satSolver2.h 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/**************************************************************************************************
MiniSat -- Copyright (c) 2005, Niklas Sorensson
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
// Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko

22 23
#ifndef ABC__sat__bsat__satSolver2_h
#define ABC__sat__bsat__satSolver2_h
24
 
25 26 27 28 29 30 31

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "satVec.h"
32
#include "satClause.h"
33
#include "misc/vec/vecSet.h"
34
#include "satProof2.h"
35 36 37

ABC_NAMESPACE_HEADER_START

38
//#define USE_FLOAT_ACTIVITY2
39 40 41 42 43 44 45 46

//=================================================================================================
// Public interface:

struct sat_solver2_t;
typedef struct sat_solver2_t sat_solver2;

extern sat_solver2* sat_solver2_new(void);
47
extern void         sat_solver2_delete(sat_solver2* s);
48

49
extern int          sat_solver2_addclause(sat_solver2* s, lit* begin, lit* end, int Id);
50 51
extern int          sat_solver2_simplify(sat_solver2* s);
extern int          sat_solver2_solve(sat_solver2* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
52
extern void         sat_solver2_rollback(sat_solver2* s);
53
extern void         sat_solver2_reducedb(sat_solver2* s);
54
extern double       sat_solver2_memory( sat_solver2* s, int fAll );
55
extern double       sat_solver2_memory_proof( sat_solver2* s );
56

57
extern void         sat_solver2_setnvars(sat_solver2* s,int n);
58

59 60 61 62
extern void         Sat_Solver2WriteDimacs( sat_solver2 * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars );
extern void         Sat_Solver2PrintStats( FILE * pFile, sat_solver2 * p );
extern int *        Sat_Solver2GetModel( sat_solver2 * p, int * pVars, int nVars );
extern void         Sat_Solver2DoubleClauses( sat_solver2 * p, int iVar );
63

64
// global variables
Alan Mishchenko committed
65 66 67
extern int          var_is_assigned(sat_solver2* s, int v);
extern int          var_is_partA   (sat_solver2* s, int v);
extern void         var_set_partA  (sat_solver2* s, int v, int partA);
68

69 70 71
// proof-based APIs
extern void *       Sat_ProofCore( sat_solver2 * s );
extern void *       Sat_ProofInterpolant( sat_solver2 * s, void * pGloVars );
72
extern word *       Sat_ProofInterpolantTruth( sat_solver2 * s, void * pGloVars );
73
extern void         Sat_ProofCheck( sat_solver2 * s );
74

75 76 77
//=================================================================================================
// Solver representation:

78
struct varinfo_t;
79
typedef struct varinfo2_t varinfo2;
80

81 82
struct sat_solver2_t
{
83 84 85 86 87 88 89 90
    int             size;           // nof variables
    int             cap;            // size of varmaps
    int             qhead;          // Head index of queue.
    int             qtail;          // Tail index of queue.

    int             root_level;     // Level of first proper decision.
    double          random_seed;
    double          progress_estimate;
91
    int             verbosity;      // Verbosity level. 0=silent, 1=some progress report, 2=everything    // activities
92

93
#ifdef USE_FLOAT_ACTIVITY2
94 95 96 97 98
    double          var_inc;        // Amount to bump next variable with.
    double          var_decay;      // INVERSE decay factor for variable activity: stores 1/decay. 
    float           cla_inc;        // Amount to bump next clause with.
    float           cla_decay;      // INVERSE decay factor for clause activity: stores 1/decay.
    double*         activity;       // A heuristic measurement of the activity of a variable.
99
#else
100
    int             var_inc;        // Amount to bump next variable with.
101
    int             var_inc2;       // Amount to bump next variable with.
102
    int             cla_inc;        // Amount to bump next clause with.
103 104
    unsigned*       activity;       // A heuristic measurement of the activity of a variable
    unsigned*       activity2;      // backup variable activity
105
#endif
106

107 108
    int             nUnits;         // the total number of unit clauses
    int             nof_learnts;    // the number of clauses to trigger reduceDB
109
    int             nLearntMax;     // enables using reduce DB method
110 111 112 113
    int             nLearntStart;   // starting learned clause limit
    int             nLearntDelta;   // delta of learned clause limit
    int             nLearntRatio;   // ratio percentage of learned clauses
    int             nDBreduces;     // number of DB reductions
114
    int             fNotUseRandom;  // do not allow random decisions with a fixed probability
115
    int             fSkipSimplify;  // set to one to skip simplification of the clause database
116
    int             fProofLogging;  // enable proof-logging
117
    int             fVerbose;
118 119

    // clauses
120
    Sat_Mem_t       Mem;
121
    veci*           wlists;         // watcher lists (for each literal)
122
    veci            act_clas;       // clause activities
123
    veci            claProofs;      // clause proofs
124

125 126 127 128
    // rollback
    int             iVarPivot;      // the pivot for variables
    int             iTrailPivot;    // the pivot for trail
    int             hProofPivot;    // the pivot for proof records
129 130

    // internal state
131
    varinfo2 *      vi;             // variable information
132 133
    int*            levels;         // 
    char*           assigns;        // 
134 135 136 137
    lit*            trail;          // sequence of assignment and implications
    int*            orderpos;       // Index in variable order.
    cla*            reasons;        // reason clauses
    cla*            units;          // unit clauses
138
    int*            model;          // If problem is solved, this vector contains the model (contains: lbool).
139 140 141 142 143 144 145 146 147 148 149

    veci            tagged;         // (contains: var)
    veci            stack;          // (contains: var)
    veci            order;          // Variable order. (heap) (contains: var)
    veci            trail_lim;      // Separator indices for different decision levels in 'trail'. (contains: int)
    veci            temp_clause;    // temporary storage for a CNF clause
    veci            conf_final;     // If problem is unsatisfiable (possibly under assumptions),
                                    // this vector represent the final conflict clause expressed in the assumptions.
    veci            mark_levels;    // temporary storage for labeled levels
    veci            min_lit_order;  // ordering of removable literals
    veci            min_step_order; // ordering of resolution steps
150
    veci            learnt_live;    // remaining clauses after reduce DB
151 152

    // proof logging
153
    Vec_Set_t *     pPrf1;          // sequence of proof records
154
    veci            temp_proof;     // temporary place to store proofs
155 156
    int             hLearntLast;    // in proof-logging mode, the ID of the final conflict clause (conf_final)
    int             hProofLast;     // in proof-logging mode, the ID of the final conflict clause (conf_final)
157 158
    Prf_Man_t *     pPrf2;          // another proof manager
    double          dPrfMemory;     // memory used by the proof-logger
159

160
    // statistics
161 162 163
    stats_t         stats;
    ABC_INT64_T     nConfLimit;     // external limit on the number of conflicts
    ABC_INT64_T     nInsLimit;      // external limit on the number of implications
164
    clock_t         nRuntimeLimit;  // external limit on runtime
165
};
166

167
static inline clause * clause2_read( sat_solver2 * s, cla h )                  { return Sat_MemClauseHand( &s->Mem, h ); }
168
static inline int      clause2_proofid(sat_solver2* s, clause* c, int partA)   { return c->lrn ? (veci_begin(&s->claProofs)[clause_id(c)]<<2) | (partA<<1) : (clause_id(c)<<2) | (partA<<1) | 1; }
169

170
// these two only work after creating a clause before the solver is called
171 172 173 174
static inline int   clause2_is_partA (sat_solver2* s, int h)                   { return clause2_read(s, h)->partA;       }
static inline void  clause2_set_partA(sat_solver2* s, int h, int partA)        { clause2_read(s, h)->partA = partA;      }
static inline int   clause2_id(sat_solver2* s, int h)                          { return clause_id(clause2_read(s, h));   }
static inline void  clause2_set_id(sat_solver2* s, int h, int id)              { clause_set_id(clause2_read(s, h), id);  }
175 176 177 178

//=================================================================================================
// Public APIs:

179 180 181 182 183 184 185 186 187 188
static inline int sat_solver2_nvars(sat_solver2* s)
{
    return s->size;
}

static inline int sat_solver2_nclauses(sat_solver2* s)
{
    return (int)s->stats.clauses;
}

189 190 191 192 193
static inline int sat_solver2_nlearnts(sat_solver2* s)
{
    return (int)s->stats.learnts;
}

194 195 196 197 198 199
static inline int sat_solver2_nconflicts(sat_solver2* s)
{
    return (int)s->stats.conflicts;
}

static inline int sat_solver2_var_value( sat_solver2* s, int v ) 
200
{
201 202
    assert( v >= 0 && v < s->size );
    return (int)(s->model[v] == l_True);
203
}
204
static inline int sat_solver2_var_literal( sat_solver2* s, int v ) 
205
{
206 207
    assert( v >= 0 && v < s->size );
    return toLitCond( v, s->model[v] != l_True );
208
}
209
static inline void sat_solver2_act_var_clear(sat_solver2* s) 
210 211 212 213 214 215 216
{
    int i;
    for (i = 0; i < s->size; i++)
        s->activity[i] = 0;//.0;
    s->var_inc = 1.0;
}

217
static inline int sat_solver2_final(sat_solver2* s, int ** ppArray)
218 219 220 221 222
{
    *ppArray = s->conf_final.ptr;
    return s->conf_final.size;
}

223
static inline clock_t sat_solver2_set_runtime_limit(sat_solver2* s, clock_t Limit)
224
{
225
    clock_t temp = s->nRuntimeLimit;
226
    s->nRuntimeLimit = Limit;
227
    return temp;
228 229
}

230 231 232 233 234
static inline int sat_solver2_set_learntmax(sat_solver2* s, int nLearntMax)
{
    int temp = s->nLearntMax;
    s->nLearntMax = nLearntMax;
    return temp;
235 236
}

237
static inline void sat_solver2_bookmark(sat_solver2* s)
238
{
239
    assert( s->qhead == s->qtail );
240
    s->iVarPivot    = s->size;
241
    s->iTrailPivot  = s->qhead;
242 243
    if ( s->pPrf1 )
        s->hProofPivot  = Vec_SetHandCurrent(s->pPrf1);
244
    Sat_MemBookMark( &s->Mem );
245
    if ( s->activity2 )
246 247
    {
        s->var_inc2 = s->var_inc;
248
        memcpy( s->activity2, s->activity, sizeof(unsigned) * s->iVarPivot );
249
    }
250 251
}

252
static inline int sat_solver2_add_const( sat_solver2 * pSat, int iVar, int fCompl, int fMark, int Id )
253 254 255 256 257 258
{
    lit Lits[1];
    int Cid;
    assert( iVar >= 0 );

    Lits[0] = toLitCond( iVar, fCompl );
259
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 1, Id );
260
    if ( fMark )
261
        clause2_set_partA( pSat, Cid, 1 );
262 263
    return 1;
}
264
static inline int sat_solver2_add_buffer( sat_solver2 * pSat, int iVarA, int iVarB, int fCompl, int fMark, int Id )
265 266 267 268 269 270 271
{
    lit Lits[2];
    int Cid;
    assert( iVarA >= 0 && iVarB >= 0 );

    Lits[0] = toLitCond( iVarA, 0 );
    Lits[1] = toLitCond( iVarB, !fCompl );
272
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
273
    if ( fMark )
274
        clause2_set_partA( pSat, Cid, 1 );
275 276 277

    Lits[0] = toLitCond( iVarA, 1 );
    Lits[1] = toLitCond( iVarB, fCompl );
278
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
279
    if ( fMark )
280
        clause2_set_partA( pSat, Cid, 1 );
281 282
    return 2;
}
283
static inline int sat_solver2_add_and( sat_solver2 * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fMark, int Id )
284 285 286 287 288 289
{
    lit Lits[3];
    int Cid;

    Lits[0] = toLitCond( iVar, 1 );
    Lits[1] = toLitCond( iVar0, fCompl0 );
290
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
291
    if ( fMark )
292
        clause2_set_partA( pSat, Cid, 1 );
293 294 295

    Lits[0] = toLitCond( iVar, 1 );
    Lits[1] = toLitCond( iVar1, fCompl1 );
296
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
297
    if ( fMark )
298
        clause2_set_partA( pSat, Cid, 1 );
299 300 301 302

    Lits[0] = toLitCond( iVar, 0 );
    Lits[1] = toLitCond( iVar0, !fCompl0 );
    Lits[2] = toLitCond( iVar1, !fCompl1 );
303
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
304
    if ( fMark )
305
        clause2_set_partA( pSat, Cid, 1 );
306 307
    return 3;
}
308
static inline int sat_solver2_add_xor( sat_solver2 * pSat, int iVarA, int iVarB, int iVarC, int fCompl, int fMark, int Id )
309 310 311 312 313 314 315 316
{
    lit Lits[3];
    int Cid;
    assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 );

    Lits[0] = toLitCond( iVarA, !fCompl );
    Lits[1] = toLitCond( iVarB, 1 );
    Lits[2] = toLitCond( iVarC, 1 );
317
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
318
    if ( fMark )
319
        clause2_set_partA( pSat, Cid, 1 );
320 321 322 323

    Lits[0] = toLitCond( iVarA, !fCompl );
    Lits[1] = toLitCond( iVarB, 0 );
    Lits[2] = toLitCond( iVarC, 0 );
324
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
325
    if ( fMark )
326
        clause2_set_partA( pSat, Cid, 1 );
327 328 329 330

    Lits[0] = toLitCond( iVarA, fCompl );
    Lits[1] = toLitCond( iVarB, 1 );
    Lits[2] = toLitCond( iVarC, 0 );
331
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
332
    if ( fMark )
333
        clause2_set_partA( pSat, Cid, 1 );
334 335 336 337

    Lits[0] = toLitCond( iVarA, fCompl );
    Lits[1] = toLitCond( iVarB, 0 );
    Lits[2] = toLitCond( iVarC, 1 );
338
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
339
    if ( fMark )
340
        clause2_set_partA( pSat, Cid, 1 );
341 342
    return 4;
}
343
static inline int sat_solver2_add_constraint( sat_solver2 * pSat, int iVar, int iVar2, int fCompl, int fMark, int Id )
344 345 346 347 348 349
{
    lit Lits[2];
    int Cid;
    assert( iVar >= 0 );

    Lits[0] = toLitCond( iVar, fCompl );
350
    Lits[1] = toLitCond( iVar2, 0 );
351
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
352
    if ( fMark )
353
        clause2_set_partA( pSat, Cid, 1 );
354 355

    Lits[0] = toLitCond( iVar, fCompl );
356
    Lits[1] = toLitCond( iVar2, 1 );
357
    Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
358
    if ( fMark )
359
        clause2_set_partA( pSat, Cid, 1 );
360 361 362 363
    return 2;
}


364 365 366
ABC_NAMESPACE_HEADER_END

#endif