Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
dee11b41
Commit
dee11b41
authored
Sep 05, 2019
by
雾雨魔理沙
Committed by
Jared Roesch
Sep 05, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Training] Small refactoring (#3893)
* init * fix
parent
a6bb84a8
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
9 additions
and
2 deletions
+9
-2
python/tvm/relay/op/_tensor_grad.py
+9
-2
No files found.
python/tvm/relay/op/_tensor_grad.py
View file @
dee11b41
...
@@ -44,6 +44,7 @@ def log_grad(orig, grad):
...
@@ -44,6 +44,7 @@ def log_grad(orig, grad):
x
=
orig
.
args
[
0
]
x
=
orig
.
args
[
0
]
return
[
grad
*
ones_like
(
x
)
/
x
]
return
[
grad
*
ones_like
(
x
)
/
x
]
@register_gradient
(
"cos"
)
@register_gradient
(
"cos"
)
def
cos_grad
(
orig
,
grad
):
def
cos_grad
(
orig
,
grad
):
"""Returns [grad * (-sin(x))]"""
"""Returns [grad * (-sin(x))]"""
...
@@ -51,12 +52,14 @@ def cos_grad(orig, grad):
...
@@ -51,12 +52,14 @@ def cos_grad(orig, grad):
ones
=
ones_like
(
x
)
ones
=
ones_like
(
x
)
return
[
grad
*
(
-
ones
*
sin
(
x
))]
return
[
grad
*
(
-
ones
*
sin
(
x
))]
@register_gradient
(
"sin"
)
@register_gradient
(
"sin"
)
def
sin_grad
(
orig
,
grad
):
def
sin_grad
(
orig
,
grad
):
"""Returns [grad * cos(x)]"""
"""Returns [grad * cos(x)]"""
x
=
orig
.
args
[
0
]
x
=
orig
.
args
[
0
]
return
[
grad
*
cos
(
x
)]
return
[
grad
*
cos
(
x
)]
@register_gradient
(
"exp"
)
@register_gradient
(
"exp"
)
def
exp_grad
(
orig
,
grad
):
def
exp_grad
(
orig
,
grad
):
"""Returns [grad * exp(x)]"""
"""Returns [grad * exp(x)]"""
...
@@ -173,6 +176,7 @@ def clip_grad(orig, grad):
...
@@ -173,6 +176,7 @@ def clip_grad(orig, grad):
ones
=
ones_like
(
x
)
ones
=
ones_like
(
x
)
return
[
where
(
less
(
x
,
a_mins
),
zeros
,
where
(
less
(
a_maxs
,
x
),
zeros
,
ones
*
grad
))]
return
[
where
(
less
(
x
,
a_mins
),
zeros
,
where
(
less
(
a_maxs
,
x
),
zeros
,
ones
*
grad
))]
@register_gradient
(
"nn.max_pool2d"
)
@register_gradient
(
"nn.max_pool2d"
)
def
max_pool2d_grad
(
orig
,
grad
):
def
max_pool2d_grad
(
orig
,
grad
):
attrs
=
orig
.
attrs
attrs
=
orig
.
attrs
...
@@ -181,6 +185,7 @@ def max_pool2d_grad(orig, grad):
...
@@ -181,6 +185,7 @@ def max_pool2d_grad(orig, grad):
layout
=
attrs
.
layout
,
ceil_mode
=
attrs
.
ceil_mode
)
layout
=
attrs
.
layout
,
ceil_mode
=
attrs
.
ceil_mode
)
return
[
pool_grad
]
return
[
pool_grad
]
@register_gradient
(
"nn.avg_pool2d"
)
@register_gradient
(
"nn.avg_pool2d"
)
def
avg_pool2d_grad
(
orig
,
grad
):
def
avg_pool2d_grad
(
orig
,
grad
):
attrs
=
orig
.
attrs
attrs
=
orig
.
attrs
...
@@ -190,6 +195,7 @@ def avg_pool2d_grad(orig, grad):
...
@@ -190,6 +195,7 @@ def avg_pool2d_grad(orig, grad):
count_include_pad
=
attrs
.
count_include_pad
)
count_include_pad
=
attrs
.
count_include_pad
)
return
[
pool_grad
]
return
[
pool_grad
]
# not implemented, this is only for testing.
# not implemented, this is only for testing.
@register_gradient
(
"concatenate"
)
@register_gradient
(
"concatenate"
)
def
concatenate_grad
(
orig
,
grad
):
def
concatenate_grad
(
orig
,
grad
):
...
@@ -201,6 +207,7 @@ def concatenate_grad(orig, grad):
...
@@ -201,6 +207,7 @@ def concatenate_grad(orig, grad):
# In the real implementation, concatenate_grad probably need to be implemented by an operator.
# In the real implementation, concatenate_grad probably need to be implemented by an operator.
return
[
Tuple
([
zeros_like
(
x
),
zeros_like
(
y
)])]
return
[
Tuple
([
zeros_like
(
x
),
zeros_like
(
y
)])]
@register_gradient
(
"nn.conv2d"
)
@register_gradient
(
"nn.conv2d"
)
def
conv2d_grad
(
orig
,
grad
):
def
conv2d_grad
(
orig
,
grad
):
"""Gradient of conv2d"""
"""Gradient of conv2d"""
...
@@ -268,8 +275,8 @@ def softmax_grad(orig, grad):
...
@@ -268,8 +275,8 @@ def softmax_grad(orig, grad):
@register_gradient
(
"nn.bias_add"
)
@register_gradient
(
"nn.bias_add"
)
def
bias_grad
(
orig
,
grad
):
def
bias_
add_
grad
(
orig
,
grad
):
"""Returns grad"""
"""Returns grad
ient of bias_add
"""
data
,
bias
=
orig
.
args
data
,
bias
=
orig
.
args
return
[
collapse_sum_like
(
grad
,
data
),
return
[
collapse_sum_like
(
grad
,
data
),
collapse_sum_like
(
grad
,
bias
)]
collapse_sum_like
(
grad
,
bias
)]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment