Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
a21904a5
Commit
a21904a5
authored
Oct 22, 2019
by
Cody Hao Yu
Committed by
eqy
Oct 22, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
merge extract_from_program and extract_from_multiple_progam (#4173)
parent
c3f02c4b
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
26 additions
and
70 deletions
+26
-70
python/tvm/autotvm/task/relay_integration.py
+10
-65
tests/python/relay/test_autotvm_task_extraction.py
+16
-5
No files found.
python/tvm/autotvm/task/relay_integration.py
View file @
a21904a5
...
...
@@ -52,8 +52,7 @@ def _build(func,
def
extract_from_program
(
func
,
params
,
ops
,
target
,
target_host
=
None
):
""" Extract tuning tasks from a relay program.
This function collects tuning tasks by building the program
with a "tracing" target and tracing all the calls to topi.
This function is the single program version of extract_from_multiple_program.
Parameters
----------
...
...
@@ -73,66 +72,14 @@ def extract_from_program(func, params, ops, target, target_host=None):
task: Array of autotvm.task.Task
collected tasks
"""
import
tvm.relay.op
from
tvm
import
relay
import
topi
env
=
TaskExtractEnv
.
get
()
# NOTE: To add more ops, you only need to change the following lists
# relay op -> topi compute
OP2TOPI
=
{
tvm
.
relay
.
op
.
nn
.
conv2d
:
[
topi
.
nn
.
conv2d
,
topi
.
nn
.
depthwise_conv2d_nchw
,
topi
.
nn
.
group_conv2d_nchw
,
topi
.
nn
.
conv2d_NCHWc
],
tvm
.
relay
.
op
.
nn
.
conv2d_transpose
:
[
topi
.
nn
.
conv2d_transpose_nchw
],
tvm
.
relay
.
op
.
nn
.
dense
:
[
topi
.
nn
.
dense
],
tvm
.
relay
.
op
.
nn
.
deformable_conv2d
:
[
topi
.
nn
.
deformable_conv2d_nchw
],
}
topi_funcs
=
[]
for
op_name
in
ops
:
if
op_name
in
OP2TOPI
:
topi_funcs
.
extend
(
OP2TOPI
[
op_name
])
else
:
warnings
.
warn
(
"Op
%
s is not tunable, ignored"
%
op_name
)
# run compiler to collect all TOPI calls during compilation
env
.
reset
(
topi_funcs
)
with
env
:
# disable logger temporarily
old_state
=
logger
.
disabled
logger
.
disabled
=
True
relay
.
backend
.
compile_engine
.
get
()
.
clear
()
# wrap build call in thread to avoid multiprocessing problems
mod
=
relay
.
Module
.
from_expr
(
func
)
build_thread
=
threading
.
Thread
(
target
=
_build
,
args
=
(
mod
,
target
,
target_host
,
params
))
build_thread
.
start
()
build_thread
.
join
()
logger
.
disabled
=
old_state
# create tasks for target
tasks
=
[]
for
task_name
,
args
in
env
.
get_tasks
():
try
:
tsk
=
create
(
task_name
,
args
,
target
=
target
,
target_host
=
target_host
,
template_key
=
'direct'
)
tasks
.
append
(
tsk
)
except
topi
.
InvalidShapeError
:
warnings
.
warn
(
"Invalid shape during AutoTVM task creation"
)
return
tasks
return
extract_from_multiple_program
([
func
],
[
params
],
ops
,
target
,
target_host
)
def
extract_from_multiple_program
(
funcs
,
params
,
ops
,
target
,
target_host
=
None
):
""" Extract tuning tasks from multiple relay programs.
This function is the multiple program version of extract_from_program
This function collects tuning tasks by building a list of programs
with a "tracing" target and tracing all the calls to topi.
Parameters
----------
...
...
@@ -152,19 +99,20 @@ def extract_from_multiple_program(funcs, params, ops, target, target_host=None):
task: Array of autotvm.task.Task
collected tasks
"""
env
=
TaskExtractEnv
.
get
()
import
tvm.relay.op
from
tvm
import
relay
import
topi
env
=
TaskExtractEnv
.
get
()
# NOTE: To add more ops, you only need to change the following lists
# relay op -> topi compute
OP2TOPI
=
{
tvm
.
relay
.
op
.
nn
.
conv2d
:
[
topi
.
nn
.
conv2d
,
topi
.
nn
.
depthwise_conv2d_nchw
,
topi
.
nn
.
group_conv2d_nchw
],
topi
.
nn
.
group_conv2d_nchw
,
topi
.
nn
.
conv2d_NCHWc
],
tvm
.
relay
.
op
.
nn
.
conv2d_transpose
:
[
topi
.
nn
.
conv2d_transpose_nchw
],
tvm
.
relay
.
op
.
nn
.
dense
:
[
topi
.
nn
.
dense
],
tvm
.
relay
.
op
.
nn
.
contrib_
deformable_conv2d
:
[
topi
.
nn
.
deformable_conv2d_nchw
],
tvm
.
relay
.
op
.
nn
.
deformable_conv2d
:
[
topi
.
nn
.
deformable_conv2d_nchw
],
}
topi_funcs
=
[]
...
...
@@ -185,11 +133,8 @@ def extract_from_multiple_program(funcs, params, ops, target, target_host=None):
relay
.
backend
.
compile_engine
.
get
()
.
clear
()
# wrap build call in thread to avoid multiprocessing problems
mod
=
relay
.
Module
.
from_expr
(
func
)
build_thread
=
threading
.
Thread
(
target
=
my_build
,
args
=
(
mod
,
target
,
target_host
,
params
))
build_thread
=
threading
.
Thread
(
target
=
_build
,
args
=
(
mod
,
target
,
target_host
,
param
))
build_thread
.
start
()
build_thread
.
join
()
...
...
tests/python/relay/test_autotvm_task_extraction.py
View file @
a21904a5
...
...
@@ -37,36 +37,47 @@ def get_network(name, batch_size):
def
test_task_extraction
():
target
=
'llvm'
mod_list
=
[]
params_list
=
[]
mod
,
params
,
input_shape
=
get_network
(
'resnet-18'
,
batch_size
=
1
)
mod
,
params
,
_
=
get_network
(
'resnet-18'
,
batch_size
=
1
)
tasks
=
autotvm
.
task
.
extract_from_program
(
mod
[
"main"
],
target
=
target
,
params
=
params
,
ops
=
(
relay
.
op
.
nn
.
conv2d
,))
assert
len
(
tasks
)
==
12
mod
,
params
,
input_shape
=
get_network
(
'resnet-18'
,
batch_size
=
1
)
mod
,
params
,
_
=
get_network
(
'resnet-18'
,
batch_size
=
1
)
tasks
=
autotvm
.
task
.
extract_from_program
(
mod
[
"main"
],
target
=
target
,
params
=
params
,
ops
=
(
relay
.
op
.
nn
.
dense
,))
assert
len
(
tasks
)
==
1
mod
,
params
,
input_shape
=
get_network
(
'resnet-18'
,
batch_size
=
1
)
mod
,
params
,
_
=
get_network
(
'resnet-18'
,
batch_size
=
1
)
mod_list
.
append
(
mod
)
params_list
.
append
(
params
)
tasks
=
autotvm
.
task
.
extract_from_program
(
mod
[
"main"
],
target
=
target
,
params
=
params
,
ops
=
(
relay
.
op
.
nn
.
conv2d
,
relay
.
op
.
nn
.
dense
))
assert
len
(
tasks
)
==
13
mod
,
params
,
input_shape
=
get_network
(
'mobilenet'
,
batch_size
=
1
)
mod
,
params
,
_
=
get_network
(
'mobilenet'
,
batch_size
=
1
)
mod_list
.
append
(
mod
)
params_list
.
append
(
params
)
tasks
=
autotvm
.
task
.
extract_from_program
(
mod
[
"main"
],
target
=
target
,
params
=
params
,
ops
=
(
relay
.
op
.
nn
.
conv2d
,
relay
.
op
.
nn
.
dense
))
assert
len
(
tasks
)
==
20
mod
,
params
,
input_shape
=
get_network
(
'dcgan'
,
batch_size
=
1
)
mod
,
params
,
_
=
get_network
(
'dcgan'
,
batch_size
=
1
)
tasks
=
autotvm
.
task
.
extract_from_program
(
mod
[
"main"
],
target
=
target
,
params
=
params
,
ops
=
(
relay
.
op
.
nn
.
conv2d_transpose
,))
assert
len
(
tasks
)
==
4
tasks
=
autotvm
.
task
.
extract_from_multiple_program
([
m
[
'main'
]
for
m
in
mod_list
],
params_list
,
target
=
target
,
ops
=
(
relay
.
op
.
nn
.
conv2d
,))
assert
len
(
tasks
)
==
31
if
__name__
==
'__main__'
:
test_task_extraction
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment