Unverified Commit ba477865 by lfengad Committed by GitHub

Add BN support with run-time mean and variance calculation (#4990)

parent 6a36fb40
......@@ -877,6 +877,7 @@ def _fused_batch_norm():
def _impl(inputs, attr, params):
# Tensorflow: (data, gamma, beta, moving_mean, moving_variance)
# Relay: (data, gamma, beta, moving_mean, moving_varience)
assert len(inputs) == 5
axis = 3
need_cast = False
......@@ -887,7 +888,14 @@ def _fused_batch_norm():
if 'U' in attr:
need_cast = True
inputs[0] = _op.cast(inputs[0], dtype=attr['U'].name)
# Check if mean and variance are empty
# If so, replace them with Mean and Variance Ops
# For run-time calculation
moving_mean_shape = [int(n) for n in inputs[3].type_annotation.shape]
moving_variance_shape = [int(n) for n in inputs[4].type_annotation.shape]
if (moving_mean_shape[0] == 0 and moving_variance_shape[0] == 0):
inputs[3] = _op.mean(inputs[0], axis=axis, keepdims=False, exclude=True)
inputs[4] = _op.variance(inputs[0], axis=axis, keepdims=False, exclude=True)
out = AttrCvt(op_name='batch_norm',
transforms={'scale_after_normalization':'scale',
'variance_epsilon':'epsilon'},
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
BatchNorm without given mean and variance given testcases
====================
This is a test script to test fused_batch_norm operators
in TensorFlow frontend when mean and variance are not given.
"""
import tvm
import numpy as np
import tensorflow as tf
from tvm import relay
from tensorflow.python.framework import graph_util
def verify_fused_batch_norm(shape):
g = tf.Graph()
with g.as_default():
input_tensor = tf.placeholder(tf.float32, shape=shape, name='input')
alpha = tf.constant(np.random.rand(shape[-1],), dtype=tf.float32, name='alpha')
beta = tf.constant(np.random.rand(shape[-1],), dtype=tf.float32, name='beta')
bn = tf.nn.fused_batch_norm(x=input_tensor, offset=beta, scale=alpha, name='bn')
out = tf.identity(bn[0], name='output')
data = np.random.rand(*shape)
with tf.Session(graph=out.graph) as sess:
sess.run([tf.global_variables_initializer()])
tf_out = sess.run(out, feed_dict={input_tensor:data})
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['output'])
for device in ["llvm"]:
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
continue
mod, params = relay.frontend.from_tensorflow(constant_graph,
outputs=['output'])
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod,
target=device,
params=params)
from tvm.contrib import graph_runtime
m = graph_runtime.create(graph, lib, ctx)
m.set_input(**params)
m.set_input('input', data)
m.run()
tvm_out = m.get_output(0)
tvm.testing.assert_allclose(tvm_out.asnumpy(), tf_out.astype(tvm_out.dtype),
atol=1e-3, rtol=1e-3)
def test_fused_batch_norm():
verify_fused_batch_norm(shape=(1, 12, 12, 32))
verify_fused_batch_norm(shape=(1, 24, 24, 64))
verify_fused_batch_norm(shape=(1, 64, 64, 128))
verify_fused_batch_norm(shape=(8, 12, 12, 32))
verify_fused_batch_norm(shape=(16, 12, 12, 32))
verify_fused_batch_norm(shape=(32, 12, 12, 32))
if __name__ == "__main__":
test_fused_batch_norm()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment