Commit b759d0f3 by Xingjian Shi Committed by Tianqi Chen

Small fix of the Depthwise Convolution example in python3 (#224)

* fix for python3

fix for python3

* Update depthwise_conv2d_map_test.py

remove sys.append
parent bfe6d95e
...@@ -78,12 +78,14 @@ def test_depthwise_conv2d_map(): ...@@ -78,12 +78,14 @@ def test_depthwise_conv2d_map():
index_w = pad_left_scipy - pad_left_tvm index_w = pad_left_scipy - pad_left_tvm
for i in range(batch): for i in range(batch):
for j in range(out_channel): for j in range(out_channel):
depthwise_conv2d_scipy[i,j,:,:] = signal.convolve2d(input_np[i,j/channel_multiplier,:,:], np.rot90(filter_np[j/channel_multiplier,j%channel_multiplier,:,:], 2), depthwise_conv2d_scipy[i,j,:,:] = signal.convolve2d(input_np[i,j // channel_multiplier,:,:],
np.rot90(filter_np[j // channel_multiplier,j%channel_multiplier,:,:], 2),
mode='same')[index_h:in_height:stride_h, index_w:in_width:stride_w] mode='same')[index_h:in_height:stride_h, index_w:in_width:stride_w]
if padding == 'VALID': if padding == 'VALID':
for i in range(batch): for i in range(batch):
for j in range(out_channel): for j in range(out_channel):
depthwise_conv2d_scipy[i,j,:,:] = signal.convolve2d(input_np[i,j/channel_multiplier,:,:], np.rot90(filter_np[j/channel_multiplier,j%channel_multiplier,:,:], 2), depthwise_conv2d_scipy[i,j,:,:] = signal.convolve2d(input_np[i,j // channel_multiplier,:,:],
np.rot90(filter_np[j // channel_multiplier,j%channel_multiplier,:,:], 2),
mode='valid')[0:(in_height - filter_height + 1):stride_h, 0:(in_width - filter_height + 1):stride_w] mode='valid')[0:(in_height - filter_height + 1):stride_h, 0:(in_width - filter_height + 1):stride_w]
for c in range(out_channel): for c in range(out_channel):
scale_shift_scipy[:,c,:,:] = depthwise_conv2d_scipy[:,c,:,:] * scale_np[c] + shift_np[c] scale_shift_scipy[:,c,:,:] = depthwise_conv2d_scipy[:,c,:,:] * scale_np[c] + shift_np[c]
...@@ -132,7 +134,7 @@ def test_depthwise_conv2d_map(): ...@@ -132,7 +134,7 @@ def test_depthwise_conv2d_map():
np.testing.assert_allclose(depthwise_conv2d_tvm.asnumpy(), depthwise_conv2d_scipy, rtol=1e-5) np.testing.assert_allclose(depthwise_conv2d_tvm.asnumpy(), depthwise_conv2d_scipy, rtol=1e-5)
np.testing.assert_allclose(scale_shift_tvm.asnumpy(), scale_shift_scipy, rtol=1e-5) np.testing.assert_allclose(scale_shift_tvm.asnumpy(), scale_shift_scipy, rtol=1e-5)
np.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5) np.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5)
print "success" print("success")
with tvm.build_config(auto_unroll_max_step=32, with tvm.build_config(auto_unroll_max_step=32,
auto_unroll_min_depth=0, auto_unroll_min_depth=0,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment