@ -17143,7 +17143,7 @@ int Abc_CommandDCec( Abc_Frame_t * pAbc, int argc, char ** argv )
// perform equivalence checking
if ( fSat && fMiter )
Abc_NtkDSat( pNtk1, nConfLimit, nInsLimit, 0, 0, fVerbose );
Abc_NtkDSat( pNtk1, nConfLimit, nInsLimit, 0, 0, 0, fVerbose );
else
Abc_NtkDarCec( pNtk1, pNtk2, nConfLimit, fPartition, fVerbose );
......@@ -18250,20 +18250,22 @@ int Abc_CommandDSat( Abc_Frame_t * pAbc, int argc, char ** argv )
int RetValue;
int fAlignPol;
int fAndOuts;
int fNewSolver;
int fVerbose;
int nConfLimit;
int nInsLimit;
int clk;
extern int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fVerbose );
extern int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fNewSolver, int fVerbose );
// set defaults
fAlignPol = 0;
fAndOuts = 0;
fNewSolver = 0;
fVerbose = 0;
nConfLimit = 100000;
nInsLimit = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "CIpavh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "CIpanvh" ) ) != EOF )
{
switch ( c )
{
......@@ -18295,6 +18297,9 @@ int Abc_CommandDSat( Abc_Frame_t * pAbc, int argc, char ** argv )
case 'a':
fAndOuts ^= 1;
break;
case 'n':
fNewSolver ^= 1;
break;
case 'v':
fVerbose ^= 1;
break;
......@@ -18329,7 +18334,7 @@ int Abc_CommandDSat( Abc_Frame_t * pAbc, int argc, char ** argv )
}
clk = clock();
RetValue = Abc_NtkDSat( pNtk, (ABC_INT64_T)nConfLimit, (ABC_INT64_T)nInsLimit, fAlignPol, fAndOuts, fVerbose );
RetValue = Abc_NtkDSat( pNtk, (ABC_INT64_T)nConfLimit, (ABC_INT64_T)nInsLimit, fAlignPol, fAndOuts, fNewSolver, fVerbose );
// verify that the pattern is correct
if ( RetValue == 0 && Abc_NtkPoNum(pNtk) == 1 )
{
......@@ -18351,13 +18356,14 @@ int Abc_CommandDSat( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0;
usage:
Abc_Print( -2, "usage: dsat [-C num] [-I num] [-pavh]\n" );
Abc_Print( -2, "usage: dsat [-C num] [-I num] [-panvh]\n" );
Abc_Print( -2, "\t solves the combinational miter using SAT solver MiniSat-1.14\n" );
Abc_Print( -2, "\t derives CNF from the current network and leave it unchanged\n" );
Abc_Print( -2, "\t-C num : limit on the number of conflicts [default = %d]\n", nConfLimit );
Abc_Print( -2, "\t-I num : limit on the number of inspections [default = %d]\n", nInsLimit );
Abc_Print( -2, "\t-p : alighn polarity of SAT variables [default = %s]\n", fAlignPol? "yes": "no" );
Abc_Print( -2, "\t-a : toggle ANDing/ORing of miter outputs [default = %s]\n", fAndOuts? "ANDing": "ORing" );
Abc_Print( -2, "\t-n : toggle using new solver [default = %s]\n", fNewSolver? "yes": "no" );
Abc_Print( -2, "\t-v : prints verbose information [default = %s]\n", fVerbose? "yes": "no" );
Abc_Print( -2, "\t-h : print the command usage\n");
return 1;
......
......@@ -1240,7 +1240,7 @@ Abc_Ntk_t * Abc_NtkDarToCnf( Abc_Ntk_t * pNtk, char * pFileName, int fFastAlgo,
SeeAlso []
***********************************************************************/
int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fVerbose )
int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fNewSolver, int fVerbose )
{
Aig_Man_t * pMan;
int RetValue;//, clk = clock();
......@@ -1248,7 +1248,7 @@ int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit
assert( Abc_NtkLatchNum(pNtk) == 0 );
// assert( Abc_NtkPoNum(pNtk) == 1 );
pMan = Abc_NtkToDar( pNtk, 0, 0 );
RetValue = Fra_FraigSat( pMan, nConfLimit, nInsLimit, fAlignPol, fAndOuts, fVerbose );
RetValue = Fra_FraigSat( pMan, nConfLimit, nInsLimit, fAlignPol, fAndOuts, fNewSolver, fVerbose );
pNtk->pModel = (int *)pMan->pData, pMan->pData = NULL;
Aig_ManStop( pMan );
return RetValue;
......@@ -1910,7 +1910,7 @@ int Abc_NtkDarBmcInter_int( Aig_Man_t * pMan, Inter_ManParams_t * pPars, Aig_Man
if ( Aig_ManRegNum(pTemp) == 0 )
{
pTemp->pSeqModel = NULL;
RetValue = Fra_FraigSat( pTemp, pPars->nBTLimit, 0, 0, 0, 0 );
RetValue = Fra_FraigSat( pTemp, pPars->nBTLimit, 0, 0, 0, 0, 0 );
if ( pTemp->pData )
pTemp->pSeqModel = Abc_CexCreate( Aig_ManRegNum(pMan), Saig_ManPiNum(pMan), (int *)pTemp->pData, 0, i, 1 );
// pNtk->pModel = pTemp->pData, pTemp->pData = NULL;
......
......@@ -30,7 +30,7 @@ ABC_NAMESPACE_IMPL_START
extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters );
extern void Aig_ManStop( Aig_Man_t * pMan );
//extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fVerbose );
//extern int Fra_FraigSat( Aig_Man_t * pMan, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fFlipBits, int fAndOuts, int fNewSolver, int fVerbose );
extern Ivy_Obj_t * Dec_GraphToNetworkIvy( Ivy_Man_t * pMan, Dec_Graph_t * pGraph );
extern void Ivy_CutComputeAll( Ivy_Man_t * p, int nInputs );
......@@ -532,7 +532,7 @@ int Abc_NtkIvyProve( Abc_Ntk_t ** ppNtk, void * pPars )
// if SAT only, solve without iteration
// RetValue = Abc_NtkMiterSat( pNtk, 2*(ABC_INT64_T)pParams->nMiteringLimitStart, (ABC_INT64_T)0, 0, NULL, NULL );
pMan2 = Abc_NtkToDar( pNtk, 0, 0 );
RetValue = Fra_FraigSat( pMan2, (ABC_INT64_T)pParams->nMiteringLimitStart, (ABC_INT64_T)0, 1, 0, 0 );
RetValue = Fra_FraigSat( pMan2, (ABC_INT64_T)pParams->nMiteringLimitStart, (ABC_INT64_T)0, 1, 0, 0, 0 );
pNtk->pModel = (int *)pMan2->pData, pMan2->pData = NULL;
Aig_ManStop( pMan2 );
// pNtk->pModel = Aig_ManReleaseData( pMan2 );
......@@ -582,7 +582,7 @@ int Abc_NtkIvyProve( Abc_Ntk_t ** ppNtk, void * pPars )
Ioa_WriteAiger( pMan2, pFileName, 0, 0 );
printf( "Intermediate reduced miter is written into file \"%s\".\n", pFileName );
}
RetValue = Fra_FraigSat( pMan2, pParams->nMiteringLimitLast, 0, 0, 0, pParams->fVerbose );
RetValue = Fra_FraigSat( pMan2, pParams->nMiteringLimitLast, 0, 0, 0, 0, pParams->fVerbose );
pNtk->pModel = (int *)pMan2->pData, pMan2->pData = NULL;
Aig_ManStop( pMan2 );
}
......
......@@ -41,7 +41,7 @@ static void Abc_NtkVectorClearVars( Abc_Ntk_t * pNtk, Vec_Int_t * vPiValues, int
static void Abc_NtkVectorPrintPars( Vec_Int_t * vPiValues, int nPars );
static void Abc_NtkVectorPrintVars( Abc_Ntk_t * pNtk, Vec_Int_t * vPiValues, int nPars );
extern int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fVerbose );
extern int Abc_NtkDSat( Abc_Ntk_t * pNtk, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, int fAlignPol, int fAndOuts, int fNewSolver, int fVerbose );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
......@@ -101,7 +101,7 @@ void Abc_NtkQbf( Abc_Ntk_t * pNtk, int nPars, int nItersMax, int fVerbose )
// solve the synthesis instance
clkS = clock();
// RetValue = Abc_NtkMiterSat( pNtkSyn, 0, 0, 0, NULL, NULL );
RetValue = Abc_NtkDSat( pNtkSyn, (ABC_INT64_T)0, (ABC_INT64_T)0, 1, 0, 0 );
RetValue = Abc_NtkDSat( pNtkSyn, (ABC_INT64_T)0, (ABC_INT64_T)0, 1, 0, 0, 0 );
clkS = clock() - clkS;
if ( RetValue == 0 )
Abc_NtkModelToVector( pNtkSyn, vPiValues );
......
......@@ -4,6 +4,7 @@ SRC += src/sat/bsat/satMem.c \
src/sat/bsat/satInterB.c \
src/sat/bsat/satInterP.c \
src/sat/bsat/satSolver.c \
src/sat/bsat/satSolver2.c \
src/sat/bsat/satStore.c \
src/sat/bsat/satTrace.c \
src/sat/bsat/satUtil.c
/**************************************************************************************************
MiniSat -- Copyright (c) 2005, Niklas Sorensson
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
// Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko
#ifndef satSolver2_h
#define satSolver2_h
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "satVec.h"
ABC_NAMESPACE_HEADER_START
//=================================================================================================
// Public interface:
struct sat_solver2_t;
typedef struct sat_solver2_t sat_solver2;
extern sat_solver2* sat_solver2_new(void);
extern void sat_solver2_delete(sat_solver2* s);
extern int sat_solver2_addclause(sat_solver2* s, lit* begin, lit* end);
extern int sat_solver2_simplify(sat_solver2* s);
extern int sat_solver2_solve(sat_solver2* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
extern int sat_solver2_nvars(sat_solver2* s);
extern int sat_solver2_nclauses(sat_solver2* s);
extern int sat_solver2_nconflicts(sat_solver2* s);
extern void sat_solver2_setnvars(sat_solver2* s,int n);
extern void Sat_Solver2WriteDimacs( sat_solver2 * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars );
extern void Sat_Solver2PrintStats( FILE * pFile, sat_solver2 * p );
extern int * Sat_Solver2GetModel( sat_solver2 * p, int * pVars, int nVars );
extern void Sat_Solver2DoubleClauses( sat_solver2 * p, int iVar );
// trace recording
extern void sat_solver2TraceStart( sat_solver2 * pSat, char * pName );
extern void sat_solver2TraceStop( sat_solver2 * pSat );
extern void sat_solver2TraceWrite( sat_solver2 * pSat, int * pBeg, int * pEnd, int fRoot );
// clause storage
extern void sat_solver2_store_alloc( sat_solver2 * s );
extern void sat_solver2_store_write( sat_solver2 * s, char * pFileName );
extern void sat_solver2_store_free( sat_solver2 * s );
extern void sat_solver2_store_mark_roots( sat_solver2 * s );
extern void sat_solver2_store_mark_clauses_a( sat_solver2 * s );
extern void * sat_solver2_store_release( sat_solver2 * s );
//=================================================================================================
// Solver representation:
struct clause_t;
typedef struct clause_t clause;
struct sat_solver2_t
{
int size; // nof variables
int cap; // size of varmaps
int qhead; // Head index of queue.
int qtail; // Tail index of queue.
// clauses
vecp clauses; // List of problem constraints. (contains: clause*)
vecp learnts; // List of learnt clauses. (contains: clause*)
// activities
// double var_inc; // Amount to bump next variable with.
// double var_decay; // INVERSE decay factor for variable activity: stores 1/decay.
int var_inc;
// int var_decay;
// float cla_inc; // Amount to bump next clause with.
int cla_inc; // Amount to bump next clause with.
// float cla_decay; // INVERSE decay factor for clause activity: stores 1/decay.
vecp* wlists; //
// double* activity; // A heuristic measurement of the activity of a variable.
unsigned*activity; // A heuristic measurement of the activity of a variable.
lbool* assigns; // Current values of variables.
int* orderpos; // Index in variable order.
clause** reasons; //
int* levels; //
lit* trail;
char* polarity;
clause* binary; // A temporary binary clause
lbool* tags; //
veci tagged; // (contains: var)
veci stack; // (contains: var)
veci order; // Variable order. (heap) (contains: var)
veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int)
veci model; // If problem is solved, this vector contains the model (contains: lbool).
veci conf_final; // If problem is unsatisfiable (possibly under assumptions),
// this vector represent the final conflict clause expressed in the assumptions.
int root_level; // Level of first proper decision.
int simpdb_assigns;// Number of top-level assignments at last 'simplifyDB()'.
int simpdb_props; // Number of propagations before next 'simplifyDB()'.
double random_seed;
double progress_estimate;
int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything
stats_t stats;
ABC_INT64_T nConfLimit; // external limit on the number of conflicts
ABC_INT64_T nInsLimit; // external limit on the number of implications
int nRuntimeLimit; // external limit on runtime
// clause memory
int * pMemArray;
int nMemAlloc;
int nMemSize;
// int fSkipSimplify; // set to one to skip simplification of the clause database
int fNotUseRandom; // do not allow random decisions with a fixed probability
veci temp_clause; // temporary storage for a CNF clause
};
static int sat_solver2_var_value( sat_solver2* s, int v )
{
assert( s->model.ptr != NULL && v < s->size );
return (int)(s->model.ptr[v] == l_True);
}
static int sat_solver2_var_literal( sat_solver2* s, int v )
{
assert( s->model.ptr != NULL && v < s->size );
return toLitCond( v, s->model.ptr[v] != l_True );
}
static void sat_solver2_act_var_clear(sat_solver2* s)
{
int i;
for (i = 0; i < s->size; i++)
s->activity[i] = 0;//.0;
s->var_inc = 1.0;
}
static void sat_solver2_compress(sat_solver2* s)
{
if ( s->qtail != s->qhead )
{
int RetValue = sat_solver2_simplify(s);
assert( RetValue != 0 );
}
}
static int sat_solver2_final(sat_solver2* s, int ** ppArray)
{
*ppArray = s->conf_final.ptr;
return s->conf_final.size;
}
static int sat_solver2_set_runtime_limit(sat_solver2* s, int Limit)
{
int nRuntimeLimit = s->nRuntimeLimit;
s->nRuntimeLimit = Limit;
return nRuntimeLimit;
}
static int sat_solver2_set_random(sat_solver2* s, int fNotUseRandom)
{
int fNotUseRandomOld = s->fNotUseRandom;
s->fNotUseRandom = fNotUseRandom;
return fNotUseRandomOld;
}
ABC_NAMESPACE_HEADER_END
#endif
......@@ -21,6 +21,7 @@
#include <stdio.h>
#include <assert.h>
#include "satSolver.h"
#include "satSolver2.h"
ABC_NAMESPACE_IMPL_START
......@@ -148,13 +149,36 @@ void Sat_SolverClauseWriteDimacs( FILE * pFile, clause * pC, int fIncrement )
***********************************************************************/
void Sat_SolverPrintStats( FILE * pFile, sat_solver * p )
{
// printf( "calls : %8d (%d)\n", (int)p->nCalls, (int)p->nCalls2 );
printf( "starts : %8d\n", (int)p->stats.starts );
printf( "conflicts : %8d\n", (int)p->stats.conflicts );
printf( "decisions : %8d\n", (int)p->stats.decisions );
printf( "propagations : %8d\n", (int)p->stats.propagations );
printf( "inspects : %8d\n", (int)p->stats.inspects );
// printf( "inspects2 : %8d\n", (int)p->stats.inspects2 );
// printf( "calls : %10d (%d)\n", (int)p->nCalls, (int)p->nCalls2 );
printf( "starts : %10d\n", (int)p->stats.starts );
printf( "conflicts : %10d\n", (int)p->stats.conflicts );
printf( "decisions : %10d\n", (int)p->stats.decisions );
printf( "propagations : %10d\n", (int)p->stats.propagations );
printf( "inspects : %10d\n", (int)p->stats.inspects );
// printf( "inspects2 : %10d\n", (int)p->stats.inspects2 );
}
/**Function*************************************************************
Synopsis [Writes the given clause in a file in DIMACS format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sat_Solver2PrintStats( FILE * pFile, sat_solver2 * p )
{
// printf( "calls : %10d (%d)\n", (int)p->nCalls, (int)p->nCalls2 );
printf( "starts : %10d\n", (int)p->stats.starts );
printf( "conflicts : %10d\n", (int)p->stats.conflicts );
printf( "decisions : %10d\n", (int)p->stats.decisions );
printf( "propagations : %10d\n", (int)p->stats.propagations );
printf( "inspects : %10d\n", (int)p->stats.inspects );
// printf( "inspects2 : %10d\n", (int)p->stats.inspects2 );
printf( "memory : %10d\n", p->nMemSize );
}
/**Function*************************************************************
......@@ -183,6 +207,30 @@ int * Sat_SolverGetModel( sat_solver * p, int * pVars, int nVars )
/**Function*************************************************************
Synopsis [Returns a counter-example.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int * Sat_Solver2GetModel( sat_solver2 * p, int * pVars, int nVars )
{
int * pModel;
int i;
pModel = ABC_CALLOC( int, nVars+1 );
for ( i = 0; i < nVars; i++ )
{
assert( pVars[i] >= 0 && pVars[i] < p->size );
pModel[i] = (int)(p->model.ptr[pVars[i]] == l_True);
}
return pModel;
}
/**Function*************************************************************
Synopsis [Duplicates all clauses, complements unit clause of the given var.]
Description []
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment