Commit 9e1fcc86 by Yida Wang Committed by Yizhi Liu

[ANALYSIS] Mac count deconv (#3469)

* add mac count for conv 2d transpose

* add the explanation of missing parameter in docstring

* typo

* fix pylint
parent 4273e461
...@@ -137,6 +137,12 @@ def conv2d_transpose(data, ...@@ -137,6 +137,12 @@ def conv2d_transpose(data,
dilation : Tuple[int], optional dilation : Tuple[int], optional
Specifies the dilation rate to be used for dilated convolution. Specifies the dilation rate to be used for dilated convolution.
channels : int, optional
Number of output channels of this convolution.
kernel_size : tuple of int, optional
The spatial of the convolution kernel.
groups : int, optional groups : int, optional
Number of groups for grouped convolution. Number of groups for grouped convolution.
......
...@@ -88,11 +88,44 @@ int64_t ConvMacCount(const Call& call_node) { ...@@ -88,11 +88,44 @@ int64_t ConvMacCount(const Call& call_node) {
<< "The dimension of the output tensor in Conv 2D should be 4 or 5."; << "The dimension of the output tensor in Conv 2D should be 4 or 5.";
int64_t count = GetCartesianProd(output_tensor) * GetCartesianProd(kernel_size); int64_t count = GetCartesianProd(output_tensor) * GetCartesianProd(kernel_size);
CHECK_EQ(input_channel % conv_2d_attr->groups, 0) CHECK_EQ(input_channel % conv_2d_attr->groups, 0)
<< "The number of input channels is not divisble by groups."; << "The number of input channels is not divisble by groups.";
count *= input_channel/conv_2d_attr->groups; count *= input_channel/conv_2d_attr->groups;
return count; return count;
} }
int64_t Conv2dTransposeMacCount(const Call& call_node) {
if (!call_node->checked_type_.defined()) {
LOG(WARNING) << "The infer type pass should be called before the mac count pass";
return 0;
}
Array<Expr> args = call_node->args;
CHECK(args.size() == 2)
<< "The number of input arguments of a CONV 2D Transpose node should be 2.";
const auto* conv_2d_transpose_attr = call_node->attrs.as<Conv2DTransposeAttrs>();
const auto* data_type = args[0]->checked_type().as<TensorTypeNode>();
Array<IndexExpr> data_shape = data_type->shape;
std::string data_layout = conv_2d_transpose_attr->data_layout;
int32_t C_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('C'));
int32_t c_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('c'));
CHECK(C_ind != -1)
<< "There is no input channel dimension.";
int64_t input_channel = static_cast<int64_t>(data_shape[C_ind].as<IntImm>()->value);
if (c_ind != -1)
input_channel *= static_cast<int64_t>(data_shape[c_ind].as<IntImm>()->value);
Array<IndexExpr> kernel_size = conv_2d_transpose_attr->kernel_size;
CHECK(kernel_size.size() == 2)
<< "The dimension of the kernel in Conv 2D Transpose should be 2.";
const auto* expr = call_node->checked_type().as<TensorTypeNode>();
Array<IndexExpr> output_tensor = expr->shape;
CHECK(output_tensor.size() == 4 || output_tensor.size() == 5)
<< "The dimension of the output tensor in Conv 2D Transpose should be 4 or 5.";
int64_t count = GetCartesianProd(output_tensor) * GetCartesianProd(kernel_size);
CHECK_EQ(input_channel % conv_2d_transpose_attr->groups, 0)
<< "The number of input channels is not divisble by groups.";
count *= input_channel/conv_2d_transpose_attr->groups;
return count;
}
int64_t DenseMacCount(const Call& call_node) { int64_t DenseMacCount(const Call& call_node) {
if (!call_node->checked_type_.defined()) { if (!call_node->checked_type_.defined()) {
LOG(WARNING) << "The infer type pass should be called before the mac count pass"; LOG(WARNING) << "The infer type pass should be called before the mac count pass";
...@@ -106,13 +139,13 @@ int64_t DenseMacCount(const Call& call_node) { ...@@ -106,13 +139,13 @@ int64_t DenseMacCount(const Call& call_node) {
Array<IndexExpr> data_shape = data_type->shape; Array<IndexExpr> data_shape = data_type->shape;
Array<IndexExpr> weight_shape = weight_type->shape; Array<IndexExpr> weight_shape = weight_type->shape;
CHECK(data_shape.size() == 2 && weight_shape.size() == 2) CHECK(data_shape.size() == 2 && weight_shape.size() == 2)
<< "The dimension of an input tensor to Dense node should be 2."; << "The dimension of an input tensor to Dense node should be 2.";
int64_t d1 = static_cast<int64_t>(data_shape[0].as<IntImm>()->value); int64_t d1 = static_cast<int64_t>(data_shape[0].as<IntImm>()->value);
int64_t d2 = static_cast<int64_t>(data_shape[1].as<IntImm>()->value); int64_t d2 = static_cast<int64_t>(data_shape[1].as<IntImm>()->value);
int64_t d3 = static_cast<int64_t>(weight_shape[0].as<IntImm>()->value); int64_t d3 = static_cast<int64_t>(weight_shape[0].as<IntImm>()->value);
int64_t d4 = static_cast<int64_t>(weight_shape[1].as<IntImm>()->value); int64_t d4 = static_cast<int64_t>(weight_shape[1].as<IntImm>()->value);
CHECK(d2 == d4) CHECK(d2 == d4)
<< "The dimensions of input arguments do not match."; << "The dimensions of input arguments do not match.";
int64_t count = d1 * d2 * d3; int64_t count = d1 * d2 * d3;
return count; return count;
} }
...@@ -120,6 +153,9 @@ int64_t DenseMacCount(const Call& call_node) { ...@@ -120,6 +153,9 @@ int64_t DenseMacCount(const Call& call_node) {
RELAY_REGISTER_OP("nn.conv2d") RELAY_REGISTER_OP("nn.conv2d")
.set_attr<FMacCount>("FMacCount", ConvMacCount); .set_attr<FMacCount>("FMacCount", ConvMacCount);
RELAY_REGISTER_OP("nn.conv2d_transpose")
.set_attr<FMacCount>("FMacCount", Conv2dTransposeMacCount);
RELAY_REGISTER_OP("nn.dense") RELAY_REGISTER_OP("nn.dense")
.set_attr<FMacCount>("FMacCount", DenseMacCount); .set_attr<FMacCount>("FMacCount", DenseMacCount);
...@@ -129,7 +165,8 @@ class MacCounter : private ExprVisitor { ...@@ -129,7 +165,8 @@ class MacCounter : private ExprVisitor {
count_ = 0; count_ = 0;
} }
static int64_t GetTotalMacNumber(const Expr& expr) { static int64_t GetTotalMacNumber(const Expr& expr) {
LOG(INFO) << "This pass only counts MACs in direct CONV 2D and Dense ops"; LOG(INFO) << "This pass only counts MACs in direct CONV 2D, "
<< "CONV 2D Transpose and Dense ops";
MacCounter counter; MacCounter counter;
counter(expr); counter(expr);
return counter.count_; return counter.count_;
......
...@@ -55,7 +55,7 @@ def test_conv(): ...@@ -55,7 +55,7 @@ def test_conv():
weight, weight,
channels=output_channel, channels=output_channel,
kernel_size=(kh, kw), kernel_size=(kh, kw),
padding=(1, 1)) padding=(h_padding, w_padding))
func = relay.Function([data, weight], func = relay.Function([data, weight],
relay.Tuple(tvm.convert([conv2d]))) relay.Tuple(tvm.convert([conv2d])))
func = relay.ir_pass.infer_type(func) func = relay.ir_pass.infer_type(func)
...@@ -127,8 +127,37 @@ def test_depthwise_conv2d(): ...@@ -127,8 +127,37 @@ def test_depthwise_conv2d():
compute_count = relay.ir_pass.get_total_mac_number(func) compute_count = relay.ir_pass.get_total_mac_number(func)
assert compute_count == 2 * np.prod(dshape) * 3*3 assert compute_count == 2 * np.prod(dshape) * 3*3
def test_conv_2d_transpose():
batch_size = 1
input_channel = 3
h = 224
w = 224
output_channel = 64
kh = 7
kw = 7
h_padding = 1
w_padding = 1
oh = h - h_padding * 2 + kh - 1
ow = w - w_padding * 2 + kw - 1
dshape = (batch_size, input_channel, h, w)
weight = relay.var("weight", shape=(input_channel, output_channel, kh, kw))
data = relay.var("data", shape=dshape)
conv2d_transpose = relay.nn.conv2d_transpose(
data,
weight,
channels=output_channel,
kernel_size=(kh, kw),
padding=(h_padding, w_padding))
func = relay.Function([data, weight],
relay.Tuple(tvm.convert([conv2d_transpose])))
func = relay.ir_pass.infer_type(func)
compute_count = relay.ir_pass.get_total_mac_number(func)
expect_count = batch_size * input_channel * oh * ow * output_channel * kh * kw
assert compute_count == expect_count
if __name__ == "__main__": if __name__ == "__main__":
test_conv() test_conv()
test_gemm() test_gemm()
test_simple_network() test_simple_network()
test_depthwise_conv2d() test_depthwise_conv2d()
test_conv_2d_transpose()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment