1. 23 Apr, 2020 1 commit
  2. 22 Apr, 2020 1 commit
  3. 16 Apr, 2020 1 commit
  4. 15 Apr, 2020 2 commits
  5. 02 Apr, 2020 2 commits
  6. 24 Mar, 2020 1 commit
  7. 23 Mar, 2020 2 commits
    • [Relay, Topi, TF Frontend] Isfinite operator (#4981) · 9037f4ec
      * isfinite doc update
      
      * isfinit expr
      
      * isfinit expr
      
      * isfinite schedule reg
      
      * isfinite python binding
      
      * isfinite python binding
      
      * relay register isfinite
      
      * isfinite type relation
      
      * intrin isfinite
      
      * topi isfinite
      
      * testcase topi isfinite
      
      * tf frontend isfinite
      
      * tf frontend isfinite testcase
      
      * test case relay isfinite
      
      * small fixes
      
      * test forward tf isfinite
      
      * test cases injective for cuda
      
      * remove float16 test case
      
      * add support for isinf
      
      * remove unwanted import
      
      * fix conflict
      Mahesh Ambule committed
    • [Relay, Topi] [TF, MXNet] Unravel Index operator (#5082) · fdc8b0dd
      * first cut unravel_index
      
      * merge fixes
      
      * change rates to dilations
      
      * unravel_index op relay, topi, mxnet, tf
      
      * doc changes
      
      * small changes
      
      * remove empty unravel and argwhere attrs
      
      * remove empty unravel and argwhere attrs
      Mahesh Ambule committed
  8. 21 Mar, 2020 1 commit
  9. 20 Mar, 2020 1 commit
  10. 18 Mar, 2020 1 commit
  11. 17 Mar, 2020 2 commits
  12. 27 Feb, 2020 2 commits
    • [DOCS] Sphinx -- Introduce alias detection. (#4954) · 1dbdcfb5
      * [DOCS] Sphinx -- Introduce alias detection.
      
      Background: some of our namespaces import function from another
      namespace. For example tvm.te imports most of the operators from tvm.tir.
      
      Previously we manually exclude these aliases from the doc.
      However that means we can not link them by the alias name.
      
      This PR adds a sphinx callback plugin to detect such aliases, and create a rubric block
      on the button of its current docstring `Alias of the original class`.
      It is done in a way so that we can refer to the generated docs.
      
      We also fixed a few docs errors.
      
      * Fix most of the issues
      Tianqi Chen committed
    • [REFACTOR][PY][API-CHANGE] Remove legacy python files. (#4943) · 9816efc2
      * [REFACTOR][PY][API-CHANGE] Remove legacy python files.
      
      Remove legacy python files.
      Use the te namespace for most of the tensor expression primitives.
      
      - tvm.create_schedule -> tvm.te.create_schedule
      - tvm.placeholder -> tvm.te.placeholder
      - tvm.compute -> tvm.te.compute
      
      * Remove top-level exposures.
      Tianqi Chen committed
  13. 26 Feb, 2020 1 commit
  14. 25 Feb, 2020 1 commit
    • [Relay] Add a PyTorch to Relay Parser (#4497) · 87c20bb2
      * Add a PyTorch to Relay parser
      
      * Add alexnet, googlenet, mnasnet, shufflenet wip
      
      * Fix lint
      
      * Remove fix for shufflenet
      
      * Lower check
      
      * Pull changes from neo-ai/tvm changes
      
      * Remove commented out section
      
      * Use infer_shape everywhere
      
      * Change back to using trace instead of path in from_pytorch
      
      * Parse state_dict to add param names
      
      * Umbrella single_op under test_forwards
      
      * Remove print and cleanup call
      
      * Check if update to test broke CI
      
      * Retrigger CI
      
      * Add back in updated tests
      
      * Try splitting up tests
      
      * First pass at flexible typing, implemented for ones
      
      * Add int32 for all ops
      
      * Remove print statements
      
      * Fix lint
      
      * Broad except
      
      * Add other tensor types
      
      * Temporarily use old tests
      
      * Retrigger CI
      
      * Lower type names
      
      * Use numpy to convert in dense op
      
      * Fix lint
      
      * Remove print
      
      * Need to cleanup but verify int32 works for add
      
      * Rough tests for different types, a lot of types are not supported on CPU
      
      * Probably doesn't build, need to save work as I have to switch branches (constantly)
      
      * Parse param type
      
      * Remove print stmt in parser
      
      * Clean up some code
      
      * Working on flaot32 for bn
      
      * Add resnet18 double type
      
      * Fix lint
      
      * Temporarily move PT tests first
      
      * Temporarily add back refactored tests to fix mem issue
      
      * Add more type test and temp remove some tests
      
      * Comment out tests, hopefully CI prints a trace
      
      * Get stack trace
      
      * Remove operator dict key, rename op_name to node_id, remove dead code
      
      * Make relay map a list
      
      * Remove some hacky string stuff
      
      * Move to PyTorch 1.4
      
      * Remove input_type as param
      
      * Remove _get_fill_value, fix full ops
      
      * Remove unused code and combine ops for identity and none
      
      * Remove fn_param
      
      * Clean up main loop
      
      * Remove useless if/else for outputs
      
      * Remove ir_names, only used once
      
      * Remove some string hacking
      
      * Remove string parsing to get output name
      
      * Fix bug with output sizes of nodes
      
      * Use attributeNames in parse ops
      
      * Remove continue and add_op in parse_op
      
      * Do this everywhere, use assert instead of explciitly type casting
      
      * Remove unnecessary swap
      
      * Slight refactor for elemwise input parse
      
      * Use a copy of graph everywhere
      
      * Rename nid_to_node_name
      
      * Refactor parse import prereqs
      
      * Clean up input node kind check
      
      * Clean up conditionals
      
      * Clean up add_op
      
      * Cleanup type for ones and zeros op
      
      * Fix lint
      
      * Add torch install to CI
      
      * Actually use torch
      
      * Try moving import torch to only where it's needed
      
      * Import torch for CI
      
      * Use take op for select
      
      * Temporarily add ignore for jit inline pass for CI
      
      * Use CompleteTensorType, might be a PT 1.2 only thing
      
      * Use different types in elemwise op
      
      * Use float16 ones
      
      * Fix float16 test
      
      * Remove the temp docker changes
      
      * Remove temp test
      
      * Temporarily comment out original tests
      
      * Remove file
      
      * Empty cache after each test
      
      * Add some prints and lower input sizes
      
      * Try using no grad
      
      * Trying to globally set grad off
      
      * Use no grad for torchvision
      
      * Remove xfail tests
      
      * Remove VGG and AlexNet due to some issues
      
      * Combine pooling tests
      
      * Remove extra test file
      
      * Remove single op, remove larger pooling tests
      
      * Remove maxpool3
      
      * Remove debug prints
      
      * Remove inference call and add no_grad in measure latency
      
      * Use standard string start char
      
      * Remove redundant infer_shape in slice
      
      * Convert most to checks to just expr
      
      * Remove extra paren
      
      * More refactor of isinstance
      
      * Add helper for creating typed constants
      
      * Assert instead of return when no matching type
      
      * Remove network variants
      
      * Add no_grad when forward, remove deatch, fix lint
      
      * Change isinstance to expr in transpose
      
      * Use opnotimplemented, refactor
      
      * Fix full ops, remove duplicate tests
      
      * Never use shape field unless we know the type
      
      * Remove comma, retrigger CI
      
      * Add paren, retrigger CI
      
      * Use inline if-else for flags
      
      * Throw exception instead of assert
      
      * Remove version check for CI
      
      * Check version when doing inline pass
      
      * Fix lint
      
      * Lower more input sizes
      
      * Add new line, conv2d only accepts weight as expr
      
      * Use tvm.runtime.ndarray
      
      * Remove change to torch version install
      
      * Try no grad for mobilenet
      
      * Fix lint
      
      * Fix lint again
      
      * Revert to last passing
      
      * Delete test files
      
      * Ignore lint
      
      * Revert back
      
      * Comment out mobilenet
      
      * Clean up compare compiled and baseline outputs
      
      * Use IRModule
      
      * Add todos
      
      * Refactor use_bias
      
      * Add todo for fix conv op channels
      
      * Change input to data type
      
      * Remove todo
      
      * Handle channel multiplier > 1
      Alex Wong committed
  15. 20 Feb, 2020 2 commits
  16. 18 Feb, 2020 1 commit
  17. 17 Feb, 2020 1 commit
  18. 13 Feb, 2020 1 commit
  19. 12 Feb, 2020 2 commits
  20. 07 Feb, 2020 1 commit
    • [REFACTOR][PY][API-Change] Polish tvm.runtime, tvm.runtime.module API update (#4837) · e0122c0e
      * [REFACTOR][PY-API] Polish tvm.runtime, tvm.runtime.module API update
      
      This PR updates the tvm.runtime to use the new FFI style.
      
      - Remove top-level tvm.module to avoid confusion between runtime.Module and IRModule
      - API changes wrt to runtime.Module
        - tvm.module.load -> tvm.runtime.load_module
        - tvm.module.enabled -> tvm.runtime.enabled
        - tvm.module.system_lib -> tvm.runtime.system_lib
      - Remove dep on api_internal from runtime.
      
      * Update module.load in the latest API
      Tianqi Chen committed
  21. 16 Jan, 2020 1 commit
    • [Arith] add SizeVar representing non-neg valued variable in a tensor shape (#4684) · 3a672e3e
      * [arith] add ShapeVar representing non-neg valued variable in a tensor shape
      
      * bounder remover; deal with div in int_set differently
      
      * fix bounder_remover
      
      * migrate unittest to use shape_var
      
      * use tvm.shape_var in integration & relay tests
      
      * add test case; fix Var register
      
      * fix lint
      
      * fix lint again
      
      * add default ShapeVar visitor in Relay
      
      * fix override
      
      * fix ShapeVar visit bug
      
      * revert IntervalSet for shape_var
      
      * remove bound_remover
      
      * remove is_var; use constructor for shapevar/var instead
      
      * ShapeVar -> SizeVar; add constructor comments
      
      * shape_var -> size_var in doc
      
      * tindex -> size
      Yizhi Liu committed
  22. 11 Jan, 2020 2 commits
  23. 09 Jan, 2020 1 commit
  24. 22 Dec, 2019 1 commit
  25. 18 Nov, 2019 1 commit
  26. 15 Nov, 2019 1 commit
  27. 30 Oct, 2019 1 commit
  28. 27 Sep, 2019 1 commit
  29. 25 Sep, 2019 1 commit
  30. 24 Sep, 2019 1 commit
    • [Relay] Add new IR pass CombineParallelDense (#3862) · ed9fdfb0
      * Refactor to create abstract ParallelOpCombiner
      
      * First draft of CombineParallelDense
      
      * Begin to work on tests
      
      * Test
      
      * Refactor to move out more common code
      
      * Clean up
      
      * Fix
      
      * Remove statics
      
      * fix wording
      
      * Start to add combine_parallel_op_batch
      
      * Resolve PR comments
      
      * Resolve PR comments
      
      * dummy change to retrigger CI
      
      * Change special case from bias_add to add
      
      * Revert special case change
      
      * Ignore units check
      
      * dummy change to retrigger CI
      
      * dummy change to re-trigger CI
      
      * Improve docs
      
      * Update docs
      
      * Update docs
      Jon Soifer committed
  31. 22 Sep, 2019 1 commit
  32. 21 Sep, 2019 1 commit