Commit aa9528b3 by Joshua Z. Zhang Committed by Tianqi Chen

[FRONTEND] CoreML (#63)

* add coreml

* fix bool

* fix flatten in fullyconnected

* fix duplicate flatten

* fix syntax

* add tutorial

* fix mxnet flatten, fix tutorials

* fix flatten issue

* fix lint
parent 30157d82
...@@ -2,3 +2,4 @@ ...@@ -2,3 +2,4 @@
from __future__ import absolute_import from __future__ import absolute_import
from .mxnet import from_mxnet from .mxnet import from_mxnet
from .onnx import from_onnx from .onnx import from_onnx
from .coreml import from_coreml
# pylint: disable=invalid-name # pylint: disable=invalid-name, import-self
"""MXNet symbol frontend.""" """MXNet symbol frontend."""
from __future__ import absolute_import as _abs from __future__ import absolute_import as _abs
import json import json
...@@ -7,6 +7,14 @@ from .. import symbol as _sym ...@@ -7,6 +7,14 @@ from .. import symbol as _sym
__all__ = ['from_mxnet'] __all__ = ['from_mxnet']
def _get_mxnet_version():
try:
import mxnet as mx
version = mx.__version__
except ImportError:
version = '0.11.1'
return [int(x) for x in version.split('.')]
def _required_attr(attr, key): def _required_attr(attr, key):
assert isinstance(attr, dict) assert isinstance(attr, dict)
if key not in attr: if key not in attr:
...@@ -119,6 +127,9 @@ def _dense(attrs): ...@@ -119,6 +127,9 @@ def _dense(attrs):
op_name, new_attrs = 'dense', {} op_name, new_attrs = 'dense', {}
new_attrs['units'] = _required_attr(attrs, 'num_hidden') new_attrs['units'] = _required_attr(attrs, 'num_hidden')
new_attrs['use_bias'] = not _parse_bool_str(attrs, 'no_bias') new_attrs['use_bias'] = not _parse_bool_str(attrs, 'no_bias')
major, minor, micro = _get_mxnet_version()
if major >= 0 and minor >= 11 and micro >= 1:
new_attrs['flatten'] = _parse_bool_str(attrs, 'flatten', 'True')
return op_name, new_attrs return op_name, new_attrs
def _dropout(attrs): def _dropout(attrs):
...@@ -276,6 +287,10 @@ def _from_mxnet_impl(symbol, graph): ...@@ -276,6 +287,10 @@ def _from_mxnet_impl(symbol, graph):
childs = symbol.get_children() childs = symbol.get_children()
childs = [_from_mxnet_impl(c, graph) for c in _as_list(childs)] childs = [_from_mxnet_impl(c, graph) for c in _as_list(childs)]
childs = [x for y in childs for x in _as_list(y)] # expand group symbol childs = [x for y in childs for x in _as_list(y)] # expand group symbol
if new_op == _sym.dense and 'flatten' in new_attr:
if new_attr['flatten']:
childs[0] = _sym.flatten(childs[0])
new_attr.pop('flatten')
node = new_op(name=name, *childs, **new_attr) node = new_op(name=name, *childs, **new_attr)
graph[name] = node graph[name] = node
return node return node
...@@ -304,7 +319,7 @@ def from_mxnet(symbol, arg_params=None, aux_params=None): ...@@ -304,7 +319,7 @@ def from_mxnet(symbol, arg_params=None, aux_params=None):
The parameter dict to be used by nnvm The parameter dict to be used by nnvm
""" """
try: try:
import mxnet as mx # pylint: disable=import-self import mxnet as mx
except ImportError as e: except ImportError as e:
raise ImportError('{}. MXNet is required to parse symbols.'.format(e)) raise ImportError('{}. MXNet is required to parse symbols.'.format(e))
...@@ -325,7 +340,7 @@ def from_mxnet(symbol, arg_params=None, aux_params=None): ...@@ -325,7 +340,7 @@ def from_mxnet(symbol, arg_params=None, aux_params=None):
for k, v in symbol.collect_params().items(): for k, v in symbol.collect_params().items():
params[k] = tvm.nd.array(v.data().asnumpy()) params[k] = tvm.nd.array(v.data().asnumpy())
elif isinstance(symbol, mx.gluon.Block): elif isinstance(symbol, mx.gluon.Block):
raise NotImplementedError("The dynamic Block is not supported yet.") raise NotImplementedError("Only Hybrid Blocks are supported now.")
else: else:
msg = "mxnet.Symbol or gluon.HybridBlock expected, got {}".format(type(symbol)) msg = "mxnet.Symbol or gluon.HybridBlock expected, got {}".format(type(symbol))
raise ValueError(msg) raise ValueError(msg)
......
import urllib
import os
from PIL import Image
import numpy as np
def download(url, path, overwrite=False):
if os.path.exists(path) and not overwrite:
return
print('Downloading {} to {}.'.format(url, path))
urllib.URLopener().retrieve(url, path)
def get_mobilenet():
url = 'https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel'
dst = 'mobilenet.mlmodel'
real_dst = os.path.abspath(os.path.join(os.path.dirname(__file__), dst))
download(url, real_dst)
return os.path.abspath(real_dst)
def get_resnet50():
url = 'https://docs-assets.developer.apple.com/coreml/models/Resnet50.mlmodel'
dst = 'resnet50.mlmodel'
real_dst = os.path.abspath(os.path.join(os.path.dirname(__file__), dst))
download(url, real_dst)
return os.path.abspath(real_dst)
def get_cat_image():
url = 'https://gist.githubusercontent.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/fa7ef0e9c9a5daea686d6473a62aacd1a5885849/cat.png'
dst = 'cat.jpg'
real_dst = os.path.abspath(os.path.join(os.path.dirname(__file__), dst))
download(url, real_dst)
img = Image.open(real_dst).resize((224, 224))
img = np.transpose(img, (2, 0, 1))[np.newaxis, :]
return np.asarray(img)
import numpy as np
import topi
import tvm
from tvm.contrib import graph_runtime
import nnvm.symbol as sym
import nnvm.compiler
from nnvm.testing.config import ctx_list
from nnvm import frontend
import coremltools as cm
import model_zoo
def get_tvm_output(symbol, x, params, target, ctx,
out_shape=(1000,), input_name='image', dtype='float32'):
shape_dict = {input_name : x.shape}
with nnvm.compiler.build_config(opt_level=3):
graph, lib, params = nnvm.compiler.build(symbol, target, shape_dict, params=params)
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input(input_name, tvm.nd.array(x.astype(dtype)))
m.set_input(**params)
m.run()
# get outputs
out = m.get_output(0, tvm.nd.empty(out_shape, dtype))
return out.asnumpy()
def test_model_checkonly(model_file, model_name=''):
model = cm.models.MLModel(model_file)
sym, params = nnvm.frontend.from_coreml(model)
x = model_zoo.get_cat_image()
for target, ctx in ctx_list():
tvm_output = get_tvm_output(sym, x, params, target, ctx)
print(target, ctx, model_name, 'prediction id: ', np.argmax(tvm_output.flat))
def test_mobilenet_checkonly():
model_file = model_zoo.get_mobilenet()
test_model_checkonly(model_file, 'mobilenet')
def test_resnet50_checkonly():
model_file = model_zoo.get_resnet50()
test_model_checkonly(model_file, 'resnet50')
if __name__ == '__main__':
test_mobilenet_checkonly()
test_resnet50_checkonly()
"""
Compile CoreML Models
=====================
**Author**: `Joshua Z. Zhang <https://zhreshold.github.io/>`_
This article is an introductory tutorial to deploy CoreML models with NNVM.
For us to begin with, coremltools module is required to be installed.
A quick solution is to install via pip
```bash
pip install -U coremltools --user
```
or please refer to offical site
https://github.com/apple/coremltools
"""
import nnvm
import tvm
import coremltools as cm
import numpy as np
from PIL import Image
def download(url, path, overwrite=False):
import urllib2, os
if os.path.exists(path) and not overwrite:
return
print('Downloading {} to {}.'.format(url, path))
with open(path, 'w') as f:
f.write(urllib2.urlopen(url).read())
######################################################################
# Load pretrained CoreML model
# ----------------------------
# We will download and load a pretrained mobilenet classification network
# privided by apple in this example
model_url = 'https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel'
model_file = 'mobilenet.mlmodel'
download(model_url, model_file)
# now you mobilenet.mlmodel on disk
mlmodel = cm.models.MLModel(model_file)
# we can load the graph as NNVM compatible model
sym, params = nnvm.frontend.from_coreml(mlmodel)
######################################################################
# Load a test image
# ------------------
# A single cat dominates the examples!
from PIL import Image
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
download(img_url, 'cat.png')
img = Image.open('cat.png').resize((224, 224))
x = np.transpose(img, (2, 0, 1))[np.newaxis, :]
######################################################################
# Compile the model on NNVM
# ---------------------------
# We should be familiar with the process right now.
import nnvm.compiler
target = 'cuda'
shape_dict = {'image': x.shape}
graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params)
######################################################################
# Execute on TVM
# -------------------
# The process is no different from other example
from tvm.contrib import graph_runtime
ctx = tvm.gpu(0)
dtype = 'float32'
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input('image', tvm.nd.array(x.astype(dtype)))
m.set_input(**params)
# execute
m.run()
# get outputs
output_shape = (1000,)
tvm_output = m.get_output(0, tvm.nd.empty(output_shape, dtype)).asnumpy()
top1 = np.argmax(tvm_output)
#####################################################################
# Look up synset name
# -------------------
# Look up prdiction top 1 index in 1000 class synset.
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
'4d0b62f3d01426887599d4f7ede23ee5/raw/',
'596b27d23537e5a1b5751d2b0481ef172f58b539/',
'imagenet1000_clsid_to_human.txt'])
synset_name = 'synset.txt'
download(synset_url, synset_name)
with open(synset_name) as f:
synset = eval(f.read())
print('Top-1 id', top1, 'class name', synset[top1])
...@@ -19,19 +19,25 @@ import tvm ...@@ -19,19 +19,25 @@ import tvm
import onnx import onnx
import numpy as np import numpy as np
def download(url, path, overwrite=False):
import urllib2, os
if os.path.exists(path) and not overwrite:
return
print('Downloading {} to {}.'.format(url, path))
with open(path, 'w') as f:
f.write(urllib2.urlopen(url).read())
###################################################################### ######################################################################
# Load pretrained ONNX model # Load pretrained ONNX model
# --------------------------------------------- # ---------------------------------------------
# The example super resolution model used here is exactly the same model in onnx tutorial # The example super resolution model used here is exactly the same model in onnx tutorial
# http://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html # http://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html
# we skip the pytorch model construction part, and download the saved onnx model # we skip the pytorch model construction part, and download the saved onnx model
import urllib2
model_url = ''.join(['https://gist.github.com/zhreshold/', model_url = ''.join(['https://gist.github.com/zhreshold/',
'bcda4716699ac97ea44f791c24310193/raw/', 'bcda4716699ac97ea44f791c24310193/raw/',
'41b443bf2b6cf795892d98edd28bacecd8eb0d8d/', '41b443bf2b6cf795892d98edd28bacecd8eb0d8d/',
'super_resolution.onnx']) 'super_resolution.onnx'])
with open('super_resolution.onnx', 'w') as f: download(model_url, 'super_resolution.onnx')
f.write(urllib2.urlopen(model_url).read())
# now you have super_resolution.onnx on disk # now you have super_resolution.onnx on disk
onnx_graph = onnx.load('super_resolution.onnx') onnx_graph = onnx.load('super_resolution.onnx')
# we can load the graph as NNVM compatible model # we can load the graph as NNVM compatible model
...@@ -43,9 +49,8 @@ sym, params = nnvm.frontend.from_onnx(onnx_graph) ...@@ -43,9 +49,8 @@ sym, params = nnvm.frontend.from_onnx(onnx_graph)
# A single cat dominates the examples! # A single cat dominates the examples!
from PIL import Image from PIL import Image
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
with open('cat.jpg', 'w') as f: download(img_url, 'cat.png')
f.write(urllib2.urlopen(img_url).read()) img = Image.open('cat.png').resize((224, 224))
img = Image.open('cat.jpg').resize((224, 224))
img_ycbcr = img.convert("YCbCr") # convert to YCbCr img_ycbcr = img.convert("YCbCr") # convert to YCbCr
img_y, img_cb, img_cr = img_ycbcr.split() img_y, img_cb, img_cr = img_ycbcr.split()
x = np.array(img_y)[np.newaxis, np.newaxis, :, :] x = np.array(img_y)[np.newaxis, np.newaxis, :, :]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment