Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
edf09673
Commit
edf09673
authored
Sep 14, 2018
by
Wuwei Lin
Committed by
Tianqi Chen
Sep 14, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI] Add dp4a intrinsic to CUDA (#1707)
parent
49fb6e85
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
65 additions
and
35 deletions
+65
-35
topi/python/topi/cuda/tensor_intrin.py
+62
-0
topi/recipe/gemm/gemm_int8.py
+3
-35
No files found.
topi/python/topi/cuda/tensor_intrin.py
0 → 100644
View file @
edf09673
"""Tensor intrinsics on CUDA."""
#pylint: disable=invalid-name
import
tvm
def
dp4a
(
x_scope
=
'local'
,
y_scope
=
'local'
,
z_scope
=
'local'
):
"""
Int8 dot product reduced by every 4 elements using __dp4a
Parameters
----------
x_scope : str, optional
The storage scope of buffer for lhs
y_scope : str, optional
The storage scope of buffer for rhs
z_scope : str, optional
The storage scope of buffer for result
Returns
-------
intrin : TensorIntrin
The dp4a TensorIntrin that can be used in tensorizing schedule.
"""
n
=
4
# dp4a requires operands packed by 4
x
=
tvm
.
placeholder
((
n
,),
name
=
'x'
,
dtype
=
'int8'
)
y
=
tvm
.
placeholder
((
n
,),
name
=
'y'
,
dtype
=
'int8'
)
k
=
tvm
.
reduce_axis
((
0
,
n
),
name
=
'rc'
)
z
=
tvm
.
compute
((
1
,),
lambda
i
:
tvm
.
sum
(
x
[
k
]
.
astype
(
'int32'
)
*
y
[
k
]
.
astype
(
'int32'
),
axis
=
[
k
]))
def
_intrin_func
(
ins
,
outs
):
def
_instr
(
index
):
xx
,
yy
=
ins
zz
=
outs
[
0
]
if
index
==
1
:
return
zz
.
vstore
(
0
,
0
)
ib
=
tvm
.
ir_builder
.
create
()
vec_x
=
xx
.
vload
(
0
,
dtype
=
'int8x4'
)
vec_y
=
yy
.
vload
(
0
,
dtype
=
'int8x4'
)
prev_z
=
0
if
index
==
0
else
zz
.
vload
(
0
)
new_z
=
tvm
.
call_pure_extern
(
'int32'
,
'__dp4a'
,
vec_x
,
vec_y
,
prev_z
)
ib
.
emit
(
zz
.
vstore
(
0
,
new_z
))
return
ib
.
get
()
return
_instr
(
0
),
_instr
(
1
),
_instr
(
2
)
# body, reset, update
with
tvm
.
build_config
(
data_alignment
=
4
,
offset_factor
=
1
)
as
cfg
:
scopes
=
{
x
:
x_scope
,
y
:
y_scope
,
z
:
z_scope
}
binds
=
{
t
:
tvm
.
decl_buffer
(
t
.
shape
,
t
.
dtype
,
t
.
op
.
name
,
data_alignment
=
cfg
.
data_alignment
,
offset_factor
=
cfg
.
offset_factor
,
scope
=
scopes
[
t
])
for
t
in
[
x
,
y
,
z
]}
return
tvm
.
decl_tensor_intrin
(
z
.
op
,
_intrin_func
,
binds
=
binds
)
topi/recipe/gemm/gemm_int8.py
View file @
edf09673
...
...
@@ -4,44 +4,12 @@ import sys
import
numpy
as
np
import
tvm
from
tvm
import
autotvm
from
topi.cuda.tensor_intrin
import
dp4a
DO_TUNING
=
True
PRETUNED_INDEX
=
75333
def
intrin_dot
():
n
=
4
# dp4a requires operands packed by 4
x
=
tvm
.
placeholder
((
n
,),
name
=
'x'
,
dtype
=
'int8'
)
y
=
tvm
.
placeholder
((
n
,),
name
=
'y'
,
dtype
=
'int8'
)
k
=
tvm
.
reduce_axis
((
0
,
n
),
name
=
'k'
)
z
=
tvm
.
compute
(
(
1
,),
lambda
_
:
tvm
.
sum
(
x
[
k
]
.
astype
(
'int32'
)
*
y
[
k
]
.
astype
(
'int32'
),
axis
=
k
))
def
intrin_func
(
ins
,
outs
):
xx
,
yy
=
ins
zz
=
outs
[
0
]
ib
=
tvm
.
ir_builder
.
create
()
dp4a
=
zz
.
vstore
(
0
,
tvm
.
call_pure_extern
(
'int32'
,
'__dp4a'
,
xx
.
vload
(
0
,
dtype
=
'int8x4'
),
yy
.
vload
(
0
,
dtype
=
'int8x4'
),
zz
.
vload
(
0
)))
ib
.
emit
(
dp4a
)
body
=
ib
.
get
()
return
body
,
zz
.
vstore
(
0
,
0
),
body
with
tvm
.
build_config
(
data_alignment
=
4
,
offset_factor
=
1
)
as
cfg
:
binds
=
{
t
:
tvm
.
decl_buffer
(
t
.
shape
,
t
.
dtype
,
t
.
op
.
name
,
data_alignment
=
cfg
.
data_alignment
,
offset_factor
=
cfg
.
offset_factor
,
scope
=
'local'
)
for
t
in
[
x
,
y
,
z
]}
return
tvm
.
decl_tensor_intrin
(
z
.
op
,
intrin_func
,
binds
=
binds
)
dot
=
intrin_dot
()
intrin_dp4a
=
dp4a
(
'local'
,
'local'
,
'local'
)
@autotvm.template
def
gemm_int8
(
n
,
m
,
l
):
...
...
@@ -70,7 +38,7 @@ def gemm_int8(n, m, l):
ko
,
kt
,
ki
=
cfg
[
'tile_k'
]
.
apply
(
s
,
CC
,
k
)
s
[
CC
]
.
tensorize
(
ki
,
dot
)
s
[
CC
]
.
tensorize
(
ki
,
intrin_dp4a
)
block_x
=
tvm
.
thread_axis
(
'blockIdx.x'
)
block_y
=
tvm
.
thread_axis
(
'blockIdx.y'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment