Commit a6bb84a8 by Animesh Jain Committed by Zhi

[QNN] Add - Refactoring to C++ (#3736)

parent 734df8d5
...@@ -187,6 +187,36 @@ struct QnnConv2DAttrs : public tvm::AttrsNode<QnnConv2DAttrs> { ...@@ -187,6 +187,36 @@ struct QnnConv2DAttrs : public tvm::AttrsNode<QnnConv2DAttrs> {
} }
}; };
/*! \brief Attribute for QNN binary operator */
struct QnnBinaryOpAttrs : public tvm::AttrsNode<QnnBinaryOpAttrs> {
int32_t lhs_zero_point;
double lhs_scale;
int32_t rhs_zero_point;
double rhs_scale;
int32_t output_zero_point;
double output_scale;
TVM_DECLARE_ATTRS(QnnBinaryOpAttrs, "relay.attrs.QnnBinaryOpAttrs") {
TVM_ATTR_FIELD(lhs_zero_point)
.describe("The zero_point for the lhs input tensor of this op.");
TVM_ATTR_FIELD(lhs_scale)
.describe("The scale for the lhs input tensor of this op.");
TVM_ATTR_FIELD(rhs_zero_point)
.describe("The zero_point for the rhs input tensor of this op.");
TVM_ATTR_FIELD(rhs_scale)
.describe("The scale for the rhs input tensor of this op.");
TVM_ATTR_FIELD(output_zero_point)
.describe("The zero_point for the activation of this op.");
TVM_ATTR_FIELD(output_scale)
.describe("The scale for the activation of this op.");
}
};
} // namespace qnn } // namespace qnn
} // namespace relay } // namespace relay
} // namespace tvm } // namespace tvm
......
...@@ -263,3 +263,45 @@ def conv2d(data, ...@@ -263,3 +263,45 @@ def conv2d(data,
strides, padding, dilation, strides, padding, dilation,
groups, channels, kernel_size, groups, channels, kernel_size,
data_layout, kernel_layout, out_layout, out_dtype) data_layout, kernel_layout, out_layout, out_dtype)
def add(lhs, rhs, lhs_scale, lhs_zero_point, rhs_scale, rhs_zero_point, output_scale,
output_zero_point):
"""Quantized addition with numpy-style broadcasting.
Parameters
----------
lhs : relay.Expr
The left hand side quantized input data.
rhs : relay.Expr
The right hand side quantized input data.
lhs_scale: float
The scale of the lhs quantized expr.
lhs_zero_point: int
The zero point of lhs quantized expr.
rhs_scale: float
The scale of the rhs quantized expr.
rhs_zero_point: int
The zero point of rhs quantized expr.
output_scale: float
The scale of the output quantized expr.
output_zero_point: int
The zero point of output quantized expr.
Returns
-------
result : relay.Expr
The computed result.
"""
return _make.add(lhs, rhs,
lhs_scale, lhs_zero_point,
rhs_scale, rhs_zero_point,
output_scale, output_zero_point)
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file src/relay/qnn/op/add.cc
* \brief QNN add operator.
*/
#include <tvm/relay/analysis.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include "../../pass/pattern_util.h"
#include "../util.h"
#include "op_common.h"
namespace tvm {
namespace relay {
namespace qnn {
/*
* \brief Canonicalizes the QNN add op.
* \param attrs The QNN concatenate attrs.
* \param new_args The new mutated args to the call node.
* \param arg_types The types of input and output.
* \return The sequence of Relay ops for add op.
*/
Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
const Array<tvm::relay::Type>& arg_types) {
// Get the attrs.
CHECK_EQ(new_args.size(), 2);
auto& lhs = new_args[0];
auto& rhs = new_args[1];
const auto* binary_op_attrs = attrs.as<QnnBinaryOpAttrs>();
CHECK(binary_op_attrs != nullptr);
auto lhs_scale = binary_op_attrs->lhs_scale;
auto lhs_zero_point = binary_op_attrs->lhs_zero_point;
auto rhs_scale = binary_op_attrs->rhs_scale;
auto rhs_zero_point = binary_op_attrs->rhs_zero_point;
auto output_scale = binary_op_attrs->output_scale;
auto output_zero_point = binary_op_attrs->output_zero_point;
// Get the input dtype and shape.
CHECK_EQ(arg_types.size(), 3);
auto tensor_type = arg_types[0].as<TensorTypeNode>();
auto input_dtype = tensor_type->dtype;
auto input_shape = tensor_type->shape;
// FIXME (anijain2305) - The lowering can be further optimized. Instead of inserting requantize in
// the start, we can insert requantize at the end if both input tensors have same qnn params. In
// that case, we can first add the tensors, subtract the zero point, and requantize at the end.
// This can be done in future.
// Since the input qnn params can be different than output qnn params, we first requantize the
// input tensors to the output qnn params. Then we call relay.add on the requantized inputs. This
// addition results in extra addition of the output zero point. We futher subtract the zero
// point. The whole process can be represented using following equations
//
// scale_c * (Q_c - zp_c) = scale_a * (Q_a - zp_a) + scale_b * (Q_b - zp_b)
//
// After requantizing Q_a and Q_b, equation becomes,
// scale_c * (Q_c - zp_c) = scale_c * (Q_a' - zp_c) + scale_c * (Q_b' - zp_c)
// scale_c * (Q_c - zp_c) = scale_c * (Q_a' + Q_b' - zp_c - zp_c)
//
// Comparing the LHS and RHS, it results in
// Q_c = Q_a' + Q_b' - zp_c
// The add op is done in int32 precision.
// Requantize LHS if necessary.
auto requantized_lhs = lhs;
if (lhs_scale != output_scale || lhs_zero_point != output_zero_point) {
requantized_lhs = Requantize(lhs, input_shape, lhs_scale, lhs_zero_point, output_scale,
output_zero_point, Int(32));
} else {
requantized_lhs = Cast(requantized_lhs, Int(32));
}
// Requantize RHS if necessary.
auto requantized_rhs = rhs;
if (rhs_scale != output_scale || rhs_zero_point != output_zero_point) {
requantized_rhs = Requantize(rhs, input_shape, rhs_scale, rhs_zero_point, output_scale,
output_zero_point, Int(32));
} else {
requantized_rhs = Cast(requantized_rhs, Int(32));
}
auto output = Add(requantized_lhs, requantized_rhs);
// Subtract zero point.
if (output_zero_point != 0) {
auto output_zp = MakeConstantScalar(Int(32), output_zero_point);
output = Subtract(output, output_zp);
}
// Go back to lower precision.
auto q_min = GetQmin(input_dtype);
auto q_max = GetQmax(input_dtype);
output = Clip(output, q_min, q_max);
return Cast(output, input_dtype);
}
// QNN Addition operator.
QNN_REGISTER_BINARY_OP("add")
.describe("Elementwise add with with broadcasting for quantized tensors.")
.set_support_level(11)
.set_attr<FTVMLegalize>("FTVMQnnCanonicalize", QnnAddCanonicalize);
} // namespace qnn
} // namespace relay
} // namespace tvm
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file src/relay/qnn/op/op_common.h
* \brief A set of utilities and common functionality for QNN ops.
*/
#ifndef TVM_RELAY_QNN_OP_OP_COMMON_H_
#define TVM_RELAY_QNN_OP_OP_COMMON_H_
#include <tvm/relay/expr.h>
#include <tvm/relay/op.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include <vector>
#include "../../op/type_relations.h"
namespace tvm {
namespace relay {
namespace qnn {
/*! Quick helper macro
* - Expose a positional make function to construct the node.
* - Register op to the registry.
*
* We make the decision to always only expose positional argument.
* We will do rewrapping in the frontend to support language
* sugars such as keyword arguments and default value.
*
* \param OpName the name of registry.
*/
#define QNN_REGISTER_BINARY_OP(OpName) \
TVM_REGISTER_API("relay.qnn.op._make." OpName) \
.set_body_typed<Expr(Expr, Expr, double, int32_t, double, int32_t, double, int32_t)>( \
[](Expr lhs, Expr rhs, double lhs_scale, int32_t lhs_zero_point, double rhs_scale, \
int32_t rhs_zero_point, double output_scale, int32_t output_zero_point) { \
auto attrs = make_node<QnnBinaryOpAttrs>(); \
attrs->lhs_scale = lhs_scale; \
attrs->lhs_zero_point = lhs_zero_point; \
attrs->rhs_scale = rhs_scale; \
attrs->rhs_zero_point = rhs_zero_point; \
attrs->output_scale = output_scale; \
attrs->output_zero_point = output_zero_point; \
static const Op& op = Op::Get("qnn." OpName); \
return CallNode::make(op, {lhs, rhs}, Attrs(attrs), {}); \
}); \
RELAY_REGISTER_OP("qnn." OpName) \
.set_num_inputs(2) \
.add_argument("lhs", "Tensor", "The left hand side quantized tensor.") \
.add_argument("rhs", "Tensor", "The right hand side quantized tensor.") \
.add_type_rel("Broadcast", BroadcastRel)
} // namespace qnn
} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_QNN_OP_OP_COMMON_H_
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import numpy as np
from tvm import relay
from tvm.contrib import graph_runtime
import topi.testing
def test_tflite_same_io_qnn_params():
data_dtype = 'uint8'
x = relay.var("x", shape=(1, 4), dtype=data_dtype)
y = relay.var("y", shape=(1, 4), dtype=data_dtype)
z = relay.qnn.op.add(lhs=x, rhs=y,
lhs_scale=0.00784314,
lhs_zero_point=127,
rhs_scale=0.00784314,
rhs_zero_point=127,
output_scale=0.00784314,
output_zero_point=127)
func = relay.Function([x, y], z)
mod = relay.Module.from_expr(func)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
func = mod["main"]
x_datas = [np.array((140, 153, 165, 178)).reshape((1,4)),
np.array((25, 153, 178, 216)).reshape((1,4)),
np.array((25, 153, 216, 165)).reshape((1,4))]
y_datas = [np.array((204, 178, 165, 140)).reshape((1,4)),
np.array((204, 178, 191, 25)).reshape((1,4)),
np.array((204, 178, 25, 191)).reshape((1,4))]
golden_outputs = [np.array((217,204,203,191)).reshape((1, 4)),
np.array((102, 204, 242, 114)).reshape((1,4)),
np.array((102, 204, 114, 229)).reshape((1,4))]
for i in range(0, 3):
x_data = x_datas[i]
y_data = y_datas[i]
golden_output = golden_outputs[i]
intrp = relay.create_executor("graph", ctx=tvm.cpu(0), target="llvm")
op_res = intrp.evaluate(func)(x_data, y_data)
np.testing.assert_equal(op_res.asnumpy(), golden_output)
def test_tflite_different_io_qnn_params():
data_dtype = 'uint8'
x = relay.var("x", shape=(1, 4), dtype=data_dtype)
y = relay.var("y", shape=(1, 4), dtype=data_dtype)
z = relay.qnn.op.add(lhs=x, rhs=y,
lhs_scale=0.0156863,
lhs_zero_point=127,
rhs_scale=0.0117647,
rhs_zero_point=85,
output_scale=0.0235294,
output_zero_point=128)
func = relay.Function([x, y], z)
mod = relay.Module.from_expr(func)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
func = mod["main"]
x_datas = [np.array((76, 140, 153, 172)).reshape((1,4)),
np.array((133, 140, 146, 153)).reshape((1,4)),
np.array((76, 140, 172, 146)).reshape((1,4))]
y_datas = [np.array((136, 119, 128, 17)).reshape((1,4)),
np.array((136, 119, 111, 94)).reshape((1,4)),
np.array((136, 119, 17, 128)).reshape((1,4))]
golden_outputs = [np.array((120, 154, 167, 124)).reshape((1, 4)),
np.array((158, 154, 154, 150)).reshape((1,4)),
np.array((120, 154, 124, 163)).reshape((1,4))]
for i in range(0, 3):
x_data = x_datas[i]
y_data = y_datas[i]
golden_output = golden_outputs[i]
intrp = relay.create_executor("graph", ctx=tvm.cpu(0), target="llvm")
op_res = intrp.evaluate(func)(x_data, y_data)
np.testing.assert_equal(op_res.asnumpy(), golden_output)
def test_saturation():
# Same params
data_dtype = 'uint8'
x = relay.var("x", shape=(1, 4), dtype=data_dtype)
y = relay.var("y", shape=(1, 4), dtype=data_dtype)
z = relay.qnn.op.add(lhs=x, rhs=y,
lhs_scale=0.125,
lhs_zero_point=0,
rhs_scale=0.125,
rhs_zero_point=0,
output_scale=0.125,
output_zero_point=0)
func = relay.Function([x, y], z)
mod = relay.Module.from_expr(func)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
func = mod["main"]
x_data = np.array((255, 1, 1, 0)).reshape((1,4))
y_data = np.array((255, 255, 128, 0)).reshape((1,4))
golden_output = np.array((255, 255, 129, 0)).reshape((1, 4))
intrp = relay.create_executor("graph", ctx=tvm.cpu(0), target="llvm")
op_res = intrp.evaluate(func)(x_data, y_data)
np.testing.assert_equal(op_res.asnumpy(), golden_output)
# Same params, different scale
z = relay.qnn.op.add(lhs=x, rhs=y,
lhs_scale=0.125,
lhs_zero_point=0,
rhs_scale=0.125,
rhs_zero_point=0,
output_scale=0.25,
output_zero_point=0)
func = relay.Function([x, y], z)
mod = relay.Module.from_expr(func)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
func = mod["main"]
x_data = np.array((255, 1, 1, 0)).reshape((1,4))
y_data = np.array((255, 255, 127, 0)).reshape((1,4))
golden_output = np.array((255, 129, 65, 0)).reshape((1, 4))
intrp = relay.create_executor("graph", ctx=tvm.cpu(0), target="llvm")
op_res = intrp.evaluate(func)(x_data, y_data)
np.testing.assert_equal(op_res.asnumpy(), golden_output)
# Same io params, different output scale
z = relay.qnn.op.add(lhs=x, rhs=y,
lhs_scale=0.125,
lhs_zero_point=0,
rhs_scale=0.125,
rhs_zero_point=0,
output_scale=0.25,
output_zero_point=0)
func = relay.Function([x, y], z)
mod = relay.Module.from_expr(func)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
func = mod["main"]
x_data = np.array((255, 1, 1, 0)).reshape((1,4))
y_data = np.array((255, 255, 127, 0)).reshape((1,4))
golden_output = np.array((255, 129, 65, 0)).reshape((1, 4))
intrp = relay.create_executor("graph", ctx=tvm.cpu(0), target="llvm")
op_res = intrp.evaluate(func)(x_data, y_data)
np.testing.assert_equal(op_res.asnumpy(), golden_output)
# All params different
z = relay.qnn.op.add(lhs=x, rhs=y,
lhs_scale=0.5,
lhs_zero_point=0,
rhs_scale=0.25,
rhs_zero_point=0,
output_scale=0.125,
output_zero_point=0)
func = relay.Function([x, y], z)
mod = relay.Module.from_expr(func)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
func = mod["main"]
x_data = np.array((255, 0, 1, 0)).reshape((1,4))
y_data = np.array((0, 128, 64, 0)).reshape((1,4))
golden_output = np.array((255, 255, 132, 0)).reshape((1, 4))
intrp = relay.create_executor("graph", ctx=tvm.cpu(0), target="llvm")
op_res = intrp.evaluate(func)(x_data, y_data)
np.testing.assert_equal(op_res.asnumpy(), golden_output)
if __name__ == '__main__':
test_tflite_same_io_qnn_params()
test_tflite_different_io_qnn_params()
test_saturation()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment