Unverified Commit a4902e05 by shoubhik Committed by GitHub

Remove developer facing api from frontend exports. (#5375)

parent 4672dc76
......@@ -24,10 +24,6 @@ for Relay.
from __future__ import absolute_import
from .mxnet import from_mxnet
from .mxnet_qnn_op_utils import dequantize_mxnet_min_max
from .mxnet_qnn_op_utils import quantize_mxnet_min_max
from .mxnet_qnn_op_utils import get_mkldnn_int8_scale
from .mxnet_qnn_op_utils import get_mkldnn_uint8_scale
from .mxnet_qnn_op_utils import quantize_conv_bias_mkldnn_from_var
from .keras import from_keras
from .onnx import from_onnx
......
......@@ -16,10 +16,14 @@
# under the License.
import tvm
from tvm import te
import numpy as np
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.frontend.mxnet_qnn_op_utils import dequantize_mxnet_min_max, \
quantize_mxnet_min_max, \
get_mkldnn_int8_scale, \
get_mkldnn_uint8_scale, \
quantize_conv_bias_mkldnn_from_var
def test_mkldnn_dequantize():
......@@ -29,11 +33,10 @@ def test_mkldnn_dequantize():
input_data = relay.var("input_data", shape=shape, dtype=in_dtype)
min_range = quant_args['min_range']
max_range = quant_args['max_range']
dequantized_output = \
relay.frontend.dequantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
in_dtype=in_dtype)
dequantized_output = dequantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
in_dtype=in_dtype)
mod = relay.Function(relay.analysis.free_vars(dequantized_output), dequantized_output)
mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3):
......@@ -79,17 +82,15 @@ def test_mkldnn_dequantize():
def test_mkldnn_quantize():
def quantize_test_driver(out_dtype, quant_args, in_data, verify_output_data):
shape = in_data.shape
input_data = relay.var("input_data", shape=shape, dtype='float32')
min_range = quant_args['min_range']
max_range = quant_args['max_range']
quantized_output, _, _ = \
relay.frontend.quantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
out_dtype=out_dtype)
quantized_output, _, _ = quantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
out_dtype=out_dtype)
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output)
mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3):
......@@ -140,8 +141,8 @@ def test_get_mkldnn_int8_scale():
range_min = -3.904039
range_max = 3.904039
expected = 0.03061991354976495
output = relay.frontend.get_mkldnn_int8_scale(range_max=range_max,
range_min=range_min)
output = get_mkldnn_int8_scale(range_max=range_max,
range_min=range_min)
assert np.allclose(output, expected)
......@@ -149,15 +150,15 @@ def test_get_mkldnn_uint8_scale():
range_min = 0.0
range_max = 55.77269
expected = 0.21828841189047482
output = relay.frontend.get_mkldnn_uint8_scale(range_max=range_max,
range_min=range_min)
output = get_mkldnn_uint8_scale(range_max=range_max,
range_min=range_min)
assert np.allclose(output, expected)
def test_quantize_conv_bias_mkldnn_from_var():
bias_var = relay.var('bias', shape=(3,), dtype='float32')
bias_scale = tvm.nd.array(np.array([0.5, 0.6, 0.7]))
output = relay.frontend.quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale)
output = quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale)
assert isinstance(output, tvm.relay.expr.Call)
attrs = output.attrs
assert attrs.axis == 0
......@@ -171,4 +172,4 @@ if __name__ == "__main__":
test_mkldnn_quantize()
test_get_mkldnn_int8_scale()
test_get_mkldnn_uint8_scale()
test_quantize_conv_bias_mkldnn_from_var()
\ No newline at end of file
test_quantize_conv_bias_mkldnn_from_var()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment