Unverified Commit a4902e05 by shoubhik Committed by GitHub

Remove developer facing api from frontend exports. (#5375)

parent 4672dc76
...@@ -24,10 +24,6 @@ for Relay. ...@@ -24,10 +24,6 @@ for Relay.
from __future__ import absolute_import from __future__ import absolute_import
from .mxnet import from_mxnet from .mxnet import from_mxnet
from .mxnet_qnn_op_utils import dequantize_mxnet_min_max
from .mxnet_qnn_op_utils import quantize_mxnet_min_max
from .mxnet_qnn_op_utils import get_mkldnn_int8_scale
from .mxnet_qnn_op_utils import get_mkldnn_uint8_scale
from .mxnet_qnn_op_utils import quantize_conv_bias_mkldnn_from_var from .mxnet_qnn_op_utils import quantize_conv_bias_mkldnn_from_var
from .keras import from_keras from .keras import from_keras
from .onnx import from_onnx from .onnx import from_onnx
......
...@@ -16,10 +16,14 @@ ...@@ -16,10 +16,14 @@
# under the License. # under the License.
import tvm import tvm
from tvm import te
import numpy as np import numpy as np
from tvm import relay from tvm import relay
from tvm.contrib import graph_runtime from tvm.contrib import graph_runtime
from tvm.relay.frontend.mxnet_qnn_op_utils import dequantize_mxnet_min_max, \
quantize_mxnet_min_max, \
get_mkldnn_int8_scale, \
get_mkldnn_uint8_scale, \
quantize_conv_bias_mkldnn_from_var
def test_mkldnn_dequantize(): def test_mkldnn_dequantize():
...@@ -29,11 +33,10 @@ def test_mkldnn_dequantize(): ...@@ -29,11 +33,10 @@ def test_mkldnn_dequantize():
input_data = relay.var("input_data", shape=shape, dtype=in_dtype) input_data = relay.var("input_data", shape=shape, dtype=in_dtype)
min_range = quant_args['min_range'] min_range = quant_args['min_range']
max_range = quant_args['max_range'] max_range = quant_args['max_range']
dequantized_output = \ dequantized_output = dequantize_mxnet_min_max(input_data,
relay.frontend.dequantize_mxnet_min_max(input_data, min_range=min_range,
min_range=min_range, max_range=max_range,
max_range=max_range, in_dtype=in_dtype)
in_dtype=in_dtype)
mod = relay.Function(relay.analysis.free_vars(dequantized_output), dequantized_output) mod = relay.Function(relay.analysis.free_vars(dequantized_output), dequantized_output)
mod = tvm.IRModule.from_expr(mod) mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3): with relay.build_config(opt_level=3):
...@@ -79,17 +82,15 @@ def test_mkldnn_dequantize(): ...@@ -79,17 +82,15 @@ def test_mkldnn_dequantize():
def test_mkldnn_quantize(): def test_mkldnn_quantize():
def quantize_test_driver(out_dtype, quant_args, in_data, verify_output_data): def quantize_test_driver(out_dtype, quant_args, in_data, verify_output_data):
shape = in_data.shape shape = in_data.shape
input_data = relay.var("input_data", shape=shape, dtype='float32') input_data = relay.var("input_data", shape=shape, dtype='float32')
min_range = quant_args['min_range'] min_range = quant_args['min_range']
max_range = quant_args['max_range'] max_range = quant_args['max_range']
quantized_output, _, _ = \ quantized_output, _, _ = quantize_mxnet_min_max(input_data,
relay.frontend.quantize_mxnet_min_max(input_data, min_range=min_range,
min_range=min_range, max_range=max_range,
max_range=max_range, out_dtype=out_dtype)
out_dtype=out_dtype)
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output) mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output)
mod = tvm.IRModule.from_expr(mod) mod = tvm.IRModule.from_expr(mod)
with relay.build_config(opt_level=3): with relay.build_config(opt_level=3):
...@@ -140,8 +141,8 @@ def test_get_mkldnn_int8_scale(): ...@@ -140,8 +141,8 @@ def test_get_mkldnn_int8_scale():
range_min = -3.904039 range_min = -3.904039
range_max = 3.904039 range_max = 3.904039
expected = 0.03061991354976495 expected = 0.03061991354976495
output = relay.frontend.get_mkldnn_int8_scale(range_max=range_max, output = get_mkldnn_int8_scale(range_max=range_max,
range_min=range_min) range_min=range_min)
assert np.allclose(output, expected) assert np.allclose(output, expected)
...@@ -149,15 +150,15 @@ def test_get_mkldnn_uint8_scale(): ...@@ -149,15 +150,15 @@ def test_get_mkldnn_uint8_scale():
range_min = 0.0 range_min = 0.0
range_max = 55.77269 range_max = 55.77269
expected = 0.21828841189047482 expected = 0.21828841189047482
output = relay.frontend.get_mkldnn_uint8_scale(range_max=range_max, output = get_mkldnn_uint8_scale(range_max=range_max,
range_min=range_min) range_min=range_min)
assert np.allclose(output, expected) assert np.allclose(output, expected)
def test_quantize_conv_bias_mkldnn_from_var(): def test_quantize_conv_bias_mkldnn_from_var():
bias_var = relay.var('bias', shape=(3,), dtype='float32') bias_var = relay.var('bias', shape=(3,), dtype='float32')
bias_scale = tvm.nd.array(np.array([0.5, 0.6, 0.7])) bias_scale = tvm.nd.array(np.array([0.5, 0.6, 0.7]))
output = relay.frontend.quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale) output = quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale)
assert isinstance(output, tvm.relay.expr.Call) assert isinstance(output, tvm.relay.expr.Call)
attrs = output.attrs attrs = output.attrs
assert attrs.axis == 0 assert attrs.axis == 0
...@@ -171,4 +172,4 @@ if __name__ == "__main__": ...@@ -171,4 +172,4 @@ if __name__ == "__main__":
test_mkldnn_quantize() test_mkldnn_quantize()
test_get_mkldnn_int8_scale() test_get_mkldnn_int8_scale()
test_get_mkldnn_uint8_scale() test_get_mkldnn_uint8_scale()
test_quantize_conv_bias_mkldnn_from_var() test_quantize_conv_bias_mkldnn_from_var()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment