Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
f467377f
Commit
f467377f
authored
Dec 05, 2018
by
hlu1
Committed by
Tianqi Chen
Dec 05, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[contrib][nnpack] remove training-optimized ops (#2224)
parent
9a00b7b8
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
2 additions
and
236 deletions
+2
-236
python/tvm/contrib/nnpack.py
+0
-63
src/contrib/nnpack/convolution.cc
+0
-59
src/contrib/nnpack/fully_connected.cc
+0
-33
tests/python/contrib/test_nnpack.py
+2
-81
No files found.
python/tvm/contrib/nnpack.py
View file @
f467377f
...
@@ -34,30 +34,6 @@ def fully_connected_inference(lhs, rhs, nthreads=1):
...
@@ -34,30 +34,6 @@ def fully_connected_inference(lhs, rhs, nthreads=1):
"tvm.contrib.nnpack.fully_connected_inference"
,
"tvm.contrib.nnpack.fully_connected_inference"
,
ins
[
0
],
ins
[
1
],
outs
[
0
],
nthreads
),
name
=
"C"
)
ins
[
0
],
ins
[
1
],
outs
[
0
],
nthreads
),
name
=
"C"
)
def
fully_connected_output
(
lhs
,
rhs
,
nthreads
=
1
):
"""Create an extern op that compute fully connected of 2D tensor lhs and
2D tensor rhs with nnpack.
Parameters
----------
lhs : Tensor
lhs 2D matrix input[batch_size][input_channels] of FP32 elements
rhs : Tensor
lhs 2D matrix kernel[output_channels][input_channels] of FP32 elements
Returns
-------
C : Tensor
lhs 2D array out[batch_size][output_channels] of FP32 elements.
"""
n
=
lhs
.
shape
[
0
]
m
=
rhs
.
shape
[
0
]
return
_api
.
extern
(
(
n
,
m
),
[
lhs
,
rhs
],
lambda
ins
,
outs
:
_intrin
.
call_packed
(
"tvm.contrib.nnpack.fully_connected_output"
,
ins
[
0
],
ins
[
1
],
outs
[
0
],
nthreads
),
name
=
"C"
)
class
ConvolutionAlgorithm
:
class
ConvolutionAlgorithm
:
AUTO
=
0
AUTO
=
0
...
@@ -204,43 +180,4 @@ def convolution_inference_weight_transform(
...
@@ -204,43 +180,4 @@ def convolution_inference_weight_transform(
"tvm.contrib.nnpack.convolution_inference_weight_transform"
,
"tvm.contrib.nnpack.convolution_inference_weight_transform"
,
ins
[
0
],
outs
[
0
],
nthreads
,
algorithm
),
name
=
"transform_kernel"
)
ins
[
0
],
outs
[
0
],
nthreads
,
algorithm
),
name
=
"transform_kernel"
)
def
convolution_output
(
data
,
kernel
,
bias
,
padding
,
nthreads
=
1
):
"""Create an extern op to compute convolution of 4D tensor data and
4D tensor kernel and 1D tensor bias with nnpack.
Parameters
----------
data : Tensor
data 4D tensor input[batch_size][input_channels][input_height]
[input_width] of FP32 elements.
kernel : Tensor
kernel 4D tensor kernel[output_channels][input_channels][kernel_height]
[kernel_width] of FP32 elements.
bias : Tensor
bias 1D array bias[output_channels][input_channels][kernel_height]
[kernel_width] of FP32 elements.
padding : list
padding A 4-dim list of [pad_top, pad_bottom, pad_left, pad_right],
which indicates the padding around the feature map.
Returns
-------
output : Tensor
output 4D tensor output[batch_size][output_channels][output_height]
[output_width] of FP32 elements.
"""
assert
isinstance
(
padding
,
list
)
and
len
(
padding
)
==
4
batch
,
_
,
input_height
,
input_width
=
data
.
shape
output_channels
,
_
,
kernel_height
,
kernel_width
=
kernel
.
shape
output_height
=
(
input_height
+
padding
[
0
]
+
padding
[
1
]
-
kernel_height
)
+
1
output_width
=
(
input_width
+
padding
[
0
]
+
padding
[
1
]
-
kernel_width
)
+
1
return
_api
.
extern
(
(
batch
,
output_channels
,
output_height
,
output_width
),
[
data
,
kernel
,
bias
],
lambda
ins
,
outs
:
_intrin
.
call_packed
(
"tvm.contrib.nnpack.convolution_output"
,
ins
[
0
],
ins
[
1
],
ins
[
2
],
outs
[
0
],
padding
[
0
],
padding
[
1
],
padding
[
2
],
padding
[
3
],
nthreads
),
name
=
"C"
)
_init_api
(
"tvm.contrib.nnpack"
)
_init_api
(
"tvm.contrib.nnpack"
)
src/contrib/nnpack/convolution.cc
View file @
f467377f
...
@@ -215,64 +215,5 @@ TVM_REGISTER_GLOBAL(
...
@@ -215,64 +215,5 @@ TVM_REGISTER_GLOBAL(
entry
->
threadpool
,
nullptr
);
entry
->
threadpool
,
nullptr
);
CHECK_EQ
(
status
,
nnp_status_success
);
CHECK_EQ
(
status
,
nnp_status_success
);
});
});
TVM_REGISTER_GLOBAL
(
"tvm.contrib.nnpack.convolution_output"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
ret
)
{
NNPackThreadLocalEntry
*
entry
=
NNPackThreadLocalEntry
::
ThreadLocal
();
nnp_initialize
();
DLTensor
*
input
=
args
[
0
];
DLTensor
*
kernel
=
args
[
1
];
DLTensor
*
bias
=
args
[
2
];
DLTensor
*
output
=
args
[
3
];
uint64_t
pad_top
=
args
[
4
],
pad_right
=
args
[
5
],
pad_bottom
=
args
[
6
],
pad_left
=
args
[
7
];
nnp_padding
input_padding
{
pad_top
,
pad_right
,
pad_bottom
,
pad_left
};
NNPackConfig
(
args
[
8
]);
CHECK_EQ
(
input
->
ndim
,
4
);
CHECK_EQ
(
kernel
->
ndim
,
4
);
CHECK_EQ
(
bias
->
ndim
,
1
);
CHECK_EQ
(
output
->
ndim
,
4
);
CHECK_EQ
(
input
->
shape
[
0
],
output
->
shape
[
0
]);
size_t
batch_size
=
input
->
shape
[
0
];
CHECK_EQ
(
input
->
shape
[
1
],
kernel
->
shape
[
1
]);
size_t
input_channels
=
input
->
shape
[
1
];
CHECK_EQ
(
output
->
shape
[
1
],
bias
->
shape
[
0
]);
CHECK_EQ
(
output
->
shape
[
1
],
kernel
->
shape
[
0
]);
size_t
output_channels
=
output
->
shape
[
1
];
nnp_size
input_size
{
static_cast
<
size_t
>
(
input
->
shape
[
2
]),
static_cast
<
size_t
>
(
input
->
shape
[
3
])};
nnp_size
kernel_size
{
static_cast
<
size_t
>
(
kernel
->
shape
[
2
]),
static_cast
<
size_t
>
(
kernel
->
shape
[
3
])};
CHECK
(
input
->
strides
==
nullptr
);
CHECK
(
kernel
->
strides
==
nullptr
);
CHECK
(
bias
->
strides
==
nullptr
);
CHECK
(
TypeMatch
(
input
->
dtype
,
kDLFloat
,
32
));
CHECK
(
TypeMatch
(
kernel
->
dtype
,
kDLFloat
,
32
));
CHECK
(
TypeMatch
(
bias
->
dtype
,
kDLFloat
,
32
));
CHECK
(
TypeMatch
(
output
->
dtype
,
kDLFloat
,
32
));
nnp_status
status
=
nnp_convolution_output
(
nnp_convolution_algorithm_auto
,
batch_size
,
input_channels
,
output_channels
,
input_size
,
input_padding
,
kernel_size
,
static_cast
<
float
*>
(
input
->
data
),
static_cast
<
float
*>
(
kernel
->
data
),
static_cast
<
float
*>
(
bias
->
data
),
static_cast
<
float
*>
(
output
->
data
),
NULL
,
NULL
,
nnp_activation_identity
,
NULL
,
entry
->
threadpool
,
NULL
);
CHECK_EQ
(
status
,
nnp_status_success
);
});
}
// namespace contrib
}
// namespace contrib
}
// namespace tvm
}
// namespace tvm
src/contrib/nnpack/fully_connected.cc
View file @
f467377f
...
@@ -43,38 +43,5 @@ TVM_REGISTER_GLOBAL("tvm.contrib.nnpack.fully_connected_inference")
...
@@ -43,38 +43,5 @@ TVM_REGISTER_GLOBAL("tvm.contrib.nnpack.fully_connected_inference")
entry
->
threadpool
);
entry
->
threadpool
);
});
});
TVM_REGISTER_GLOBAL
(
"tvm.contrib.nnpack.fully_connected_output"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
ret
)
{
NNPackThreadLocalEntry
*
entry
=
NNPackThreadLocalEntry
::
ThreadLocal
();
nnp_initialize
();
DLTensor
*
A
=
args
[
0
];
DLTensor
*
B
=
args
[
1
];
DLTensor
*
C
=
args
[
2
];
NNPackConfig
(
args
[
3
]);
CHECK_EQ
(
A
->
ndim
,
2
);
CHECK_EQ
(
B
->
ndim
,
2
);
CHECK_EQ
(
C
->
ndim
,
2
);
CHECK_EQ
(
B
->
shape
[
0
],
C
->
shape
[
1
]);
CHECK_EQ
(
B
->
shape
[
1
],
A
->
shape
[
1
]);
CHECK_EQ
(
A
->
shape
[
0
],
C
->
shape
[
0
]);
CHECK
(
C
->
strides
==
nullptr
);
CHECK
(
B
->
strides
==
nullptr
);
CHECK
(
A
->
strides
==
nullptr
);
CHECK
(
TypeMatch
(
A
->
dtype
,
kDLFloat
,
32
));
CHECK
(
TypeMatch
(
B
->
dtype
,
kDLFloat
,
32
));
CHECK
(
TypeMatch
(
C
->
dtype
,
kDLFloat
,
32
));
nnp_fully_connected_output
(
A
->
shape
[
0
],
B
->
shape
[
1
],
B
->
shape
[
0
],
static_cast
<
float
*>
(
A
->
data
),
static_cast
<
float
*>
(
B
->
data
),
static_cast
<
float
*>
(
C
->
data
),
entry
->
threadpool
,
NULL
);
});
}
// namespace contrib
}
// namespace contrib
}
// namespace tvm
}
// namespace tvm
tests/python/contrib/test_nnpack.py
View file @
f467377f
...
@@ -3,38 +3,6 @@ import numpy as np
...
@@ -3,38 +3,6 @@ import numpy as np
import
scipy.signal
import
scipy.signal
from
tvm.contrib
import
nnpack
from
tvm.contrib
import
nnpack
def
test_fully_connected_output
():
n
=
1024
l
=
128
m
=
235
bias
=
tvm
.
var
(
'bias'
,
dtype
=
tvm
.
float32
)
A
=
tvm
.
placeholder
((
n
,
l
),
name
=
'A'
)
B
=
tvm
.
placeholder
((
m
,
l
),
name
=
'B'
)
C
=
nnpack
.
fully_connected_output
(
A
,
B
)
D
=
tvm
.
compute
(
C
.
shape
,
lambda
i
,
j
:
C
[
i
,
j
]
+
bias
,
name
=
"D"
)
s
=
tvm
.
create_schedule
(
D
.
op
)
def
verify
(
target
=
"llvm"
):
if
not
tvm
.
module
.
enabled
(
target
):
print
(
"skip because
%
s is not enabled..."
%
target
)
return
if
not
tvm
.
get_global_func
(
"tvm.contrib.nnpack.fully_connected_output"
,
True
):
print
(
"skip because extern function is not available"
)
return
if
not
nnpack
.
is_available
():
return
ctx
=
tvm
.
cpu
(
0
)
f
=
tvm
.
build
(
s
,
[
A
,
B
,
D
,
bias
],
target
)
a
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
(
n
,
l
))
.
astype
(
A
.
dtype
),
ctx
)
b
=
tvm
.
nd
.
array
(
np
.
random
.
uniform
(
size
=
(
m
,
l
))
.
astype
(
B
.
dtype
),
ctx
)
d
=
tvm
.
nd
.
array
(
np
.
zeros
((
n
,
m
),
dtype
=
D
.
dtype
),
ctx
)
bb
=
10.0
f
(
a
,
b
,
d
,
bb
)
tvm
.
testing
.
assert_allclose
(
d
.
asnumpy
(),
np
.
dot
(
a
.
asnumpy
(),
b
.
asnumpy
()
.
T
)
+
bb
,
rtol
=
1e-5
)
verify
()
def
test_fully_connected_inference
():
def
test_fully_connected_inference
():
n
=
1024
n
=
1024
...
@@ -131,7 +99,7 @@ def test_convolution_inference():
...
@@ -131,7 +99,7 @@ def test_convolution_inference():
if
not
tvm
.
module
.
enabled
(
target
):
if
not
tvm
.
module
.
enabled
(
target
):
print
(
"skip because
%
s is not enabled..."
%
target
)
print
(
"skip because
%
s is not enabled..."
%
target
)
return
return
if
not
tvm
.
get_global_func
(
"tvm.contrib.nnpack.
fully_connected
_inference"
,
True
):
if
not
tvm
.
get_global_func
(
"tvm.contrib.nnpack.
convolution
_inference"
,
True
):
print
(
"skip because extern function is not available"
)
print
(
"skip because extern function is not available"
)
return
return
if
not
nnpack
.
is_available
():
if
not
nnpack
.
is_available
():
...
@@ -195,7 +163,7 @@ def test_convolution_inference_without_weight_transform():
...
@@ -195,7 +163,7 @@ def test_convolution_inference_without_weight_transform():
if
not
tvm
.
module
.
enabled
(
target
):
if
not
tvm
.
module
.
enabled
(
target
):
print
(
"skip because
%
s is not enabled..."
%
target
)
print
(
"skip because
%
s is not enabled..."
%
target
)
return
return
if
not
tvm
.
get_global_func
(
"tvm.contrib.nnpack.
fully_connected_inference
"
,
True
):
if
not
tvm
.
get_global_func
(
"tvm.contrib.nnpack.
convolution_inference_without_weight_transform
"
,
True
):
print
(
"skip because extern function is not available"
)
print
(
"skip because extern function is not available"
)
return
return
if
not
nnpack
.
is_available
():
if
not
nnpack
.
is_available
():
...
@@ -228,53 +196,6 @@ def test_convolution_inference_without_weight_transform():
...
@@ -228,53 +196,6 @@ def test_convolution_inference_without_weight_transform():
for
with_bias
in
[
True
,
False
]:
for
with_bias
in
[
True
,
False
]:
verify
(
algorithm
=
algorithm
,
with_bias
=
with_bias
)
verify
(
algorithm
=
algorithm
,
with_bias
=
with_bias
)
def
test_convolution_output
():
BATCH
=
32
IH
=
48
IW
=
48
IC
=
16
OC
=
16
K
=
3
PAD
=
1
OH
=
(
IH
+
2
*
PAD
-
K
)
+
1
OW
=
(
IW
+
2
*
PAD
-
K
)
+
1
dshape
=
(
BATCH
,
IC
,
IH
,
IW
)
kshape
=
(
OC
,
IC
,
K
,
K
)
bshape
=
(
OC
,
)
oshape
=
(
BATCH
,
OC
,
OH
,
OW
)
data
=
tvm
.
placeholder
(
dshape
,
name
=
'data'
)
kernel
=
tvm
.
placeholder
(
kshape
,
name
=
'kernel'
)
bias
=
tvm
.
placeholder
(
bshape
,
name
=
'bias'
)
output
=
nnpack
.
convolution_output
(
data
,
kernel
,
bias
,
[
PAD
,
PAD
,
PAD
,
PAD
])
s
=
tvm
.
create_schedule
(
output
.
op
)
def
verify
(
target
=
"llvm"
):
if
not
tvm
.
module
.
enabled
(
target
):
print
(
"skip because
%
s is not enabled..."
%
target
)
return
if
not
tvm
.
get_global_func
(
"tvm.contrib.nnpack.fully_connected_inference"
,
True
):
print
(
"skip because extern function is not available"
)
return
if
not
nnpack
.
is_available
():
return
ctx
=
tvm
.
cpu
(
0
)
f
=
tvm
.
build
(
s
,
[
data
,
kernel
,
bias
,
output
],
target
)
na
=
np
.
random
.
uniform
(
size
=
dshape
)
.
astype
(
data
.
dtype
)
nb
=
np
.
random
.
uniform
(
size
=
kshape
)
.
astype
(
kernel
.
dtype
)
nc
=
np
.
zeros
(
bshape
,
dtype
=
bias
.
dtype
)
ta
=
tvm
.
nd
.
array
(
na
,
ctx
)
tb
=
tvm
.
nd
.
array
(
nb
,
ctx
)
tc
=
tvm
.
nd
.
array
(
nc
,
ctx
)
td
=
tvm
.
nd
.
array
(
np
.
zeros
(
oshape
,
dtype
=
output
.
dtype
),
ctx
)
f
(
ta
,
tb
,
tc
,
td
)
nd
=
np_conv
(
na
,
nb
,
PAD
)
tvm
.
testing
.
assert_allclose
(
td
.
asnumpy
(),
nd
,
rtol
=
1e-5
)
verify
()
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
import
nose
import
nose
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment