Commit 9bbc98cd by shoubhik Committed by Tianqi Chen

- Adding support for Mxnet flavored dequantization for both default and using…

- Adding support for Mxnet flavored dequantization for both default and using MKLDNN. User can choose between the two at runtime. (#3945)

- Added tests for new methods added.
parent 9572d98e
...@@ -24,6 +24,7 @@ for Relay. ...@@ -24,6 +24,7 @@ for Relay.
from __future__ import absolute_import from __future__ import absolute_import
from .mxnet import from_mxnet from .mxnet import from_mxnet
from .mxnet_qnn_op_utils import dequantize_mxnet_min_max
from .keras import from_keras from .keras import from_keras
from .onnx import from_onnx from .onnx import from_onnx
from .tflite import from_tflite from .tflite import from_tflite
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, import-self, len-as-condition, no-else-return
"""MXNet qnn dialect helper methods for MXNet specific implementations of more
generic qnn supported ops.
"""
import numpy as np
from tvm.relay.qnn.op.qnn import dequantize
zero_centered_uint8_quantized_range = np.float32(255)
zero_centered_int8_quantized_range = np.float32(127)
def _dequantize_zero_centered(data,
data_min,
data_max,
quantized_range):
r"""Dequantizes the given data tensor by calculating the scale
using the MKLDNN formula `max(abs(data_min, data_max))/quantized_range`.
Where quantized_range is 255 for uint8 and 127 for int8. The `data_min`
and `data_max` are the min and max to use for the `data` tensor elements.
Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type {int8 or uint8}.
data_min : float
The minimum to use data elements.
data_max : float
The maximum to use for data elements.
quantized_range : float
255 for uint8 and 127 for int8. This is the data type range.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
real_range = np.max([np.abs(np.float32(data_min)),
np.abs(np.float32(data_max))])
scale = np.divide(real_range, quantized_range)
zero_point = 0
return dequantize(data, scale, zero_point)
def _dequantize_mkldnn_min_max_int8(data,
imin_range,
imax_range):
r"""Dequantizes the given `data` in {int8 or uint8} and the given
min and max ranges and the output data type is `float32`.
The method of dequantizing is described here - https://tinyurl.com/y5k6fz5w.
We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67
but compute the `scale` and `zero_point` to fit our equation.
Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN
stores the min and max from which we calculate the scale and zero_point.
Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
imin_range : float
The minimum to use data elements.
imax_range : float
The maximum to use for data elements.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
return _dequantize_zero_centered(data,
data_min=imin_range,
data_max=imax_range,
quantized_range=zero_centered_int8_quantized_range)
def _dequantize_mkldnn_min_max_uint8(data,
imin_range,
imax_range):
r"""Dequantizes the given `data` in {int8 or uint8} and the given
min and max ranges and the output data type is `float32`.
The method of dequantize is described here - https://tinyurl.com/y5k6fz5w.
We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67
but compute the `scale` and `zero_point` to fit our equation.
Unlike in TFLite where we get the scale and zero_point from the model, MKLDNN
stores the min and max from which we calculate the scale and zero_point.
Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
imin_range : float
The minimum to use data elements.
imax_range : float
The maximum to use for data elements.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
return _dequantize_zero_centered(data,
data_min=imin_range,
data_max=imax_range,
quantized_range=zero_centered_uint8_quantized_range)
def _dequantize_mxnet_min_max_int8(data,
imin_range,
imax_range):
r"""Deuantizes the given `data` in {int8 or uint8} and the given
min and max ranges and the output data type is `float32`.
The method of dequantization is described here - https://tinyurl.com/y4d7hrzf.
We use our default dequantize implementation from src/relay/qnn/op/dequantize.cc:67
but compute the `scale` and `zero_point` to fit our equation.
Unlike in TFLite where we get the scale and zero_point from the model, Mxnet
stores the min and max from which we calculate the scale and zero_point.
Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
imin_range : float
The minimum to use data elements.
imax_range : float
The maximum to use for data elements.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
return _dequantize_zero_centered(data,
data_min=imin_range,
data_max=imax_range,
quantized_range=zero_centered_int8_quantized_range)
def _dequantize_mxnet_min_max_uint8(data,
imin_range,
imax_range):
r"""Dequantizes the given `data` in {int8 or uint8} and the given
min and max ranges and the output data type is `float32`.
The method of dequantizing is described here - https://tinyurl.com/y4d7hrzf.
We use our default quantize implementation from src/relay/qnn/op/dequantize.cc:67
but compute the `scale` and `zero_point` to fit our equation.
Unlike in TFLite where we get the scale and zero_point from the model, Mxnet
stores the min and max from which we calculate the scale and zero_point.
Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
imin_range : float
The minimum to use data elements.
imax_range : float
The maximum to use for data elements.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
iinfo = np.iinfo(np.uint8)
min_limit = np.float64(iinfo.min)
max_limit = np.float64(iinfo.max)
imin_range = np.float64(imin_range)
imax_range = np.float64(imax_range)
scale = np.divide((imax_range - imin_range),
(max_limit - min_limit))
zero_point = np.int(-1 * np.divide(imin_range, scale))
return dequantize(data, scale, zero_point)
def dequantize_mxnet_min_max(data,
min_range,
max_range,
in_dtype='int8',
use_mkldnn=False):
r"""Dequantizes the given `data` in {int8 or uint8} and the given
min and max ranges. The output data type is float32.
Only `float32` is supported as output data types.
The input data type is expected to be {int8 or uint8}.
Mxnet has two different flavors for dequantization 1) Default 2)MKLDNN.
To get the second one Mxnet must be built with MKLDNN during compile time.
Users can choose either of the implementation for TVM runtime.
The main difference between the two implementation is that MKLDNN is centered
around 0 and the default implementation for uint8 is not.
Parameters
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
min_range : float
The minimum to use data elements for the output.
max_range : float
The maximum to use for data elements for the output.
in_dtype: str, optional
The input data type, can be 'int8' or 'uint8'
use_mkldnn: bool, optional
If True then uses MKLDNN quantization implementation otherwise
will use default implementation.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
if in_dtype == 'uint8':
if use_mkldnn:
return _dequantize_mkldnn_min_max_uint8(data,
min_range,
max_range)
else:
return _dequantize_mxnet_min_max_uint8(data,
min_range,
max_range)
elif in_dtype == 'int8':
if use_mkldnn:
return _dequantize_mkldnn_min_max_int8(data, min_range, max_range)
else:
return _dequantize_mxnet_min_max_int8(data, min_range, max_range)
else:
raise ValueError(
"Expected out_dtype to be int8 or uint8 but was %s" % in_dtype)
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import numpy as np
from tvm import relay
from tvm.contrib import graph_runtime
def test_mxnet_dequantize_op():
def quantize_test_driver(in_dtype, quant_args, in_data, verify_output_data):
shape = in_data.shape
input_data = relay.var("input_data", shape=shape, dtype=in_dtype)
min_range = quant_args['min_range']
max_range = quant_args['max_range']
quantized_output = \
relay.frontend.dequantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
in_dtype=in_dtype)
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output)
mod = relay.Module.from_expr(mod)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod, "llvm", params=None)
rt_mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
rt_mod.set_input(input_data=in_data)
rt_mod.set_input(**params)
rt_mod.run()
res = rt_mod.get_output(0).asnumpy()
assert np.allclose(res, verify_output_data, )
assert res.dtype == np.float32
def test_uint8_to_float32():
data = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]) \
.astype('uint8') \
.reshape((2, 5))
output = np.array([-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64]) \
.astype('float32') \
.reshape((2, 5))
quant_args = {"min_range": -63.5, "max_range": 64}
quantize_test_driver(in_dtype='uint8',
quant_args=quant_args,
in_data=data,
verify_output_data=output)
def test_int8_to_float32():
data = np.array([-126, -125, -124, -123, -122, 123, 124, 125, 126, 127]) \
.astype('int8') \
.reshape((2, 5))
output = np.array([-63.496063, -62.992126, -62.48819, -61.984253, -61.480316,
61.984253, 62.48819, 62.992126, 63.496063, 64.]) \
.astype('float32') \
.reshape((2, 5))
quant_args = {"min_range": -63.5, "max_range": 64}
quantize_test_driver(in_dtype='int8',
quant_args=quant_args,
in_data=data,
verify_output_data=output)
test_uint8_to_float32()
test_int8_to_float32()
def test_mkldnn_dequantize_op():
def quantize_test_driver(in_dtype, quant_args, in_data, verify_output_data):
shape = in_data.shape
input_data = relay.var("input_data", shape=shape, dtype=in_dtype)
min_range = quant_args['min_range']
max_range = quant_args['max_range']
quantized_output = \
relay.frontend.dequantize_mxnet_min_max(input_data,
min_range=min_range,
max_range=max_range,
in_dtype=in_dtype,
use_mkldnn=True)
mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output)
mod = relay.Module.from_expr(mod)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod, "llvm", params=None)
rt_mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
rt_mod.set_input(input_data=in_data)
rt_mod.set_input(**params)
rt_mod.run()
res = rt_mod.get_output(0).asnumpy()
# print(res)
# np.testing.assert_equal(res, verify_output_data)
assert np.allclose(res, verify_output_data, )
assert res.dtype == np.float32
def test_uint8_to_float32():
data = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]) \
.astype('uint8') \
.reshape((2, 5))
output = np.array([0., 0.2509804, 0.5019608, 0.75294125, 1.0039216,
62.996082, 63.247063, 63.498043, 63.749023, 64.]) \
.astype('float32') \
.reshape((2, 5))
quant_args = {"min_range": -63.5, "max_range": 64}
quantize_test_driver(in_dtype='uint8',
quant_args=quant_args,
in_data=data,
verify_output_data=output)
def test_int8_to_float32():
data = np.array([-126, -125, -124, -123, -122, 123, 124, 125, 126, 127]) \
.astype('int8') \
.reshape((2, 5))
output = np.array([-63.496063, -62.992126, -62.48819, -61.984253, -61.480316,
61.984253, 62.48819, 62.992126, 63.496063, 64.]) \
.astype('float32') \
.reshape((2, 5))
quant_args = {"min_range": -63.5, "max_range": 64}
quantize_test_driver(in_dtype='int8',
quant_args=quant_args,
in_data=data,
verify_output_data=output)
test_uint8_to_float32()
test_int8_to_float32()
if __name__ == "__main__":
test_mxnet_dequantize_op()
test_mkldnn_dequantize_op()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment