Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a9313787
Commit
a9313787
authored
Jun 05, 2018
by
larrywyang
Committed by
Tianqi Chen
Jun 05, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[WIP] [NNVM] Fix softmax gradient (#1201)
[NNVM] Fix softmax gradient
parent
61dad72e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
23 additions
and
19 deletions
+23
-19
nnvm/src/top/nn/nn.cc
+21
-17
nnvm/tests/python/compiler/test_top_level1.py
+2
-2
No files found.
nnvm/src/top/nn/nn.cc
View file @
a9313787
...
...
@@ -366,22 +366,24 @@ NNVM_REGISTER_OP(softmax)
// [ ... ,-ynyn + yn]
//
// grad_x =
// [-y1*(ograd1*y1 - 1 + ograd2*y2 + ..., -y2*(ograd1*y1 - 1 + ograd2*y2, ..., ...]]
// [-y1*(ograd1*y1 - ograd1 + ograd2*y2 + ...),
// -y2*(ograd1*y1 - ograd2 + ograd2*y2 + ...),
// ...
// -yn*(ograd1*y1 - ogradn + ograd2*y2 + ...)]
// grad_x = ograd elemwise_mul output
// grad_x = sum(grad_x, keepdim, axis)
// grad_x = grad_x broadcast_mul output
// grad_x = neg grad_x
// grad_x = grad_x + output
// grad_x = grad_x + o
grad elemwise_mul o
utput
const
SoftmaxParam
&
param
=
nnvm
::
get
<
SoftmaxParam
>
(
n
->
attrs
.
parsed
);
NodeEntry
output
=
NodeEntry
{
n
,
0
,
0
};
NodeEntry
sub0
=
MakeNode
(
"elemwise_mul"
,
n
->
attrs
.
name
+
"_grad_sub0"
,
{
ograds
[
0
],
output
});
NodeEntry
sub1
=
MakeNode
(
"sum"
,
n
->
attrs
.
name
+
"_grad_sub1"
,
{
sub0
},
{{
"axis"
,
std
::
to_string
(
param
.
axis
)},
{
"keepdims"
,
"true"
}});
NodeEntry
sub2
=
MakeNode
(
"broadcast_mul"
,
n
->
attrs
.
name
+
"_grad_sub2"
,
{
sub1
,
output
});
NodeEntry
sub3
=
MakeNode
(
"negative"
,
n
->
attrs
.
name
+
"_grad_sub3"
,
{
sub2
});
return
std
::
vector
<
NodeEntry
>
{
MakeNode
(
"elemwise_
add"
,
n
->
attrs
.
name
+
"_grad"
,
{
sub3
,
output
})
MakeNode
(
"elemwise_
sub"
,
n
->
attrs
.
name
+
"_grad"
,
{
sub0
,
sub2
})
};
});
...
...
@@ -414,31 +416,33 @@ NNVM_REGISTER_OP(log_softmax)
.
set_attr
<
FGradient
>
(
"FGradient"
,
[](
const
NodePtr
&
n
,
const
std
::
vector
<
NodeEntry
>&
ograds
)
{
// grad_x = grad_y dot jacobian of softmax
// grad_x = grad_y dot jacobian of
log
softmax
//
// jacobian of softmax
// jacobian of
log
softmax
// [-y1 + 1, -y2, ... ]
// [ ... , -y2 + 1, ... ]
// [ ... ... ]
// [ ... ,-yn + 1]
//
// grad_x =
// [-(ograd1*y1 - 1 + ograd2*y2 + ..., -(ograd1*y1 - 1 + ograd2*y2, ..., ...]]
// grad_x = ograd elemwise_mul output
// grad_x = sum(grad_x, keepdim, axis)
// [ograd1 - exp(y1)*(ograd1 + ... + ogradn),
// ograd2 - exp(y2)*(ograd1 + ... + ogradn),
// ...
// ogradn - exp(yn)*(ograd1 + ... + ogradn)]
// grad_x = sum(ograd, keepdim, axis)
// sigma = exp(output)
// grad_x = grad_x elemwise_mul sigma
// grad_x = neg grad_x
// grad_x = grad_x + o
nes_like(grad_x)
// grad_x = grad_x + o
grad
const
SoftmaxParam
&
param
=
nnvm
::
get
<
SoftmaxParam
>
(
n
->
attrs
.
parsed
);
NodeEntry
output
=
NodeEntry
{
n
,
0
,
0
};
NodeEntry
sub0
=
MakeNode
(
"elemwise_mul"
,
n
->
attrs
.
name
+
"_grad_sub0"
,
{
ograds
[
0
],
output
});
NodeEntry
sub1
=
MakeNode
(
"sum"
,
n
->
attrs
.
name
+
"_grad_sub1"
,
{
sub0
},
NodeEntry
sub0
=
MakeNode
(
"sum"
,
n
->
attrs
.
name
+
"_grad_sub0"
,
{
ograds
[
0
]},
{{
"axis"
,
std
::
to_string
(
param
.
axis
)},
{
"keepdims"
,
"true"
}});
NodeEntry
sub2
=
MakeNode
(
"full_like"
,
n
->
attrs
.
name
+
"_grad_sub2"
,
{
n
->
inputs
[
0
]},
{{
"fill_value"
,
"-1"
}});
NodeEntry
sub3
=
MakeNode
(
"broadcast_mul"
,
n
->
attrs
.
name
+
"_grad_sub3"
,
{
sub1
,
sub2
});
NodeEntry
sub1
=
MakeNode
(
"exp"
,
n
->
attrs
.
name
+
"_grad_sub1"
,
{
output
});
NodeEntry
sub2
=
MakeNode
(
"broadcast_mul"
,
n
->
attrs
.
name
+
"_grad_sub2"
,
{
sub0
,
sub1
});
return
std
::
vector
<
NodeEntry
>
{
MakeNode
(
"elemwise_
add"
,
n
->
attrs
.
name
+
"_grad"
,
{
sub3
,
ograds
[
0
]
})
MakeNode
(
"elemwise_
sub"
,
n
->
attrs
.
name
+
"_grad"
,
{
ograds
[
0
],
sub2
})
};
})
.
set_support_level
(
1
);
...
...
nnvm/tests/python/compiler/test_top_level1.py
View file @
a9313787
...
...
@@ -217,7 +217,7 @@ def test_softmax():
dtype
=
"float32"
dshape
=
(
10
,
1000
)
inputs
=
[(
'x'
,
dshape
,
x
)]
helper
(
y
,
inputs
,
dtype
,
forward
),
backward
helper
(
y
,
inputs
,
dtype
,
forward
,
backward
)
def
test_log_softmax
():
...
...
@@ -229,7 +229,7 @@ def test_log_softmax():
def
backward
(
head_grads
,
x
):
y
=
topi
.
testing
.
log_softmax_python
(
x
)
grad
=
head_grads
-
np
.
sum
(
y
*
head_grads
,
axis
=
1
,
keepdims
=
True
)
grad
=
head_grads
-
np
.
exp
(
y
)
*
np
.
sum
(
head_grads
,
axis
=
1
,
keepdims
=
True
)
return
[
grad
]
dtype
=
"float32"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment