kitGraph.c 11.5 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/**CFile****************************************************************

  FileName    [kitGraph.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Computation kit.]

  Synopsis    [Decomposition graph representation.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - Dec 6, 2006.]

  Revision    [$Id: kitGraph.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]

***********************************************************************/

#include "kit.h"

23 24 25
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Creates a graph with the given number of leaves.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Graph_t * Kit_GraphCreate( int nLeaves )   
{
    Kit_Graph_t * pGraph;
Alan Mishchenko committed
48
    pGraph = ABC_ALLOC( Kit_Graph_t, 1 );
Alan Mishchenko committed
49 50 51 52
    memset( pGraph, 0, sizeof(Kit_Graph_t) );
    pGraph->nLeaves = nLeaves;
    pGraph->nSize = nLeaves;
    pGraph->nCap = 2 * nLeaves + 50;
Alan Mishchenko committed
53
    pGraph->pNodes = ABC_ALLOC( Kit_Node_t, pGraph->nCap );
Alan Mishchenko committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    memset( pGraph->pNodes, 0, sizeof(Kit_Node_t) * pGraph->nSize );
    return pGraph;
}

/**Function*************************************************************

  Synopsis    [Creates constant 0 graph.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Graph_t * Kit_GraphCreateConst0()   
{
    Kit_Graph_t * pGraph;
Alan Mishchenko committed
72
    pGraph = ABC_ALLOC( Kit_Graph_t, 1 );
Alan Mishchenko committed
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    memset( pGraph, 0, sizeof(Kit_Graph_t) );
    pGraph->fConst = 1;
    pGraph->eRoot.fCompl = 1;
    return pGraph;
}

/**Function*************************************************************

  Synopsis    [Creates constant 1 graph.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Graph_t * Kit_GraphCreateConst1()   
{
    Kit_Graph_t * pGraph;
Alan Mishchenko committed
93
    pGraph = ABC_ALLOC( Kit_Graph_t, 1 );
Alan Mishchenko committed
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    memset( pGraph, 0, sizeof(Kit_Graph_t) );
    pGraph->fConst = 1;
    return pGraph;
}

/**Function*************************************************************

  Synopsis    [Creates the literal graph.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl )   
{
    Kit_Graph_t * pGraph;
    assert( 0 <= iLeaf && iLeaf < nLeaves );
    pGraph = Kit_GraphCreate( nLeaves );
    pGraph->eRoot.Node   = iLeaf;
    pGraph->eRoot.fCompl = fCompl;
    return pGraph;
}

/**Function*************************************************************

  Synopsis    [Creates a graph with the given number of leaves.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Kit_GraphFree( Kit_Graph_t * pGraph )   
{
Alan Mishchenko committed
133 134
    ABC_FREE( pGraph->pNodes );
    ABC_FREE( pGraph );
Alan Mishchenko committed
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

/**Function*************************************************************

  Synopsis    [Appends a new node to the graph.]

  Description [This procedure is meant for internal use.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph )   
{
    Kit_Node_t * pNode;
    if ( pGraph->nSize == pGraph->nCap )
    {
Alan Mishchenko committed
153
        pGraph->pNodes = ABC_REALLOC( Kit_Node_t, pGraph->pNodes, 2 * pGraph->nCap ); 
Alan Mishchenko committed
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        pGraph->nCap   = 2 * pGraph->nCap;
    }
    pNode = pGraph->pNodes + pGraph->nSize++;
    memset( pNode, 0, sizeof(Kit_Node_t) );
    return pNode;
}

/**Function*************************************************************

  Synopsis    [Creates an AND node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 )
{
    Kit_Node_t * pNode;
    // get the new node
    pNode = Kit_GraphAppendNode( pGraph );
    // set the inputs and other info
    pNode->eEdge0 = eEdge0;
    pNode->eEdge1 = eEdge1;
    pNode->fCompl0 = eEdge0.fCompl;
    pNode->fCompl1 = eEdge1.fCompl;
    return Kit_EdgeCreate( pGraph->nSize - 1, 0 );
}

/**Function*************************************************************

  Synopsis    [Creates an OR node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 )
{
    Kit_Node_t * pNode;
    // get the new node
    pNode = Kit_GraphAppendNode( pGraph );
    // set the inputs and other info
    pNode->eEdge0 = eEdge0;
    pNode->eEdge1 = eEdge1;
    pNode->fCompl0 = eEdge0.fCompl;
    pNode->fCompl1 = eEdge1.fCompl;
    // make adjustments for the OR gate
    pNode->fNodeOr = 1;
    pNode->eEdge0.fCompl = !pNode->eEdge0.fCompl;
    pNode->eEdge1.fCompl = !pNode->eEdge1.fCompl;
    return Kit_EdgeCreate( pGraph->nSize - 1, 1 );
}

/**Function*************************************************************

  Synopsis    [Creates an XOR node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type )
{
    Kit_Edge_t eNode0, eNode1, eNode;
    if ( Type == 0 )
    {
        // derive the first AND
        eEdge0.fCompl ^= 1;
        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
        eEdge0.fCompl ^= 1;
        // derive the second AND
        eEdge1.fCompl ^= 1;
        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
        // derive the final OR
        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
    }
    else
    {
        // derive the first AND
        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
        // derive the second AND
        eEdge0.fCompl ^= 1;
        eEdge1.fCompl ^= 1;
        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 );
        // derive the final OR
        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
        eNode.fCompl ^= 1;
    }
    return eNode;
}

/**Function*************************************************************

  Synopsis    [Creates an XOR node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type )
{
    Kit_Edge_t eNode0, eNode1, eNode;
    if ( Type == 0 )
    {
        // derive the first AND
        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT );
        // derive the second AND
        eEdgeC.fCompl ^= 1;
        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE );
        // derive the final OR
        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
    }
    else
    {
        // complement the arguments
        eEdgeT.fCompl ^= 1;
        eEdgeE.fCompl ^= 1;
        // derive the first AND
        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT );
        // derive the second AND
        eEdgeC.fCompl ^= 1;
        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE );
        // derive the final OR
        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 );
        eNode.fCompl ^= 1;
    }
    return eNode;
}

/**Function*************************************************************

  Synopsis    [Derives the truth table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph )
{
    unsigned uTruths[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 };
Alan Mishchenko committed
309
    unsigned uTruth = 0, uTruth0, uTruth1;
Alan Mishchenko committed
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    Kit_Node_t * pNode;
    int i;

    // sanity checks
    assert( Kit_GraphLeaveNum(pGraph) >= 0 );
    assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize );
    assert( Kit_GraphLeaveNum(pGraph) <= 5 );

    // check for constant function
    if ( Kit_GraphIsConst(pGraph) )
        return Kit_GraphIsComplement(pGraph)? 0 : ~((unsigned)0);
    // check for a literal
    if ( Kit_GraphIsVar(pGraph) )
        return Kit_GraphIsComplement(pGraph)? ~uTruths[Kit_GraphVarInt(pGraph)] : uTruths[Kit_GraphVarInt(pGraph)];

    // assign the elementary variables
    Kit_GraphForEachLeaf( pGraph, pNode, i )
Alan Mishchenko committed
327
        pNode->pFunc = (void *)(long)uTruths[i];
Alan Mishchenko committed
328 329 330 331

    // compute the function for each internal node
    Kit_GraphForEachNode( pGraph, pNode, i )
    {
Alan Mishchenko committed
332 333
        uTruth0 = (unsigned)(long)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc;
        uTruth1 = (unsigned)(long)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc;
Alan Mishchenko committed
334 335 336
        uTruth0 = pNode->eEdge0.fCompl? ~uTruth0 : uTruth0;
        uTruth1 = pNode->eEdge1.fCompl? ~uTruth1 : uTruth1;
        uTruth = uTruth0 & uTruth1;
Alan Mishchenko committed
337
        pNode->pFunc = (void *)(long)uTruth;
Alan Mishchenko committed
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    }

    // complement the result if necessary
    return Kit_GraphIsComplement(pGraph)? ~uTruth : uTruth;
}

/**Function*************************************************************

  Synopsis    [Derives the factored form from the truth table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory )
{
    Kit_Graph_t * pGraph;
    int RetValue;
    // derive SOP
Alan Mishchenko committed
360
    RetValue = Kit_TruthIsop( pTruth, nVars, vMemory, 1 ); // tried 1 and found not useful in "renode"
Alan Mishchenko committed
361 362
    if ( RetValue == -1 )
        return NULL;
363
    if ( Vec_IntSize(vMemory) > (1<<16) )
Alan Mishchenko committed
364
        return NULL;
Alan Mishchenko committed
365
//    printf( "Isop size = %d.\n", Vec_IntSize(vMemory) );
Alan Mishchenko committed
366
    assert( RetValue == 0 || RetValue == 1 );
Alan Mishchenko committed
367
    // derive factored form
Alan Mishchenko committed
368
    pGraph = Kit_SopFactor( vMemory, RetValue, nVars, vMemory );
Alan Mishchenko committed
369 370 371
    return pGraph;
}

Alan Mishchenko committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/**Function*************************************************************

  Synopsis    [Derives the maximum depth from the leaf to the root.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf )
{
    int Depth0, Depth1, Depth;
    if ( pNode == pLeaf )
        return 0;
    if ( Kit_GraphNodeIsVar(pGraph, pNode) )
        return -100;
    Depth0 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin0(pGraph, pNode), pLeaf );
    Depth1 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin1(pGraph, pNode), pLeaf );
    Depth = KIT_MAX( Depth0, Depth1 );
    Depth = (Depth == -100) ? -100 : Depth + 1;
    return Depth;
}

Alan Mishchenko committed
397 398 399 400
////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////

401 402
ABC_NAMESPACE_IMPL_END