Commit c29205da by Tianqi Chen Committed by GitHub

[DOCS] Try upgrade build (#1066)

parent 1229e2d0
......@@ -87,7 +87,6 @@ stage('Build') {
cp make/config.mk .
echo USE_CUDNN=1 >> config.mk
echo USE_CUDA=1 >> config.mk
echo USE_OPENCL=1 >> config.mk
echo USE_OPENGL=1 >> config.mk
echo LLVM_CONFIG=llvm-config-4.0 >> config.mk
echo USE_RPC=1 >> config.mk
......@@ -105,6 +104,7 @@ stage('Build') {
sh "mv lib/libtvm.so lib/libtvm_llvm60.so"
pack_lib('gpu', tvm_multilib)
sh """
echo USE_OPENCL=1 >> config.mk
echo USE_ROCM=1 >> config.mk
echo ROCM_PATH=/opt/rocm >> config.mk
echo USE_VULKAN=1 >> config.mk
......@@ -152,31 +152,6 @@ stage('Build') {
pack_lib('i386', tvm_multilib)
}
}
},
'web': {
node('emcc') {
ws('workspace/tvm/build-weblib') {
init_git()
sh """
cp make/config.mk .
echo USE_CUDA=0 >> config.mk
echo USE_OPENCL=0 >> config.mk
echo LLVM_CONFIG=llvm-config >> config.mk
echo USE_RPC=0 >> config.mk
"""
sh "${docker_run} emscripten echo testing javascript..."
timeout(time: max_time, unit: 'MINUTES') {
try {
sh "${docker_run} emscripten ./tests/scripts/task_web_build.sh"
} catch (exc) {
echo 'Incremental compilation failed. Fall back to build from scratch'
sh "${docker_run} emscripten make clean"
sh "${docker_run} emscripten ./tests/scripts/task_web_build.sh"
}
}
pack_lib('weblib', tvm_lib)
}
}
}
}
......@@ -256,18 +231,6 @@ stage('Integration Test') {
}
}
},
'web': {
node('emcc') {
ws('workspace/tvm/it-weblib') {
init_git()
unpack_lib('weblib', tvm_lib)
sh "${docker_run} emscripten echo testing javascript..."
timeout(time: max_time, unit: 'MINUTES') {
sh "${docker_run} emscripten ./tests/scripts/task_web_test.sh"
}
}
}
},
'docs': {
node('GPU' && 'linux') {
ws('workspace/tvm/docs-python-gpu') {
......
......@@ -181,9 +181,9 @@ def register_func(func_name, f=None, override=False):
myf = convert_to_tvm_func(myf)
check_call(_LIB.TVMFuncRegisterGlobal(
c_str(func_name), myf.handle, ioverride))
return myf
if f:
register(f)
else:
return register(f)
return register
......
......@@ -652,6 +652,7 @@ def comm_reducer(fcombine, fidentity, name="reduce"):
for i in range(size))
return outputs[0] if size == 1 else outputs
# pylint: disable=keyword-arg-before-vararg
def reducer(expr, axis, where=None, *args):
if isinstance(axis, (_schedule.IterVar, list, tuple)):
assert not args
......
......@@ -15,4 +15,8 @@ RUN bash /install/ubuntu_install_emscripten.sh
COPY install/ubuntu_install_python_package.sh /install/ubuntu_install_python_package.sh
RUN bash /install/ubuntu_install_python_package.sh
RUN chmod a+rwx -R /emsdk-portable
RUN cp -r /emsdk-portable /emsdk-portable-backup
RUN mv /emsdk-portable /emsdk-portable-x
RUN mv /emsdk-portable-backup /emsdk-portable
RUN cp /root/.emscripten /emsdk-portable/
FROM nvidia/cuda:8.0-cudnn7-devel
# Base scripts
RUN apt-get update --fix-missing
COPY install/ubuntu_install_core.sh /install/ubuntu_install_core.sh
RUN bash /install/ubuntu_install_core.sh
......@@ -12,9 +11,6 @@ RUN bash /install/ubuntu_install_python.sh
COPY install/ubuntu_install_llvm.sh /install/ubuntu_install_llvm.sh
RUN bash /install/ubuntu_install_llvm.sh
COPY install/ubuntu_install_opencl.sh /install/ubuntu_install_opencl.sh
RUN bash /install/ubuntu_install_opencl.sh
COPY install/ubuntu_install_iverilog.sh /install/ubuntu_install_iverilog.sh
RUN bash /install/ubuntu_install_iverilog.sh
......@@ -40,8 +36,11 @@ RUN bash /install/ubuntu_install_rocm.sh
COPY install/ubuntu_install_opengl.sh /install/ubuntu_install_opengl.sh
RUN bash /install/ubuntu_install_opengl.sh
COPY install/ubuntu_install_opencl.sh /install/ubuntu_install_opencl.sh
RUN bash /install/ubuntu_install_opencl.sh
# Enable doxygen for c++ doc build
RUN apt-get install -y doxygen graphviz
RUN apt-get update && apt-get install -y doxygen graphviz
# Install vulkan
COPY install/ubuntu_install_vulkan.sh /install/ubuntu_install_vulkan.sh
......
# install libraries for building c++ core on ubuntu
apt-get install -y --no-install-recommends --force-yes \
apt-get update && apt-get install -y --no-install-recommends --force-yes \
git make libgtest-dev cmake wget unzip libtinfo-dev libz-dev\
libcurl4-openssl-dev libopenblas-dev g++ sudo
......
......@@ -8,6 +8,11 @@ echo deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-5.0 main\
echo deb-src http://apt.llvm.org/xenial/ llvm-toolchain-xenial-5.0 main\
>> /etc/apt/sources.list.d/llvm.list
echo deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-6.0 main\
>> /etc/apt/sources.list.d/llvm.list
echo deb-src http://apt.llvm.org/xenial/ llvm-toolchain-xenial-6.0 main\
>> /etc/apt/sources.list.d/llvm.list
echo deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial main\
>> /etc/apt/sources.list.d/llvm.list
echo deb-src http://apt.llvm.org/xenial/ llvm-toolchain-xenial main\
......
# Install OpenCL runtime in nvidia docker.
apt-get install -y --no-install-recommends --force-yes \
ocl-icd-libopencl1 \
apt-get update && apt-get install -y --no-install-recommends --force-yes \
ocl-icd-opencl-dev \
clinfo && \
rm -rf /var/lib/apt/lists/*
......
pip install sphinx==1.6.2 sphinx-gallery sphinx_rtd_theme matplotlib Image commonmark>=0.7.3 docutils>=0.11
pip install sphinx sphinx-gallery sphinx_rtd_theme matplotlib Image commonmark>=0.7.3 docutils>=0.11
......@@ -74,6 +74,7 @@ def schedule_conv2d_transpose_small_batch(outs):
conv2d_56_64_64(s, Filter, temp_S, Filter_S, Out, Out_L)
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_injective(OP.tag):
if OP not in s.outputs:
......
......@@ -87,6 +87,7 @@ def schedule_dense(outs):
s[Out].set_store_predicate(thread_x.var.equal(0))
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -102,6 +102,7 @@ def schedule_depthwise_conv2d_nchw(outs):
s[FS].bind(tx, thread_x)
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......@@ -178,6 +179,7 @@ def schedule_depthwise_conv2d_nhwc(outs):
s[FS].bind(fused, thread_x)
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -47,6 +47,7 @@ def schedule_global_pool(outs):
s[Pool].compute_at(s[Out], tx)
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......@@ -101,6 +102,7 @@ def schedule_pool(outs):
s[Pool].compute_at(s[Out], tx)
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -87,6 +87,7 @@ def schedule_reduce(outs):
sch = tvm.create_schedule([x.op for x in outs])
def traverse_before_reduce(operator):
"""Internal travserse function"""
if isinstance(operator, tvm.tensor.PlaceholderOp):
return
elif tag.is_injective(operator.tag):
......@@ -97,6 +98,7 @@ def schedule_reduce(outs):
raise RuntimeError("Unsupported operator: %s" % operator.tag)
def traverse_after_reduce(operator):
"""Internal travserse function"""
if tag.is_broadcast(operator.tag):
raise RuntimeError("Not yet support ewise after reduce")
elif operator.tag == 'comm_reduce':
......
......@@ -82,6 +82,7 @@ def schedule_dense(outs):
# print(tvm.lower(s, [data, weight, bias, outs[0]], simple_mode=True))
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -87,6 +87,7 @@ def schedule_depthwise_conv2d_nchw(outs):
s[conv].compute_at(s[output], ji)
def traverse(op):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(op.tag):
if op not in s.outputs:
......
......@@ -43,6 +43,7 @@ def binarize_pack(data, axis=None, name="PackedInput"):
if j == 31:
return packed
packed = packed << 1
raise RuntimeError("not resach")
return tvm.compute(oshape, _binarize_pack, name=name, tag='binarize_pack')
......
......@@ -31,6 +31,7 @@ def schedule_conv2d_nchw(outs):
s[data].opengl()
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -31,6 +31,7 @@ def schedule_dense(outs):
s[Out].opengl()
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -30,6 +30,7 @@ def schedule_global_pool(outs):
s[Out].opengl()
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......@@ -75,6 +76,7 @@ def schedule_pool(outs):
s[Out].opengl()
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -164,6 +164,7 @@ def schedule_depthwise_conv2d(outs):
s = tvm.create_schedule([x.op for x in outs])
def traverse(op):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(op.tag):
if op not in s.outputs:
......
......@@ -35,6 +35,7 @@ def schedule_binary_dense(outs):
s[Out].vectorize(xi)
def traverse(OP):
"""Internal travserse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(OP.tag):
if OP not in s.outputs:
......
......@@ -108,8 +108,6 @@ import tvm
import numpy as np
from tvm.contrib import rpc, util
server = rpc.Server(host='0.0.0.0', port=9090, use_popen=True)
######################################################################
# Declare and Cross Compile Kernel on Local Machine
# -------------------------------------------------
......@@ -241,47 +239,52 @@ print('%g secs/op' % cost)
# But here we set 'llvm' to enable this tutorial to run locally.
#
# Also we need to build the runtime with the flag `USE_OPENCL=1`.
# build kernel (different from cpu, we need bind axis for OpenCL)
s = tvm.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
s[B].bind(xo, tvm.thread_axis("blockIdx.x"))
s[B].bind(xi, tvm.thread_axis("threadIdx.x"))
f = tvm.build(s, [A, B], "opencl", target_host="llvm", name="myadd")
#
# The following functions shows how we can deploy CL
def deploy_cl():
s = tvm.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
s[B].bind(xo, tvm.thread_axis("blockIdx.x"))
s[B].bind(xi, tvm.thread_axis("threadIdx.x"))
f = tvm.build(s, [A, B], "opencl", target_host="llvm", name="myadd")
# save files
path_o = temp.relpath("myadd.o")
path_cl = temp.relpath("myadd.cl")
path_json = temp.relpath("myadd.tvm_meta.json")
f.save(path_o)
f.imported_modules[0].save(path_cl)
# save files
path_o = temp.relpath("myadd.o")
path_cl = temp.relpath("myadd.cl")
path_json = temp.relpath("myadd.tvm_meta.json")
f.save(path_o)
f.imported_modules[0].save(path_cl)
# upload files
remote.upload(path_o)
remote.upload(path_cl)
remote.upload(path_json)
# upload files
remote.upload(path_o)
remote.upload(path_cl)
remote.upload(path_json)
# load files on remote device
fhost = remote.load_module("myadd.o")
fdev = remote.load_module("myadd.cl")
fhost.import_module(fdev)
# load files on remote device
fhost = remote.load_module("myadd.o")
fdev = remote.load_module("myadd.cl")
fhost.import_module(fdev)
# run
ctx = remote.cl(0)
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
fhost(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
# run
ctx = remote.cl(0)
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
fhost(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
#####################################################################
# Instead of uploading files separately, there is a more convinient way.
# You can export libraray as a tar ball.
path_tar = temp.relpath("myadd.tar")
f.export_library(path_tar)
remote.upload(path_tar)
fhost = remote.load_module("myadd.tar")
fhost(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
# The following functions shows how we can deploy by tar ball
def deploy_cl_by_tar():
path_tar = temp.relpath("myadd.tar")
f.export_library(path_tar)
remote.upload(path_tar)
fhost = remote.load_module("myadd.tar")
fhost(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
# terminate the server after experiment
server.terminate()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment