Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
cc5a3cf0
Commit
cc5a3cf0
authored
Feb 22, 2019
by
Yida Wang
Committed by
Tianqi Chen
Feb 22, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[RELAY][PASS]use attribute registration style in the mac count pass (#2645)
parent
aac5837f
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
82 additions
and
91 deletions
+82
-91
src/relay/pass/mac_count.cc
+82
-90
tests/python/relay/test_pass_mac_count.py
+0
-1
No files found.
src/relay/pass/mac_count.cc
View file @
cc5a3cf0
...
@@ -16,19 +16,88 @@
...
@@ -16,19 +16,88 @@
namespace
tvm
{
namespace
tvm
{
namespace
relay
{
namespace
relay
{
namespace
{
namespace
mac_count
{
bool
IsConv2DNode
(
const
ExprNode
*
node
)
{
inline
int64_t
GetCartesianProd
(
Array
<
IndexExpr
>
arr
)
{
const
auto
*
call_node
=
dynamic_cast
<
const
CallNode
*>
(
node
);
int64_t
ret
=
1
;
return
call_node
!=
nullptr
&&
call_node
->
attrs
.
as
<
Conv2DAttrs
>
();
for
(
size_t
i
=
0
;
i
<
arr
.
size
();
i
++
)
{
const
auto
*
intImm
=
arr
[
i
].
as
<
IntImm
>
();
ret
*=
static_cast
<
int64_t
>
(
intImm
->
value
);
}
return
ret
;
}
/*
* \brief Preparation function for MAC count.
* \param call_node The call node.
* \return The number of MACs.
*/
using
FMacCount
=
runtime
::
TypedPackedFunc
<
int64_t
(
const
Call
&
call_node
)
>
;
//----------------------------------------------
// Per operator defs for MAC count
//----------------------------------------------
int64_t
ConvMacCount
(
const
Call
&
call_node
)
{
if
(
!
call_node
->
checked_type_
.
defined
())
{
LOG
(
WARNING
)
<<
"The infer type pass should be called before the mac count pass"
;
return
0
;
}
Array
<
Expr
>
args
=
call_node
->
args
;
CHECK
(
args
.
size
()
==
2
)
<<
"The number of input arguments of a CONV 2D node should be 2."
;
const
auto
*
conv_2d_attr
=
call_node
->
attrs
.
as
<
Conv2DAttrs
>
();
const
auto
*
data_type
=
args
[
0
]
->
checked_type
().
as
<
TensorTypeNode
>
();
Array
<
IndexExpr
>
data_shape
=
data_type
->
shape
;
std
::
string
data_layout
=
conv_2d_attr
->
data_layout
;
int32_t
C_ind
=
Layout
(
data_layout
).
Indexof
(
'C'
);
int32_t
c_ind
=
Layout
(
data_layout
).
Indexof
(
'c'
);
CHECK
(
C_ind
!=
-
1
)
<<
"There is no input channel dimension."
;
int64_t
input_channel
=
static_cast
<
int64_t
>
(
data_shape
[
C_ind
].
as
<
IntImm
>
()
->
value
);
if
(
c_ind
!=
-
1
)
input_channel
*=
static_cast
<
int64_t
>
(
data_shape
[
c_ind
].
as
<
IntImm
>
()
->
value
);
Array
<
IndexExpr
>
kernel_size
=
conv_2d_attr
->
kernel_size
;
CHECK
(
kernel_size
.
size
()
==
2
)
<<
"The dimension of the kernel size in Conv 2D should be 2."
;
const
auto
*
expr
=
call_node
->
checked_type
().
as
<
TensorTypeNode
>
();
Array
<
IndexExpr
>
output_tensor
=
expr
->
shape
;
CHECK
(
output_tensor
.
size
()
==
4
||
output_tensor
.
size
()
==
5
)
<<
"The dimension of the output tensor in Conv 2D should be 4 or 5."
;
int64_t
count
=
input_channel
*
GetCartesianProd
(
output_tensor
)
*
GetCartesianProd
(
kernel_size
);
return
count
;
}
}
bool
IsDenseNode
(
const
ExprNode
*
node
)
{
int64_t
DenseMacCount
(
const
Call
&
call_node
)
{
const
auto
*
call_node
=
dynamic_cast
<
const
CallNode
*>
(
node
);
if
(
!
call_node
->
checked_type_
.
defined
())
{
return
call_node
!=
nullptr
&&
call_node
->
attrs
.
as
<
DenseAttrs
>
();
LOG
(
WARNING
)
<<
"The infer type pass should be called before the mac count pass"
;
return
0
;
}
Array
<
Expr
>
args
=
call_node
->
args
;
CHECK
(
args
.
size
()
==
2
)
<<
"The number of input arguments of a Dense node should be 2."
;
const
auto
*
data_type
=
args
[
0
]
->
checked_type
().
as
<
TensorTypeNode
>
();
const
auto
*
weight_type
=
args
[
1
]
->
checked_type
().
as
<
TensorTypeNode
>
();
Array
<
IndexExpr
>
data_shape
=
data_type
->
shape
;
Array
<
IndexExpr
>
weight_shape
=
weight_type
->
shape
;
CHECK
(
data_shape
.
size
()
==
2
&&
weight_shape
.
size
()
==
2
)
<<
"The dimension of an input tensor to Dense node should be 2."
;
int64_t
d1
=
static_cast
<
int64_t
>
(
data_shape
[
0
].
as
<
IntImm
>
()
->
value
);
int64_t
d2
=
static_cast
<
int64_t
>
(
data_shape
[
1
].
as
<
IntImm
>
()
->
value
);
int64_t
d3
=
static_cast
<
int64_t
>
(
weight_shape
[
0
].
as
<
IntImm
>
()
->
value
);
int64_t
d4
=
static_cast
<
int64_t
>
(
weight_shape
[
1
].
as
<
IntImm
>
()
->
value
);
CHECK
(
d2
==
d4
)
<<
"The dimensions of input arguments do not match."
;
int64_t
count
=
d1
*
d2
*
d3
;
return
count
;
}
}
}
// namespace
RELAY_REGISTER_OP
(
"nn.conv2d"
)
.
set_attr
<
FMacCount
>
(
"FMacCount"
,
ConvMacCount
);
RELAY_REGISTER_OP
(
"nn.dense"
)
.
set_attr
<
FMacCount
>
(
"FMacCount"
,
DenseMacCount
);
class
MacCounter
:
private
ExprVisitor
{
class
MacCounter
:
private
ExprVisitor
{
public
:
public
:
...
@@ -44,91 +113,13 @@ class MacCounter : private ExprVisitor {
...
@@ -44,91 +113,13 @@ class MacCounter : private ExprVisitor {
private
:
private
:
void
VisitExpr_
(
const
CallNode
*
call_node
)
final
{
void
VisitExpr_
(
const
CallNode
*
call_node
)
final
{
if
(
IsConv2DNode
(
call_node
))
{
static
const
auto
&
fprep
=
count_
+=
ComputeConv2DMacs
(
call_node
);
Op
::
GetAttr
<
FMacCount
>
(
"FMacCount"
);
}
else
if
(
IsDenseNode
(
call_node
))
{
auto
f
=
fprep
.
get
(
call_node
->
op
,
nullptr
);
count_
+=
ComputeDenseMacs
(
call_node
);
if
(
f
!=
nullptr
)
count_
+=
f
(
GetRef
<
Call
>
(
call_node
));
}
ExprVisitor
::
VisitExpr_
(
call_node
);
ExprVisitor
::
VisitExpr_
(
call_node
);
}
}
/*
* \brief Get the number of MACs of a CONV 2D node.
* \param call_node The CONV 2D call node.
* \return The number of MACs.
*/
int64_t
ComputeConv2DMacs
(
const
CallNode
*
call_node
)
{
CHECK
(
IsConv2DNode
(
call_node
))
<<
"The input call node must be a CONV 2D node."
;
if
(
!
call_node
->
checked_type_
.
defined
())
{
LOG
(
WARNING
)
<<
"The infer type pass should be called before the mac count pass"
;
return
0
;
}
Array
<
Expr
>
args
=
call_node
->
args
;
CHECK
(
args
.
size
()
==
2
)
<<
"The number of input arguments of a CONV 2D node should be 2."
;
const
auto
*
conv_2d_attr
=
call_node
->
attrs
.
as
<
Conv2DAttrs
>
();
const
auto
*
data_type
=
args
[
0
]
->
checked_type
().
as
<
TensorTypeNode
>
();
Array
<
IndexExpr
>
data_shape
=
data_type
->
shape
;
std
::
string
data_layout
=
conv_2d_attr
->
data_layout
;
int32_t
C_ind
=
Layout
(
data_layout
).
Indexof
(
'C'
);
int32_t
c_ind
=
Layout
(
data_layout
).
Indexof
(
'c'
);
CHECK
(
C_ind
!=
-
1
)
<<
"There is no input channel dimension."
;
int64_t
input_channel
=
static_cast
<
int64_t
>
(
data_shape
[
C_ind
].
as
<
IntImm
>
()
->
value
);
if
(
c_ind
!=
-
1
)
input_channel
*=
static_cast
<
int64_t
>
(
data_shape
[
c_ind
].
as
<
IntImm
>
()
->
value
);
Array
<
IndexExpr
>
kernel_size
=
conv_2d_attr
->
kernel_size
;
CHECK
(
kernel_size
.
size
()
==
2
)
<<
"The dimension of the kernel size in Conv 2D should be 2."
;
const
auto
*
expr
=
call_node
->
checked_type
().
as
<
TensorTypeNode
>
();
Array
<
IndexExpr
>
output_tensor
=
expr
->
shape
;
CHECK
(
output_tensor
.
size
()
==
4
||
output_tensor
.
size
()
==
5
)
<<
"The dimension of the output tensor in Conv 2D should be 4 or 5."
;
int64_t
count
=
input_channel
*
GetCartesianProd
(
output_tensor
)
*
GetCartesianProd
(
kernel_size
);
return
count
;
}
/*
* \brief Get the number of MACs of a Dense node.
* \param call_node The Dense call node.
* \return The number of MACs.
*/
int64_t
ComputeDenseMacs
(
const
CallNode
*
call_node
)
{
CHECK
(
IsDenseNode
(
call_node
))
<<
"The input call node must be a Dense node."
;
if
(
!
call_node
->
checked_type_
.
defined
())
{
LOG
(
WARNING
)
<<
"The infer type pass should be called before the mac count pass"
;
return
0
;
}
Array
<
Expr
>
args
=
call_node
->
args
;
CHECK
(
args
.
size
()
==
2
)
<<
"The number of input arguments of a Dense node should be 2."
;
const
auto
*
data_type
=
args
[
0
]
->
checked_type
().
as
<
TensorTypeNode
>
();
const
auto
*
weight_type
=
args
[
1
]
->
checked_type
().
as
<
TensorTypeNode
>
();
Array
<
IndexExpr
>
data_shape
=
data_type
->
shape
;
Array
<
IndexExpr
>
weight_shape
=
weight_type
->
shape
;
CHECK
(
data_shape
.
size
()
==
2
&&
weight_shape
.
size
()
==
2
)
<<
"The dimension of an input tensor to Dense node should be 2."
;
int64_t
d1
=
static_cast
<
int64_t
>
(
data_shape
[
0
].
as
<
IntImm
>
()
->
value
);
int64_t
d2
=
static_cast
<
int64_t
>
(
data_shape
[
1
].
as
<
IntImm
>
()
->
value
);
int64_t
d3
=
static_cast
<
int64_t
>
(
weight_shape
[
0
].
as
<
IntImm
>
()
->
value
);
int64_t
d4
=
static_cast
<
int64_t
>
(
weight_shape
[
1
].
as
<
IntImm
>
()
->
value
);
CHECK
(
d2
==
d4
)
<<
"The dimensions of input arguments do not match."
;
int64_t
count
=
d1
*
d2
*
d3
;
return
count
;
}
int64_t
GetCartesianProd
(
Array
<
IndexExpr
>
arr
)
{
int64_t
ret
=
1
;
for
(
size_t
i
=
0
;
i
<
arr
.
size
();
i
++
)
{
const
auto
*
intImm
=
arr
[
i
].
as
<
IntImm
>
();
ret
*=
static_cast
<
int64_t
>
(
intImm
->
value
);
}
return
ret
;
}
int64_t
count_
;
int64_t
count_
;
};
};
...
@@ -141,5 +132,6 @@ TVM_REGISTER_API("relay._ir_pass.GetTotalMacNumber")
...
@@ -141,5 +132,6 @@ TVM_REGISTER_API("relay._ir_pass.GetTotalMacNumber")
*
ret
=
GetTotalMacNumber
(
args
[
0
]);
*
ret
=
GetTotalMacNumber
(
args
[
0
]);
});
});
}
// namespace mac_count
}
// namespace relay
}
// namespace relay
}
// namespace tvm
}
// namespace tvm
tests/python/relay/test_pass_mac_count.py
View file @
cc5a3cf0
"""Unit tests for MAC counter."""
"""Unit tests for MAC counter."""
import
tvm
import
tvm
from
tvm
import
relay
from
tvm
import
relay
import
sys
def
test_gemm
():
def
test_gemm
():
n
=
512
n
=
512
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment