Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
ec7790e3
Commit
ec7790e3
authored
Aug 30, 2019
by
Animesh Jain
Committed by
Zhi
Aug 30, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[QNN] Concat - Refactoring to C++ (#3819)
parent
e99def23
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
197 additions
and
45 deletions
+197
-45
include/tvm/relay/qnn/attrs.h
+29
-1
python/tvm/relay/qnn/op/qnn.py
+15
-40
src/relay/qnn/op/concatenate.cc
+134
-0
src/relay/qnn/util.h
+19
-0
tests/python/relay/test_qnn_concatenate.py
+0
-4
No files found.
include/tvm/relay/qnn/attrs.h
View file @
ec7790e3
...
...
@@ -88,7 +88,7 @@ struct DequantizeAttrs : public tvm::AttrsNode<DequantizeAttrs> {
int32_t
input_zero_point
;
double
input_scale
;
TVM_DECLARE_ATTRS
(
QuantizeAttrs
,
"relay.attrs.Q
uantizeAttrs"
)
{
TVM_DECLARE_ATTRS
(
DequantizeAttrs
,
"relay.attrs.Deq
uantizeAttrs"
)
{
TVM_ATTR_FIELD
(
input_zero_point
)
.
describe
(
"The zero_point for the input tensor of this op."
);
...
...
@@ -97,6 +97,34 @@ struct DequantizeAttrs : public tvm::AttrsNode<DequantizeAttrs> {
}
};
/*! \brief Attributes used in QNN concatenate operator */
struct
QnnConcatenateAttrs
:
public
tvm
::
AttrsNode
<
QnnConcatenateAttrs
>
{
Array
<
tvm
::
Expr
>
input_scales
;
Array
<
tvm
::
Expr
>
input_zero_points
;
double
output_scale
;
int32_t
output_zero_point
;
int
axis
;
TVM_DECLARE_ATTRS
(
QnnConcatenateAttrs
,
"relay.attrs.QnnConcatenateAttrs"
)
{
TVM_ATTR_FIELD
(
input_scales
)
.
describe
(
"The list of scales of input quantized tensors."
);
TVM_ATTR_FIELD
(
input_zero_points
)
.
describe
(
"The list of zero points of input quantized tensors."
);
TVM_ATTR_FIELD
(
output_zero_point
)
.
describe
(
"The zero_point for the output tensor."
);
TVM_ATTR_FIELD
(
output_scale
)
.
describe
(
"The scale for the output tensor."
);
TVM_ATTR_FIELD
(
axis
)
.
describe
(
"The axis at which the input arrays are concatenated."
"Should lie in range `[-ndim, ndim)`."
)
.
set_default
(
0
);
}
};
// struct QnnConcatenateAttrs
}
// namespace qnn
}
// namespace relay
}
// namespace tvm
...
...
python/tvm/relay/qnn/op/qnn.py
View file @
ec7790e3
...
...
@@ -18,7 +18,8 @@
"""QNN dialect operators."""
from
__future__
import
absolute_import
as
_abs
from
tvm
import
relay
from
tvm.expr
import
FloatImm
,
IntImm
from
tvm.relay.expr
import
Tuple
from
.
import
_make
def
requantize
(
data
,
...
...
@@ -134,6 +135,8 @@ def dequantize(data,
return
_make
.
dequantize
(
data
,
input_scale
,
input_zero_point
)
def
concatenate
(
data
,
input_scales
,
input_zero_points
,
...
...
@@ -169,42 +172,14 @@ def concatenate(data,
"""
data
=
list
(
data
)
requantized_exprs
=
list
(
data
)
# Find the dtype of the input expr. This is required for the requantize op. Since, this is
# concatenate op, the dtype of the input is same as dtype of the output.
mod
=
relay
.
Module
.
from_expr
(
data
[
0
])
mod
=
relay
.
transform
.
InferType
()(
mod
)
entry
=
mod
[
"main"
]
data0
=
entry
if
isinstance
(
data
[
0
],
relay
.
Function
)
else
entry
.
body
in_dtype
=
data0
.
checked_type
.
dtype
# First check if all the input qnn params match. If yes, we can call concatenate first, followed
# by a requantize.
if
all
(
scale
==
input_scales
[
0
]
for
scale
in
input_scales
)
\
and
all
(
zero_point
==
input_zero_points
[
0
]
for
zero_point
in
input_zero_points
):
out
=
relay
.
concatenate
(
tuple
(
data
),
axis
)
input_scale
=
input_scales
[
0
]
input_zero_point
=
input_zero_points
[
0
]
if
input_scale
!=
output_scale
or
input_zero_point
!=
output_zero_point
:
out
=
requantize
(
data
=
out
,
input_scale
=
input_scales
[
0
],
input_zero_point
=
input_zero_points
[
0
],
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
,
out_dtype
=
in_dtype
)
return
out
# If the output qnn params do not match the input qnn params, we can call requantize on the
# input expr first, followed by a concatenate on the requantized input exprs.
for
idx
,
quantized_expr
in
enumerate
(
data
):
input_scale
=
input_scales
[
idx
]
input_zero_point
=
input_zero_points
[
idx
]
if
input_scale
!=
output_scale
or
input_zero_point
!=
output_zero_point
:
requantized_exprs
[
idx
]
=
requantize
(
data
=
quantized_expr
,
input_scale
=
input_scale
,
input_zero_point
=
input_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
,
out_dtype
=
in_dtype
)
return
relay
.
concatenate
(
tuple
(
requantized_exprs
),
axis
)
if
not
data
:
raise
ValueError
(
"relay.concatenate requires data to be non-empty."
)
if
not
isinstance
(
axis
,
int
):
raise
ValueError
(
"For now, we only support integer axis"
)
return
_make
.
concatenate
(
Tuple
(
data
),
[
FloatImm
(
"float64"
,
x
)
for
x
in
input_scales
],
[
IntImm
(
"int32"
,
x
)
for
x
in
input_zero_points
],
output_scale
,
output_zero_point
,
axis
)
src/relay/qnn/op/concatenate.cc
0 → 100644
View file @
ec7790e3
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file src/relay/qnn/op/concatenate.cc
* \brief QNN concatenate operator. It concatenates quantized input tensors along a given axis.
*/
#include <tvm/ir.h>
#include <tvm/relay/analysis.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include "../../op/tensor/transform.h"
#include "../../pass/pattern_util.h"
#include "../util.h"
namespace
tvm
{
namespace
relay
{
namespace
qnn
{
TVM_REGISTER_NODE_TYPE
(
QnnConcatenateAttrs
);
Expr
MakeQnnConcatenate
(
Expr
data
,
Array
<
tvm
::
Expr
>
input_scales
,
Array
<
tvm
::
Expr
>
input_zero_points
,
double
output_scale
,
int32_t
output_zero_point
,
int
axis
)
{
auto
attrs
=
make_node
<
QnnConcatenateAttrs
>
();
attrs
->
input_scales
=
std
::
move
(
input_scales
);
attrs
->
input_zero_points
=
std
::
move
(
input_zero_points
);
attrs
->
output_scale
=
output_scale
;
attrs
->
output_zero_point
=
output_zero_point
;
attrs
->
axis
=
axis
;
static
const
Op
&
op
=
Op
::
Get
(
"qnn.concatenate"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
}
/*
* \brief Canonicalizes the QNN concatenate op.
* \param attrs The QNN concatenate attrs.
* \param new_args The new mutated args to the call node.
* \param arg_types The types of input and output.
* \return The sequence of Relay ops for concatenate op.
*/
Expr
ConcatenateQnnCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
)
{
// Get the attrs.
CHECK_EQ
(
new_args
.
size
(),
1
);
auto
&
data
=
new_args
[
0
];
const
auto
*
concatenate_attrs
=
attrs
.
as
<
QnnConcatenateAttrs
>
();
CHECK
(
concatenate_attrs
!=
nullptr
);
auto
input_scales
=
concatenate_attrs
->
input_scales
;
auto
input_zero_points
=
concatenate_attrs
->
input_zero_points
;
auto
output_scale
=
concatenate_attrs
->
output_scale
;
auto
output_zero_point
=
concatenate_attrs
->
output_zero_point
;
// Get the input dtype and shape.
CHECK_GE
(
arg_types
.
size
(),
1
);
auto
tuple_type
=
arg_types
[
0
].
as
<
TupleTypeNode
>
();
CHECK
(
tuple_type
!=
nullptr
);
// FIXME (anijain2305) - The lowering can be further optimized. Instead of inserting requantize in
// the start, we can insert requantize at the end if and only if all the input tensors have same
// qnn params. This can be done in future.
// If the output qnn params do not match the input qnn params, we can call requantize on the input
// expr first, followed by a concatenate on the requantized input exprs.
auto
tuple_data
=
data
.
as
<
TupleNode
>
();
CHECK
(
tuple_data
!=
nullptr
);
int
idx
=
0
;
Array
<
Expr
>
requantized_exprs
;
for
(
auto
quantized_expr
:
tuple_data
->
fields
)
{
// Get the input scale for the idx quantized input tensor.
auto
input_scale_expr
=
input_scales
[
idx
].
as
<
tvm
::
ir
::
FloatImm
>
();
CHECK
(
input_scale_expr
!=
nullptr
);
auto
input_scale
=
input_scale_expr
->
value
;
// Get the zero point for the idx quantized input tensor.
auto
input_zero_point_expr
=
input_zero_points
[
idx
].
as
<
tvm
::
ir
::
IntImm
>
();
CHECK
(
input_zero_point_expr
!=
nullptr
);
auto
input_zero_point
=
input_zero_point_expr
->
value
;
// Check if output and input qnn params are same. If not, requantize.
if
(
input_scale
!=
output_scale
||
input_zero_point
!=
output_zero_point
)
{
// Get the input shape and dtype.
auto
tensor_type
=
tuple_type
->
fields
[
idx
].
as
<
TensorTypeNode
>
();
auto
input_dtype
=
tensor_type
->
dtype
;
auto
input_shape
=
tensor_type
->
shape
;
// Requantize the input.
auto
requantized_expr
=
Requantize
(
quantized_expr
,
input_shape
,
input_scale
,
input_zero_point
,
output_scale
,
output_zero_point
,
input_dtype
);
requantized_exprs
.
push_back
(
requantized_expr
);
}
else
{
requantized_exprs
.
push_back
(
quantized_expr
);
}
idx
++
;
}
return
MakeConcatenate
(
TupleNode
::
make
(
requantized_exprs
),
concatenate_attrs
->
axis
);
}
RELAY_REGISTER_OP
(
"qnn.concatenate"
)
.
describe
(
R"code(Concatenate the quantized input tensors along the given axis.
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type_key
(
"relay.attrs.QnnConcatenateAttrs"
)
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The tensor to concatenate."
)
.
set_support_level
(
11
)
.
add_type_rel
(
"QnnConcatenate"
,
ConcatenateRel
<
QnnConcatenateAttrs
>
)
.
set_attr
<
FTVMLegalize
>
(
"FTVMQnnCanonicalize"
,
ConcatenateQnnCanonicalize
);
TVM_REGISTER_API
(
"relay.qnn.op._make.concatenate"
)
.
set_body_typed
(
MakeQnnConcatenate
);
}
// namespace qnn
}
// namespace relay
}
// namespace tvm
src/relay/qnn/util.h
View file @
ec7790e3
...
...
@@ -28,6 +28,8 @@
#include <tvm/expr.h>
#include <tvm/relay/expr.h>
#include <limits>
#include <string>
#include <utility>
namespace
tvm
{
namespace
relay
{
...
...
@@ -67,6 +69,23 @@ static inline const int32_t GetQmax(const DataType& dtype) {
}
}
Expr
RequantizeLower
(
const
Expr
&
input_tensor
,
const
RequantizeAttrs
*
param
,
const
Array
<
IndexExpr
>&
input_shape
,
const
DataType
&
out_dtype
);
static
inline
Expr
Requantize
(
const
Expr
&
data
,
const
Array
<
IndexExpr
>&
input_shape
,
double
input_scale
,
int32_t
input_zero_point
,
double
output_scale
,
int32_t
output_zero_point
,
const
DataType
&
out_dtype
,
const
std
::
string
&
rounding
=
"TONEAREST"
)
{
auto
attrs
=
make_node
<
RequantizeAttrs
>
();
attrs
->
input_scale
=
std
::
move
(
input_scale
);
attrs
->
input_zero_point
=
std
::
move
(
input_zero_point
);
attrs
->
output_scale
=
std
::
move
(
output_scale
);
attrs
->
output_zero_point
=
std
::
move
(
output_zero_point
);
attrs
->
rounding
=
std
::
move
(
rounding
);
attrs
->
out_dtype
=
std
::
move
(
out_dtype
);
return
RequantizeLower
(
data
,
attrs
.
operator
->
(),
input_shape
,
out_dtype
);
}
}
// namespace qnn
}
// namespace relay
}
// namespace tvm
...
...
tests/python/relay/test_qnn_concatenate.py
View file @
ec7790e3
...
...
@@ -39,7 +39,6 @@ def test_same_io_qnn_params():
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
0
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
qnn
.
transform
.
CanonicalizeOps
()(
mod
)
func
=
mod
[
"main"
]
...
...
@@ -68,7 +67,6 @@ def test_different_io_qnn_params():
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
2
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
qnn
.
transform
.
CanonicalizeOps
()(
mod
)
func
=
mod
[
"main"
]
...
...
@@ -97,7 +95,6 @@ def test_few_same_io_qnn_params():
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
1
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
qnn
.
transform
.
CanonicalizeOps
()(
mod
)
func
=
mod
[
"main"
]
...
...
@@ -126,7 +123,6 @@ def test_same_i_qnn_params():
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
assert
func
.
astext
()
.
count
(
'requantize'
)
==
1
mod
=
relay
.
Module
.
from_expr
(
func
)
mod
=
relay
.
qnn
.
transform
.
CanonicalizeOps
()(
mod
)
func
=
mod
[
"main"
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment