Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
c5fdb000
Commit
c5fdb000
authored
May 25, 2019
by
Haichen Shen
Committed by
Yizhi Liu
May 25, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Frontend] Add Crop op converter (#3241)
* Add Crop op converter * lint * x
parent
be0340eb
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
57 additions
and
3 deletions
+57
-3
nnvm/python/nnvm/frontend/mxnet.py
+1
-1
python/tvm/relay/frontend/mxnet.py
+30
-2
tests/python/frontend/mxnet/test_forward.py
+26
-0
No files found.
nnvm/python/nnvm/frontend/mxnet.py
View file @
c5fdb000
...
...
@@ -269,7 +269,7 @@ def _crop_like(inputs, attrs):
raise
tvm
.
error
.
OpAttributeUnimplemented
(
'Center crop is not supported in operator crop_like.'
)
if
len
(
inputs
)
<
2
:
raise
RuntimeError
(
"Only support crop_like pattern."
)
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"Only support crop_like pattern."
)
new_attrs
[
"axis"
]
=
[
2
,
3
]
return
get_nnvm_op
(
'slice_like'
)(
inputs
[
0
],
inputs
[
1
],
**
new_attrs
)
...
...
python/tvm/relay/frontend/mxnet.py
View file @
c5fdb000
...
...
@@ -149,7 +149,7 @@ def _mx_conv2d_transpose(inputs, attrs):
new_attrs
[
"groups"
]
=
attrs
.
get_int
(
"num_group"
,
1
)
new_attrs
[
"data_layout"
]
=
data_layout
new_attrs
[
"kernel_layout"
]
=
kernel_layout
use_bias
=
not
attrs
.
get_bool
(
"no_bias"
,
Fals
e
)
use_bias
=
not
attrs
.
get_bool
(
"no_bias"
,
Tru
e
)
res
=
_op
.
nn
.
conv2d_transpose
(
inputs
[
0
],
inputs
[
1
],
**
new_attrs
)
if
use_bias
:
...
...
@@ -277,6 +277,28 @@ def _mx_slice_axis(inputs, attrs):
return
_op
.
strided_slice
(
inputs
[
0
],
begin
,
end
)
def
_mx_crop_like
(
inputs
,
attrs
):
if
len
(
inputs
)
<
2
:
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"Only support crop_like pattern for operator Crop."
)
if
attrs
.
get_bool
(
"center_crop"
,
False
):
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"Center crop is not supported in operator Crop."
)
if
attrs
.
get_int_tuple
(
"h_w"
,
(
0
,
0
))
!=
(
0
,
0
):
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"Doesn't support h_w in operator Crop."
)
offset
=
attrs
.
get_int_tuple
(
"offset"
,
(
0
,
0
))
new_attrs
=
{}
if
offset
==
(
0
,
0
):
new_attrs
[
"axes"
]
=
(
2
,
3
)
return
_op
.
slice_like
(
*
inputs
,
**
new_attrs
)
like_shape
=
ir_pass
.
infer_type
(
inputs
[
1
])
.
checked_type
.
shape
new_attrs
[
'begin'
]
=
[
0
,
0
,
offset
[
0
],
offset
[
1
]]
new_attrs
[
'end'
]
=
[
like_shape
[
0
],
like_shape
[
1
],
offset
[
0
]
+
like_shape
[
2
],
offset
[
1
]
+
like_shape
[
3
]]
return
_op
.
strided_slice
(
inputs
[
0
],
**
new_attrs
)
def
_mx_split
(
inputs
,
attrs
):
axis
=
attrs
.
get_int
(
"axis"
,
1
)
new_attrs
=
{}
...
...
@@ -300,6 +322,10 @@ def _mx_softmax_output(inputs, attrs):
return
_op
.
nn
.
softmax
(
inputs
[
0
])
def
_mx_linear_regression_output
(
inputs
,
_
):
return
inputs
[
0
]
def
_mx_concat
(
inputs
,
attrs
):
axis
=
attrs
.
get_int
(
"dim"
,
1
)
return
_op
.
concatenate
(
tuple
(
inputs
),
axis
=
axis
)
...
...
@@ -890,6 +916,7 @@ _convert_map = {
"argsort"
:
_mx_argsort
,
"SoftmaxOutput"
:
_mx_softmax_output
,
"SoftmaxActivation"
:
_mx_softmax_activation
,
"LinearRegressionOutput"
:
_mx_linear_regression_output
,
"smooth_l1"
:
_mx_smooth_l1
,
# vision
"_contrib_BilinearResize2D"
:
_mx_resize
,
...
...
@@ -905,11 +932,12 @@ _convert_map = {
# NLP
"RNN"
:
_mx_rnn_layer
,
"_rnn_param_concat"
:
_mx_rnn_param_concat
,
# Depricated:
"Crop"
:
_mx_crop_like
,
# List of missing operators that are present in NNVMv1
# TODO(tvm-tvm): support all operators.
#
# "broadcast_to",
# "Crop" : _crop_like,
}
# set identity list
...
...
tests/python/frontend/mxnet/test_forward.py
View file @
c5fdb000
...
...
@@ -583,6 +583,31 @@ def test_forward_rnn_layer():
verify
(
mode
,
64
,
10
,
64
,
2
)
verify
(
mode
,
64
,
10
,
32
,
2
)
def
test_forward_Crop
():
def
verify
(
xshape
,
yshape
,
offset
=
None
):
x_data
=
np
.
random
.
uniform
(
size
=
xshape
)
.
astype
(
"float32"
)
y_data
=
np
.
random
.
uniform
(
size
=
yshape
)
.
astype
(
"float32"
)
if
offset
is
None
:
mx_sym
=
mx
.
sym
.
Crop
(
mx
.
sym
.
var
(
"x"
),
mx
.
sym
.
var
(
"y"
))
ref_res
=
mx
.
nd
.
Crop
(
mx
.
nd
.
array
(
x_data
),
mx
.
nd
.
array
(
y_data
))
else
:
mx_sym
=
mx
.
sym
.
Crop
(
mx
.
sym
.
var
(
"x"
),
mx
.
sym
.
var
(
"y"
),
offset
=
offset
)
ref_res
=
mx
.
nd
.
Crop
(
mx
.
nd
.
array
(
x_data
),
mx
.
nd
.
array
(
y_data
),
offset
=
offset
)
new_sym
,
_
=
relay
.
frontend
.
from_mxnet
(
mx_sym
,
{
"x"
:
xshape
,
"y"
:
yshape
})
for
target
,
ctx
in
ctx_list
():
for
kind
in
[
"graph"
,
"debug"
]:
intrp
=
relay
.
create_executor
(
kind
,
ctx
=
ctx
,
target
=
target
)
if
offset
is
None
or
offset
==
(
0
,
0
):
op_res
=
intrp
.
evaluate
(
new_sym
)(
x_data
,
y_data
)
else
:
op_res
=
intrp
.
evaluate
(
new_sym
)(
x_data
)
tvm
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
.
asnumpy
())
verify
((
1
,
3
,
40
,
40
),
(
1
,
3
,
20
,
20
))
verify
((
1
,
3
,
40
,
40
),
(
1
,
3
,
20
,
20
),
(
0
,
0
))
verify
((
1
,
3
,
40
,
40
),
(
1
,
3
,
20
,
20
),
(
10
,
10
))
verify
((
5
,
32
,
40
,
40
),
(
5
,
32
,
25
,
25
))
verify
((
5
,
32
,
40
,
40
),
(
5
,
32
,
25
,
25
),
(
5
,
5
))
if
__name__
==
'__main__'
:
test_forward_mlp
()
...
...
@@ -624,3 +649,4 @@ if __name__ == '__main__':
test_forward_gather_nd
()
test_forward_bilinear_resize
()
test_forward_rnn_layer
()
test_forward_Crop
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment