Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a7f01253
Commit
a7f01253
authored
Sep 29, 2017
by
ziheng
Committed by
Tianqi Chen
Sep 29, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI] Update depthwise conv2d schedule on rasp (#500)
parent
9e7a6674
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
129 additions
and
7 deletions
+129
-7
topi/python/topi/rasp/depthwise_conv2d.py
+129
-7
No files found.
topi/python/topi/rasp/depthwise_conv2d.py
View file @
a7f01253
# pylint: disable=invalid-name,unused-variable
"""Schedule for depthwise_conv2d with auto fusion"""
from
__future__
import
absolute_import
as
_abs
from
collections
import
namedtuple
import
tvm
from
..
import
tag
from
..nn.util
import
infer_pad
,
infer_stride
,
get_pad_tuple
_Workload
=
namedtuple
(
'Workload'
,
[
'height'
,
'width'
,
'channel'
,
'multiplier'
,
'hkernel'
,
'wkernel'
,
'hpad'
,
'wpad'
,
'hstride'
,
'wstride'
])
_Schedule
=
namedtuple
(
'Schedule'
,
[
'vh'
,
'vw'
,
'vc'
,
'bc'
,
'unroll'
])
# workloads of depthwise conv mobile net on imagenet
_WORKLOADS
=
[
_Workload
(
112
,
112
,
32
,
1
,
3
,
3
,
1
,
1
,
1
,
1
),
_Workload
(
112
,
112
,
64
,
1
,
3
,
3
,
1
,
1
,
2
,
2
),
_Workload
(
56
,
56
,
128
,
1
,
3
,
3
,
1
,
1
,
1
,
1
),
_Workload
(
56
,
56
,
128
,
1
,
3
,
3
,
1
,
1
,
2
,
2
),
_Workload
(
28
,
28
,
256
,
1
,
3
,
3
,
1
,
1
,
1
,
1
),
_Workload
(
28
,
28
,
256
,
1
,
3
,
3
,
1
,
1
,
2
,
2
),
_Workload
(
14
,
14
,
512
,
1
,
3
,
3
,
1
,
1
,
1
,
1
),
_Workload
(
14
,
14
,
512
,
1
,
3
,
3
,
1
,
1
,
2
,
2
),
_Workload
(
14
,
14
,
1024
,
1
,
3
,
3
,
1
,
1
,
1
,
1
),
]
_SCHEDULES
=
[
_Schedule
(
2
,
1
,
4
,
1
,
True
),
_Schedule
(
2
,
4
,
4
,
2
,
True
),
_Schedule
(
2
,
1
,
4
,
2
,
False
),
_Schedule
(
2
,
4
,
4
,
1
,
True
),
_Schedule
(
4
,
1
,
4
,
8
,
True
),
_Schedule
(
1
,
1
,
4
,
2
,
True
),
_Schedule
(
1
,
1
,
8
,
8
,
True
),
_Schedule
(
1
,
1
,
4
,
1
,
False
),
_Schedule
(
2
,
1
,
4
,
16
,
False
),
]
def
_get_workload
(
data
,
kernel
,
stride
,
padding
):
_
,
C
,
IH
,
IW
=
[
x
.
value
for
x
in
data
.
shape
]
_
,
MT
,
KH
,
KW
=
[
x
.
value
for
x
in
kernel
.
shape
]
HPAD
,
WPAD
,
_
,
_
=
get_pad_tuple
(
padding
,
kernel
)
if
isinstance
(
stride
,
(
tuple
,
list
)):
HSTR
,
WSTR
=
stride
else
:
HSTR
,
WSTR
=
stride
,
stride
return
_Workload
(
IH
,
IW
,
C
,
MT
,
KH
,
KW
,
HPAD
,
WPAD
,
HSTR
,
WSTR
)
def
_schedule
(
s
,
data
,
data_pad
,
kernel
,
output
,
last
):
padding
=
infer_pad
(
data
,
data_pad
)
if
data_pad
is
None
:
stride
=
infer_stride
(
data
,
kernel
,
output
)
else
:
stride
=
infer_stride
(
data_pad
,
kernel
,
output
)
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
)
if
wkl
not
in
_WORKLOADS
:
return
s
# use specified schedule
sch
=
_SCHEDULES
[
_WORKLOADS
.
index
(
wkl
)]
H
,
W
=
wkl
.
height
,
wkl
.
width
CN
=
wkl
.
channel
MT
=
wkl
.
multiplier
HK
,
WK
=
wkl
.
hkernel
,
wkl
.
wkernel
HPAD
,
WPAD
=
wkl
.
hpad
,
wkl
.
wpad
HSTR
,
WSTR
=
wkl
.
hstride
,
wkl
.
wstride
VH
,
VW
=
sch
.
vh
,
sch
.
vw
BC
=
sch
.
bc
VC
=
sch
.
vc
TH
=
H
+
2
*
HPAD
TW
=
W
+
2
*
WPAD
OH
=
(
H
+
2
*
HPAD
-
HK
)
/
HSTR
+
1
OW
=
(
W
+
2
*
WPAD
-
WK
)
/
WSTR
+
1
A
,
B
,
C
=
data
,
kernel
,
output
A0
=
data_pad
C0
=
last
A1
=
s
.
cache_read
(
A0
,
"global"
,
C
)
_
,
c
,
h
,
w
=
s
[
A1
]
.
op
.
axis
c
,
vc
=
s
[
A1
]
.
split
(
c
,
VC
)
s
[
A1
]
.
reorder
(
c
,
h
,
w
,
vc
)
A2
=
s
.
cache_write
(
A1
,
'global'
)
s
[
A0
]
.
compute_inline
()
s
[
A1
]
.
compute_inline
()
B0
=
s
.
cache_read
(
B
,
"global"
,
C
)
c
,
m
,
h
,
w
=
s
[
B0
]
.
op
.
axis
c
,
vc
=
s
[
B0
]
.
split
(
c
,
VC
)
s
[
B0
]
.
reorder
(
c
,
m
,
h
,
w
,
vc
)
B1
=
s
.
cache_write
(
B0
,
'global'
)
s
[
B0
]
.
compute_inline
()
_
,
c
,
h
,
w
=
s
[
C
]
.
op
.
axis
dh
,
dw
=
s
[
C
]
.
op
.
reduce_axis
c
,
vc
=
s
[
C
]
.
split
(
c
,
VC
)
s
[
C
]
.
reorder
(
c
,
h
,
w
,
vc
)
C0
=
s
.
cache_write
(
C
,
'global'
)
_
,
c
,
h
,
w
,
vc
=
s
[
C0
]
.
op
.
axis
dh
,
dw
=
s
[
C0
]
.
op
.
reduce_axis
oh
,
ow
,
ih
,
iw
=
s
[
C0
]
.
tile
(
h
,
w
,
VH
,
VW
)
s
[
C0
]
.
reorder
(
c
,
oh
,
ow
,
dh
,
dw
,
ih
,
iw
,
vc
)
if
sch
.
unroll
:
s
[
C0
]
.
unroll
(
iw
)
s
[
C0
]
.
vectorize
(
vc
)
oh
,
ow
,
ih
,
iw
=
s
[
C
]
.
tile
(
h
,
w
,
2
,
4
)
s
[
C
]
.
reorder
(
oh
,
ow
,
dh
,
dw
,
ih
,
i
w
)
s
[
C
]
.
unroll
(
ih
)
s
[
C
]
.
vectorize
(
iw
)
# # s[C0].compute_at(s[C0], o
w)
launch
,
c
,
_
,
_
=
s
[
C
]
.
op
.
axis
s
[
C
]
.
pragma
(
launch
,
"parallel_launch_point"
)
s
[
C
]
.
parallel
(
c
)
s
[
C
]
.
pragma
(
c
,
"parallel_launch_point"
)
s
[
C
]
.
pragma
(
c
,
"parallel_stride_pattern"
)
s
[
C
]
.
pragma
(
c
,
"parallel_barrier_when_finish"
)
s
[
C0
]
.
compute_at
(
s
[
C
],
launch
)
_
,
c
,
h
,
w
,
vc
=
s
[
C0
]
.
op
.
axis
s
[
C0
]
.
parallel
(
c
)
s
[
C0
]
.
pragma
(
c
,
"parallel_stride_pattern"
)
s
[
C0
]
.
pragma
(
c
,
"parallel_barrier_when_finish"
)
s
[
A2
]
.
compute_at
(
s
[
C0
],
oh
)
# parallel(s[A2], s[A2].op.axis[1], BC)
# # s[B0].compute_at(s[C0], ow)
s
[
B1
]
.
compute_at
(
s
[
C
],
launch
)
c
,
m
,
h
,
w
,
vc
=
s
[
B1
]
.
op
.
axis
s
[
B1
]
.
parallel
(
c
)
s
[
B1
]
.
pragma
(
c
,
"parallel_stride_pattern"
)
s
[
B1
]
.
pragma
(
c
,
"parallel_barrier_when_finish"
)
return
s
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment