Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
f34dea41
Commit
f34dea41
authored
Nov 14, 2019
by
Animesh Jain
Committed by
Zhi
Nov 14, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[QNN] Use Int16 upcast in Fallback Conv2D. Fix test names. (#4329)
parent
fed79b3a
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
48 additions
and
45 deletions
+48
-45
src/relay/qnn/op/convolution.cc
+22
-19
tests/python/relay/test_op_qnn_conv2d.py
+26
-26
tests/python/relay/test_op_qnn_mul.py
+0
-0
tests/python/relay/test_op_qnn_requantize.py
+0
-0
No files found.
src/relay/qnn/op/convolution.cc
View file @
f34dea41
...
...
@@ -106,8 +106,6 @@ WorkloadType GetWorkload(const Array<tvm::relay::Type>& arg_types, const QnnConv
* \brief Fallback to simpler lowering for dilation or depthwise conv.
* \param data The input expr.
* \param weight The weight expr.
* \param zp_data The data zero point expr.
* \param zp_kernel The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \return The fallback lowered sequence of Relay expr.
* \note In case of dilation, normal lowering would require a dilated pool.
...
...
@@ -115,16 +113,19 @@ WorkloadType GetWorkload(const Array<tvm::relay::Type>& arg_types, const QnnConv
* Relay operations. This will potentially lead to performance degradation
* as the convolution is called on int32 tensors instead of int8 tensors.
*/
Expr
Conv2DFallBack
(
const
Expr
&
data
,
const
Expr
&
weight
,
const
Expr
&
zp_data
,
const
Expr
&
zp_kernel
,
const
QnnConv2DAttrs
*
param
)
{
auto
shifted_data
=
data
;
Expr
Conv2DFallBack
(
const
Expr
&
data
,
const
Expr
&
weight
,
const
QnnConv2DAttrs
*
param
)
{
// Upcast the zero point to Int16.
auto
zp_data
=
MakeConstantScalar
(
Int
(
16
),
param
->
input_zero_point
);
auto
zp_kernel
=
MakeConstantScalar
(
Int
(
16
),
param
->
kernel_zero_point
);
auto
shifted_data
=
Cast
(
data
,
Int
(
16
));
if
(
param
->
input_zero_point
!=
0
)
{
shifted_data
=
Subtract
(
Cast
(
data
,
Int
(
32
)),
zp_data
);
shifted_data
=
Subtract
(
Cast
(
data
,
Int
(
16
)),
zp_data
);
}
auto
shifted_kernel
=
weight
;
auto
shifted_kernel
=
Cast
(
weight
,
Int
(
16
))
;
if
(
param
->
kernel_zero_point
!=
0
)
{
shifted_kernel
=
Subtract
(
Cast
(
weight
,
Int
(
32
)),
zp_kernel
);
shifted_kernel
=
Subtract
(
Cast
(
weight
,
Int
(
16
)),
zp_kernel
);
}
return
Conv2D
(
shifted_data
,
shifted_kernel
,
param
->
strides
,
param
->
padding
,
param
->
dilation
,
...
...
@@ -186,7 +187,6 @@ Expr Conv2DFirstTerm(const Expr& padded_data, const Expr& weight, const QnnConv2
/*
* \brief Calculates the second term in the qnn.conv2d lowering sequence.
* \param padded_data The padded data expr.
* \param zp_kernel The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
...
...
@@ -200,8 +200,11 @@ Expr Conv2DFirstTerm(const Expr& padded_data, const Expr& weight, const QnnConv2
* followed by a reduce on the C axis. Using avg_pool2d also gives an
* opportunity to reuse alter_op_layout infrastructure.
*/
Expr
Conv2DSecondTerm
(
const
Expr
&
padded_data
,
const
Expr
&
zp_kernel
,
const
QnnConv2DAttrs
*
param
,
int
kernel_h
,
int
kernel_w
,
int
out_channels
)
{
Expr
Conv2DSecondTerm
(
const
Expr
&
padded_data
,
const
QnnConv2DAttrs
*
param
,
int
kernel_h
,
int
kernel_w
,
int
out_channels
)
{
// Constant Expr for the kernel zero point.
auto
zp_kernel
=
MakeConstantScalar
(
Int
(
32
),
param
->
kernel_zero_point
);
auto
casted_t2
=
Cast
(
padded_data
,
Int
(
32
));
// We can reduce the H and W axis by using avg_pool2d. However, avg_pool2d averages the sum.
...
...
@@ -241,7 +244,6 @@ Expr Conv2DSecondTerm(const Expr& padded_data, const Expr& zp_kernel, const QnnC
/*
* \brief Calculates the third term in the qnn.conv2d lowering sequence.
* \param weight The weight expr.
* \param zp_data The data zero point expr.
* \param param The qnn conv2d attributes.
* \param batch_size The batch size.
* \param out_channels The number of output channels.
...
...
@@ -254,8 +256,11 @@ Expr Conv2DSecondTerm(const Expr& padded_data, const Expr& zp_kernel, const QnnC
* a 1D tensor. The tensor is then reshaped to conform to NHWC/NCHW
* format.
*/
Expr
Conv2DThirdTerm
(
const
Expr
&
weight
,
const
Expr
&
zp_data
,
const
QnnConv2DAttrs
*
param
,
int
batch_size
,
int
out_channels
)
{
Expr
Conv2DThirdTerm
(
const
Expr
&
weight
,
const
QnnConv2DAttrs
*
param
,
int
batch_size
,
int
out_channels
)
{
// Constant expr for input zero point.
auto
zp_data
=
MakeConstantScalar
(
Int
(
32
),
param
->
input_zero_point
);
// Find which dimensions are C, R, S.
Array
<
Integer
>
axes_t3
;
if
(
param
->
kernel_layout
==
"OIHW"
)
{
...
...
@@ -415,21 +420,19 @@ Expr QnnConv2DCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
int
batch_size
,
in_channels
,
out_channels
,
kernel_h
,
kernel_w
;
std
::
tie
(
batch_size
,
in_channels
,
out_channels
,
kernel_h
,
kernel_w
)
=
GetWorkload
(
arg_types
,
param
);
auto
zp_data
=
MakeConstantScalar
(
Int
(
32
),
param
->
input_zero_point
);
auto
zp_kernel
=
MakeConstantScalar
(
Int
(
32
),
param
->
kernel_zero_point
);
// Fallback to int32 conv if there is dilation or depthwise conv2d
CHECK_EQ
(
param
->
dilation
.
size
(),
2
)
<<
"qnn.conv2d only supports 2D dilation"
;
auto
dilation_h
=
get_const_int
(
param
->
dilation
[
0
]);
auto
dilation_w
=
get_const_int
(
param
->
dilation
[
1
]);
if
(
dilation_h
!=
1
||
dilation_w
!=
1
||
param
->
groups
!=
1
)
{
return
Conv2DFallBack
(
data
,
weight
,
zp_data
,
zp_kernel
,
param
);
return
Conv2DFallBack
(
data
,
weight
,
param
);
}
auto
padded_data
=
Conv2DPadInput
(
data
,
param
);
auto
term1
=
Conv2DFirstTerm
(
padded_data
,
weight
,
param
);
auto
term2
=
Conv2DSecondTerm
(
padded_data
,
zp_kernel
,
param
,
kernel_h
,
kernel_w
,
out_channels
);
auto
term3
=
Conv2DThirdTerm
(
weight
,
zp_data
,
param
,
batch_size
,
out_channels
);
auto
term2
=
Conv2DSecondTerm
(
padded_data
,
param
,
kernel_h
,
kernel_w
,
out_channels
);
auto
term3
=
Conv2DThirdTerm
(
weight
,
param
,
batch_size
,
out_channels
);
auto
term4
=
Conv2DFourthTerm
(
param
,
batch_size
,
in_channels
,
kernel_h
,
kernel_w
);
return
Conv2DCombineTerms
(
term1
,
term2
,
term3
,
term4
,
param
);
}
...
...
tests/python/relay/test_op_qnn_conv2d.py
View file @
f34dea41
...
...
@@ -160,7 +160,7 @@ def verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape,
qnn_output
=
get_output
(
qnn_func
,
golden_inputs
)
np
.
testing
.
assert_equal
(
qnn_output
,
golden_output
)
def
no_zero_point_tes
t
():
def
test_no_zero_poin
t
():
# uint8 input
data_shape
=
(
2
,
1
,
2
,
4
)
data_dtype
=
'uint8'
...
...
@@ -203,7 +203,7 @@ def no_zero_point_test():
verify
(
ref_func
,
qnn_func
,
data_shape
,
data_dtype
,
kernel_shape
,
kernel_dtype
)
def
kernel_zero_point_tes
t
():
def
test_kernel_zero_poin
t
():
# uint8 input
data_shape
=
(
2
,
4
,
2
,
4
)
data_dtype
=
'uint8'
...
...
@@ -247,7 +247,7 @@ def kernel_zero_point_test():
kernel_shape
,
kernel_dtype
)
def
input_zero_point_tes
t
():
def
test_input_zero_poin
t
():
# uint8 input
data_shape
=
(
2
,
4
,
2
,
4
)
data_dtype
=
'uint8'
...
...
@@ -290,7 +290,7 @@ def input_zero_point_test():
verify
(
ref_func
,
qnn_func
,
data_shape
,
data_dtype
,
kernel_shape
,
kernel_dtype
)
def
both_zero_point_tes
t
():
def
test_both_zero_poin
t
():
# uint8 input
data_shape
=
(
2
,
4
,
2
,
4
)
data_dtype
=
'uint8'
...
...
@@ -333,7 +333,7 @@ def both_zero_point_test():
verify
(
ref_func
,
qnn_func
,
data_shape
,
data_dtype
,
kernel_shape
,
kernel_dtype
)
def
layout_tes
t
():
def
test_layou
t
():
# uint8 input
data_shape
=
(
2
,
2
,
4
,
4
)
# NHWC
data_dtype
=
'uint8'
...
...
@@ -378,7 +378,7 @@ def layout_test():
def
padding_test
():
def
test_padding
():
# uint8 input
data_shape
=
(
1
,
4
,
2
,
2
)
data_dtype
=
'uint8'
...
...
@@ -421,7 +421,7 @@ def padding_test():
verify
(
ref_func
,
qnn_func
,
data_shape
,
data_dtype
,
kernel_shape
,
kernel_dtype
)
def
dilation_test
():
def
test_dilation
():
# uint8 input
data_shape
=
(
2
,
4
,
4
,
4
)
data_dtype
=
'uint8'
...
...
@@ -444,7 +444,7 @@ def dilation_test():
kernel_shape
,
kernel_dtype
)
def
const_folding_test
():
def
test_const_folding
():
data_shape
=
(
2
,
4
,
2
,
4
)
data_dtype
=
'uint8'
kernel_shape
=
(
3
,
4
,
2
,
2
)
...
...
@@ -470,7 +470,7 @@ def const_folding_test():
folded_func
=
folded_mod
[
"main"
]
assert
"reshape"
not
in
folded_func
.
astext
()
def
kernel_size_1x1_test
():
def
test_kernel_size_1x1
():
# uint8 input
data_shape
=
(
2
,
4
,
2
,
4
)
data_dtype
=
'uint8'
...
...
@@ -493,7 +493,7 @@ def kernel_size_1x1_test():
verify
(
ref_func
,
qnn_func
,
data_shape
,
data_dtype
,
kernel_shape
,
kernel_dtype
)
def
t
flite_large_irregular_test
():
def
t
est_tflite_large_irregular
():
# uint8 input
data_shape
=
(
1
,
1024
,
1
,
1
)
data_dtype
=
'uint8'
...
...
@@ -526,7 +526,7 @@ def tflite_large_irregular_test():
golden_output
=
np
.
full
((
1
,
1001
,
1
,
1
),
0
)
.
astype
(
'uint8'
)
np
.
testing
.
assert_equal
(
qnn_output
,
golden_output
)
def
tflite_output_multiplier_greater_than_one
():
def
t
est_t
flite_output_multiplier_greater_than_one
():
# uint8 input
data_shape
=
(
2
,
1
,
2
,
4
)
data_dtype
=
'uint8'
...
...
@@ -570,7 +570,7 @@ def tflite_output_multiplier_greater_than_one():
0
,
0
))
.
reshape
(
2
,
3
,
1
,
2
)
np
.
testing
.
assert_equal
(
qnn_output
,
golden_output
)
def
tflite_anistropic_strides
():
def
t
est_t
flite_anistropic_strides
():
# uint8 input
data_shape
=
(
1
,
1
,
3
,
6
)
data_dtype
=
'uint8'
...
...
@@ -607,7 +607,7 @@ def tflite_anistropic_strides():
golden_output
=
np
.
array
((
124
,
-
92
,
164
,
-
132
))
.
reshape
(
1
,
1
,
2
,
2
)
np
.
testing
.
assert_equal
(
qnn_output
,
golden_output
)
def
broadcast_layout_tes
t
():
def
test_broadcast_layou
t
():
# Test broadcast support for NHWC layout.
data_shape
=
(
1
,
229
,
229
,
3
)
# NHWC
data_dtype
=
'uint8'
...
...
@@ -641,16 +641,16 @@ def broadcast_layout_test():
graph
,
lib
,
params
=
relay
.
build
(
mod
,
"llvm -mcpu=skylake-avx512"
)
if
__name__
==
"__main__"
:
no_zero_point_tes
t
()
input_zero_point_tes
t
()
kernel_zero_point_tes
t
()
both_zero_point_tes
t
()
layout_tes
t
()
padding_test
()
dilation_test
()
const_folding_test
()
kernel_size_1x1_test
()
t
flite_large_irregular_test
()
t
flite_output_multiplier_greater_than_one
()
t
flite_anistropic_strides
()
broadcast_layout_test
()
test_no_zero_poin
t
()
test_input_zero_poin
t
()
test_kernel_zero_poin
t
()
test_both_zero_poin
t
()
test_layou
t
()
test_padding
()
test_dilation
()
test_const_folding
()
test_kernel_size_1x1
()
t
est_tflite_large_irregular
()
t
est_broadcast_layout
()
t
est_tflite_output_multiplier_greater_than_one
()
test_tflite_anistropic_strides
()
tests/python/relay/test_qnn_mul.py
→
tests/python/relay/test_
op_
qnn_mul.py
View file @
f34dea41
File moved
tests/python/relay/test_op_qnn_requantize.py
View file @
f34dea41
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment