Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
97e333ca
Commit
97e333ca
authored
Jul 26, 2019
by
Balint Cristian
Committed by
Lianmin Zheng
Jul 26, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add Winograd matrices computation. (#3553)
parent
ef909df1
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
184 additions
and
187 deletions
+184
-187
topi/python/topi/arm_cpu/conv2d.py
+7
-54
topi/python/topi/cuda/conv2d_winograd.py
+7
-54
topi/python/topi/mali/conv2d.py
+6
-54
topi/python/topi/nn/conv2d.py
+6
-25
topi/python/topi/nn/winograd_util.py
+151
-0
topi/tests/python/test_topi_conv2d_winograd.py
+7
-0
No files found.
topi/python/topi/arm_cpu/conv2d.py
View file @
97e333ca
...
...
@@ -20,20 +20,19 @@ from __future__ import absolute_import as _abs
import
warnings
import
numpy
as
np
import
tvm
from
tvm
import
autotvm
import
tvm.contrib.nnpack
from
..generic
import
schedule_conv2d_nchw
,
schedule_conv2d_winograd_without_weight_transform
,
\
schedule_conv2d_winograd_nnpack_without_weight_transform
from
..util
import
traverse_inline
,
get_const_tuple
,
const_matrix
from
..util
import
traverse_inline
,
get_const_tuple
from
..nn
import
dilate
,
pad
,
conv2d
,
conv2d_alter_layout
,
\
conv2d_winograd_without_weight_transform
,
\
conv2d_winograd_nnpack_without_weight_transform
,
\
depthwise_conv2d_nchw
from
..nn.util
import
get_const_int
,
get_pad_tuple
from
..nn.winograd_util
import
winograd_transform_matrices
@autotvm.register_topi_compute
(
conv2d
,
'arm_cpu'
,
[
'direct'
])
def
conv2d_arm_cpu
(
cfg
,
data
,
kernel
,
strides
,
padding
,
dilation
,
layout
,
out_dtype
):
...
...
@@ -330,57 +329,14 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
HPAD
,
WPAD
,
_
,
_
=
get_pad_tuple
(
padding
,
kernel
)
assert
layout
==
'NCHW'
assert
KH
==
3
and
KW
==
3
and
H
PAD
==
1
and
WPAD
==
1
and
H
STR
==
1
and
WSTR
==
1
assert
KH
==
3
and
KW
==
3
and
HSTR
==
1
and
WSTR
==
1
data_pad
=
pad
(
data
,
(
0
,
0
,
HPAD
,
WPAD
),
name
=
"data_pad"
)
if
tile_size
==
4
:
G_data
=
np
.
array
([
[
1
/
4.0
,
0
,
0
],
[
-
1
/
6.0
,
-
1
/
6.0
,
-
1
/
6.0
],
[
-
1
/
6.0
,
1
/
6.0
,
-
1
/
6.0
],
[
1
/
24.0
,
1
/
12.0
,
1
/
6.0
],
[
1
/
24.0
,
-
1
/
12.0
,
1
/
6.0
],
[
0
,
0
,
1
]],
dtype
=
np
.
float32
)
B_data
=
np
.
array
([
[
4
,
0
,
0
,
0
,
0
,
0
],
[
0
,
-
4
,
4
,
-
2
,
2
,
4
],
[
-
5
,
-
4
,
-
4
,
-
1
,
-
1
,
0
],
[
0
,
1
,
-
1
,
2
,
-
2
,
-
5
],
[
1
,
1
,
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
]],
out_dtype
)
A_data
=
np
.
array
([
[
1
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
],
[
1
,
-
1
,
1
,
-
1
],
[
1
,
2
,
4
,
8
],
[
1
,
-
2
,
4
,
-
8
],
[
0
,
0
,
0
,
1
]],
out_dtype
)
elif
tile_size
==
2
:
G_data
=
np
.
array
([
[
1
,
0
,
0
],
[
1.0
/
2
,
1.0
/
2
,
1.0
/
2
],
[
1.0
/
2
,
-
1.0
/
2
,
1.0
/
2
],
[
0
,
0
,
1
]],
np
.
float32
)
B_data
=
np
.
array
([
[
1
,
0
,
0
,
0
],
[
0
,
1
,
-
1
,
1
],
[
-
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
-
1
]],
out_dtype
)
A_data
=
np
.
array
([
[
1
,
0
],
[
1
,
1
],
[
1
,
-
1
],
[
0
,
-
1
]],
out_dtype
)
else
:
raise
ValueError
(
"Unsupported tile size for winograd: "
+
str
(
tile_size
))
m
=
A_data
.
shape
[
1
]
r
=
3
r
=
KW
m
=
tile_size
alpha
=
m
+
r
-
1
A
,
B
,
G
=
winograd_transform_matrices
(
m
,
r
,
out_dtype
)
K
=
CO
C
=
CI
...
...
@@ -405,7 +361,6 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
if
pre_computed
:
U
=
kernel
else
:
G
=
const_matrix
(
G_data
,
'G'
)
r_kh
=
tvm
.
reduce_axis
((
0
,
KH
),
'r_kh'
)
r_kw
=
tvm
.
reduce_axis
((
0
,
KW
),
'r_kw'
)
U
=
tvm
.
compute
((
alpha
,
alpha
,
K
//
VK
,
C
,
VK
),
lambda
eps
,
nu
,
k
,
c
,
kk
:
...
...
@@ -413,7 +368,6 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
G
[
eps
][
r_kh
]
*
G
[
nu
][
r_kw
],
axis
=
[
r_kh
,
r_kw
]),
name
=
'U'
)
# transform image
B
=
const_matrix
(
B_data
,
'B'
)
r_eps
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_eps'
)
r_nu
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_nu'
)
V
=
tvm
.
compute
((
alpha
,
alpha
,
P
//
VP
,
C
,
VP
),
lambda
eps
,
nu
,
b
,
c
,
bb
:
...
...
@@ -427,7 +381,6 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
V
[
eps
][
nu
][
b
//
VP
][
c
][
b
%
VP
],
axis
=
c
),
name
=
'M'
)
# inverse transform
A
=
const_matrix
(
A_data
,
'A'
)
r_eps
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_eps'
)
r_nu
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_nu'
)
Y
=
tvm
.
compute
((
K
,
P
,
m
,
m
),
lambda
k
,
b
,
vh
,
vw
:
...
...
topi/python/topi/cuda/conv2d_winograd.py
View file @
97e333ca
...
...
@@ -17,15 +17,14 @@
# pylint: disable=invalid-name,unused-variable,unused-argument
"""Winograd template for cuda backend"""
import
numpy
as
np
import
tvm
from
tvm
import
autotvm
from
..
import
nn
from
..nn
import
conv2d
,
group_conv2d_nchw
,
conv2d_winograd_without_weight_transform
from
..util
import
get_const_int
,
get_const_tuple
,
const_matrix
,
traverse_inline
from
..util
import
get_const_int
,
get_const_tuple
,
traverse_inline
from
..generic
import
schedule_conv2d_winograd_without_weight_transform
from
..nn.winograd_util
import
winograd_transform_matrices
def
_infer_tile_size
(
data
,
kernel
):
...
...
@@ -54,7 +53,7 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
CO
,
CI
,
KH
,
KW
=
get_const_tuple
(
kernel
.
shape
)
HPAD
,
WPAD
,
_
,
_
=
nn
.
get_pad_tuple
(
padding
,
kernel
)
HSTR
,
WSTR
=
(
strides
,
strides
)
if
isinstance
(
strides
,
int
)
else
strides
assert
HSTR
==
1
and
WSTR
==
1
and
HPAD
==
1
and
WPAD
==
1
and
KH
==
3
and
KW
==
3
assert
HSTR
==
1
and
WSTR
==
1
and
KH
==
KW
else
:
# kernel tensor is pre-transfomred. this op is created by
# alter op layout, do not check
# dilation is not supported
...
...
@@ -65,54 +64,11 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
data_pad
=
nn
.
pad
(
data
,
(
0
,
0
,
HPAD
,
WPAD
),
(
0
,
0
,
HPAD
,
WPAD
),
name
=
"data_pad"
)
if
tile_size
==
4
:
G_data
=
np
.
array
([
[
1
/
4.0
,
0
,
0
],
[
-
1
/
6.0
,
-
1
/
6.0
,
-
1
/
6.0
],
[
-
1
/
6.0
,
1
/
6.0
,
-
1
/
6.0
],
[
1
/
24.0
,
1
/
12.0
,
1
/
6.0
],
[
1
/
24.0
,
-
1
/
12.0
,
1
/
6.0
],
[
0
,
0
,
1
]],
dtype
=
np
.
float32
)
B_data
=
np
.
array
([
[
4
,
0
,
0
,
0
,
0
,
0
],
[
0
,
-
4
,
4
,
-
2
,
2
,
4
],
[
-
5
,
-
4
,
-
4
,
-
1
,
-
1
,
0
],
[
0
,
1
,
-
1
,
2
,
-
2
,
-
5
],
[
1
,
1
,
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
]],
out_dtype
)
A_data
=
np
.
array
([
[
1
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
],
[
1
,
-
1
,
1
,
-
1
],
[
1
,
2
,
4
,
8
],
[
1
,
-
2
,
4
,
-
8
],
[
0
,
0
,
0
,
1
]],
out_dtype
)
elif
tile_size
==
2
:
G_data
=
np
.
array
([
[
1
,
0
,
0
],
[
1.0
/
2
,
1.0
/
2
,
1.0
/
2
],
[
1.0
/
2
,
-
1.0
/
2
,
1.0
/
2
],
[
0
,
0
,
1
]],
np
.
float32
)
B_data
=
np
.
array
([
[
1
,
0
,
0
,
0
],
[
0
,
1
,
-
1
,
1
],
[
-
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
-
1
]],
out_dtype
)
A_data
=
np
.
array
([
[
1
,
0
],
[
1
,
1
],
[
1
,
-
1
],
[
0
,
-
1
]],
out_dtype
)
else
:
raise
ValueError
(
"Unsupported tile size for winograd: "
+
str
(
tile_size
))
m
=
A_data
.
shape
[
1
]
r
=
3
r
=
KW
m
=
tile_size
alpha
=
m
+
r
-
1
A
,
B
,
G
=
winograd_transform_matrices
(
m
,
r
,
out_dtype
)
H
=
(
H
+
2
*
HPAD
-
KH
)
//
HSTR
+
1
W
=
(
W
+
2
*
WPAD
-
KW
)
//
WSTR
+
1
nH
,
nW
=
(
H
+
m
-
1
)
//
m
,
(
W
+
m
-
1
)
//
m
...
...
@@ -120,7 +76,6 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
# transform kernel
if
not
pre_computed
:
G
=
const_matrix
(
G_data
,
'G'
)
r_kh
=
tvm
.
reduce_axis
((
0
,
KH
),
name
=
'r_kh'
)
r_kw
=
tvm
.
reduce_axis
((
0
,
KW
),
name
=
'r_kw'
)
kernel_pack
=
tvm
.
compute
((
alpha
,
alpha
,
CI
,
CO
),
lambda
eps
,
nu
,
ci
,
co
:
...
...
@@ -136,7 +91,6 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
[
p
%
nW
*
m
+
nu
],
name
=
'd'
)
# transform data
B
=
const_matrix
(
B_data
)
r_a
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_a'
)
r_b
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_a'
)
data_pack
=
tvm
.
compute
((
alpha
,
alpha
,
CI
,
P
),
lambda
eps
,
nu
,
ci
,
p
:
...
...
@@ -151,7 +105,6 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
axis
=
[
ci
]),
name
=
'bgemm'
)
# inverse transform
A
=
const_matrix
(
A_data
)
r_a
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_a'
)
r_b
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_a'
)
inverse
=
tvm
.
compute
((
CO
,
P
,
m
,
m
),
lambda
co
,
p
,
vh
,
vw
:
...
...
topi/python/topi/mali/conv2d.py
View file @
97e333ca
...
...
@@ -16,16 +16,15 @@
# under the License.
# pylint: disable=invalid-name,unused-variable,unused-argument,no-else-return
"""conv2d schedule on ARM Mali GPU"""
import
numpy
as
np
import
tvm
from
tvm
import
autotvm
from
tvm.autotvm.task.space
import
get_factors
from
..generic
import
schedule_conv2d_nchw
,
schedule_conv2d_winograd_without_weight_transform
from
..util
import
traverse_inline
,
get_const_int
,
get_const_tuple
,
const_matrix
from
..util
import
traverse_inline
,
get_const_int
,
get_const_tuple
from
..nn
import
conv2d
,
conv2d_winograd_without_weight_transform
,
\
get_pad_tuple
,
pad
,
conv2d_alter_layout
from
..nn.winograd_util
import
winograd_transform_matrices
# reuse some compute declarations from ARM CPU
from
..arm_cpu.conv2d
import
_decl_spatial_pack
,
_alter_conv2d_layout_arm
...
...
@@ -226,57 +225,13 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
HPAD
,
WPAD
,
_
,
_
=
get_pad_tuple
(
padding
,
kernel
)
assert
layout
==
'NCHW'
assert
KH
==
3
and
KW
==
3
and
H
PAD
==
1
and
WPAD
==
1
and
H
STR
==
1
and
WSTR
==
1
assert
KH
==
3
and
KW
==
3
and
HSTR
==
1
and
WSTR
==
1
data_pad
=
pad
(
data
,
(
0
,
0
,
HPAD
,
WPAD
),
name
=
"data_pad"
)
if
tile_size
==
4
:
G_data
=
np
.
array
([
[
1
/
4.0
,
0
,
0
],
[
-
1
/
6.0
,
-
1
/
6.0
,
-
1
/
6.0
],
[
-
1
/
6.0
,
1
/
6.0
,
-
1
/
6.0
],
[
1
/
24.0
,
1
/
12.0
,
1
/
6.0
],
[
1
/
24.0
,
-
1
/
12.0
,
1
/
6.0
],
[
0
,
0
,
1
]],
out_dtype
)
B_data
=
np
.
array
([
[
4
,
0
,
0
,
0
,
0
,
0
],
[
0
,
-
4
,
4
,
-
2
,
2
,
4
],
[
-
5
,
-
4
,
-
4
,
-
1
,
-
1
,
0
],
[
0
,
1
,
-
1
,
2
,
-
2
,
-
5
],
[
1
,
1
,
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
]],
out_dtype
)
A_data
=
np
.
array
([
[
1
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
],
[
1
,
-
1
,
1
,
-
1
],
[
1
,
2
,
4
,
8
],
[
1
,
-
2
,
4
,
-
8
],
[
0
,
0
,
0
,
1
]],
out_dtype
)
elif
tile_size
==
2
:
G_data
=
np
.
array
([
[
1
,
0
,
0
],
[
1.0
/
2
,
1.0
/
2
,
1.0
/
2
],
[
1.0
/
2
,
-
1.0
/
2
,
1.0
/
2
],
[
0
,
0
,
1
]],
out_dtype
)
B_data
=
np
.
array
([
[
1
,
0
,
0
,
0
],
[
0
,
1
,
-
1
,
1
],
[
-
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
-
1
]],
out_dtype
)
A_data
=
np
.
array
([
[
1
,
0
],
[
1
,
1
],
[
1
,
-
1
],
[
0
,
-
1
]],
out_dtype
)
else
:
raise
ValueError
(
"Unsupported tile size for winograd: "
+
str
(
tile_size
))
m
=
A_data
.
shape
[
1
]
r
=
3
r
=
KW
m
=
tile_size
alpha
=
m
+
r
-
1
A
,
B
,
G
=
winograd_transform_matrices
(
m
,
r
,
out_dtype
)
H
=
(
IH
+
2
*
HPAD
-
3
)
//
HSTR
+
1
W
=
(
IW
+
2
*
WPAD
-
3
)
//
WSTR
+
1
...
...
@@ -321,7 +276,6 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
if
pre_computed
:
U
=
kernel
else
:
G
=
const_matrix
(
G_data
,
'G'
)
r_kh
=
tvm
.
reduce_axis
((
0
,
KH
),
'r_kh'
)
r_kw
=
tvm
.
reduce_axis
((
0
,
KW
),
'r_kw'
)
U
=
tvm
.
compute
((
alpha
,
alpha
,
CO
//
bna
,
CI
,
bna
),
lambda
eps
,
nu
,
co
,
ci
,
vco
:
...
...
@@ -329,7 +283,6 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
axis
=
[
r_kh
,
r_kw
]),
name
=
'U'
)
# transform image
B
=
const_matrix
(
B_data
,
'B'
)
r_a
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_a'
)
r_b
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_b'
)
V
=
tvm
.
compute
((
alpha
,
alpha
,
P_round
//
bnb
,
CI
,
bnb
),
lambda
eps
,
nu
,
p
,
ci
,
vp
:
...
...
@@ -342,7 +295,6 @@ def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dt
tvm
.
sum
(
U
[
eps
][
nu
][
co
//
bna
][
ci
][
co
%
bna
]
*
V
[
eps
][
nu
][
p
//
bnb
][
ci
][
p
%
bnb
],
axis
=
ci
),
name
=
'M'
)
A
=
const_matrix
(
A_data
,
'A'
)
r_a
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_a'
)
r_b
=
tvm
.
reduce_axis
((
0
,
alpha
),
'r_b'
)
Y
=
tvm
.
compute
((
CO
,
P
,
m
,
m
),
lambda
co
,
p
,
vh
,
vw
:
...
...
topi/python/topi/nn/conv2d.py
View file @
97e333ca
...
...
@@ -19,12 +19,12 @@
"""Conv2D operators"""
from
__future__
import
absolute_import
as
_abs
from
collections
import
namedtuple
import
numpy
as
np
import
tvm
from
.pad
import
pad
from
.util
import
get_pad_tuple
from
..util
import
simplify
,
const_matrix
,
get_const_tuple
from
..util
import
simplify
,
get_const_tuple
from
.winograd_util
import
winograd_transform_matrices
# workload description of conv2d
Workload
=
namedtuple
(
'Workload'
,
...
...
@@ -425,7 +425,7 @@ def conv2d_winograd_weight_transform(kernel, tile_size):
Parameters
----------
kernel: Tensor
The raw kernel tensor with layout "NCHW".
Only 3x3 kernel is supported for now
The raw kernel tensor with layout "NCHW".
tile_size: int
Tile size of winograd transform. e.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)
...
...
@@ -434,34 +434,15 @@ def conv2d_winograd_weight_transform(kernel, tile_size):
output : tvm.Tensor
4-D with shape [alpha, alpha, CO, CI]
"""
K
=
3
shape
=
get_const_tuple
(
kernel
.
shape
)
assert
shape
[
2
:]
==
(
K
,
K
),
"Only support 3x3
kernel"
assert
shape
[
2
]
==
shape
[
3
],
"Only support NxN
kernel"
K
=
shape
[
3
]
r
=
tile_size
+
K
-
1
shape
=
(
r
,
r
)
+
shape
[:
2
]
if
tile_size
==
2
:
G_data
=
np
.
array
([
[
1
,
0
,
0
],
[
1.0
/
2
,
1.0
/
2
,
1.0
/
2
],
[
1.0
/
2
,
-
1.0
/
2
,
1.0
/
2
],
[
0
,
0
,
1
],
],
dtype
=
kernel
.
dtype
)
elif
tile_size
==
4
:
G_data
=
np
.
array
([
[
1
/
4.0
,
0
,
0
],
[
-
1
/
6.0
,
-
1
/
6.0
,
-
1
/
6.0
],
[
-
1
/
6.0
,
1
/
6.0
,
-
1
/
6.0
],
[
1
/
24.0
,
1
/
12.0
,
1
/
6.0
],
[
1
/
24.0
,
-
1
/
12.0
,
1
/
6.0
],
[
0
,
0
,
1
]
],
dtype
=
kernel
.
dtype
)
else
:
raise
ValueError
(
"Unsupoorted tile size:"
+
tile_size
)
_
,
_
,
G
=
winograd_transform_matrices
(
tile_size
,
K
,
kernel
.
dtype
)
G
=
const_matrix
(
G_data
,
'G'
)
r_kh
=
tvm
.
reduce_axis
((
0
,
K
),
name
=
'r_kh'
)
r_kw
=
tvm
.
reduce_axis
((
0
,
K
),
name
=
'r_kw'
)
return
tvm
.
compute
(
shape
,
lambda
eps
,
nu
,
co
,
ci
:
...
...
topi/python/topi/nn/winograd_util.py
0 → 100644
View file @
97e333ca
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
""" Utility functions for implementing Winograd convolutions
[*] Fast Algorithms for Convolutional Neural Networks
Andrew Lavin, Scott Gray
https://arxiv.org/abs/1509.09308
https://github.com/andravin/wincnn
"""
from
operator
import
mul
from
functools
import
reduce
import
numpy
as
np
from
..util
import
const_matrix
# pylint: disable=invalid-name
def
_cook_toom_convolution
(
a
,
n
,
r
):
"""Compute Cook-Toom convolution A,B,G matrices"""
def
_F_m
(
a
,
n
):
f
=
lambda
j
,
i
:
reduce
(
mul
,
((
a
[
i
]
-
a
[
k
]
if
k
!=
i
else
1
)
for
k
in
range
(
0
,
n
-
1
)),
1
)
F
=
np
.
fromfunction
(
np
.
vectorize
(
f
),
(
1
,
n
-
1
),
dtype
=
int
)
F
=
np
.
diagflat
(
F
)
F
=
np
.
append
(
F
,
np
.
zeros
((
n
-
1
,
1
),
dtype
=
int
),
axis
=
1
)
f
=
lambda
i
,
j
:
(
1
if
j
==
(
n
-
1
)
else
0
)
z
=
np
.
fromfunction
(
np
.
vectorize
(
f
),
(
1
,
n
),
dtype
=
int
)
return
np
.
append
(
F
,
z
,
axis
=
0
)
def
_A_m
(
a
,
m
,
n
):
f
=
lambda
i
,
j
:
a
[
i
]
**
j
A
=
np
.
fromfunction
(
np
.
vectorize
(
f
),
(
m
-
1
,
n
),
dtype
=
int
)
f
=
lambda
i
,
j
:
(
1
if
j
==
(
n
-
1
)
else
0
)
z
=
np
.
fromfunction
(
np
.
vectorize
(
f
),
(
1
,
n
),
dtype
=
int
)
return
np
.
append
(
A
,
z
,
axis
=
0
)
def
_B_m
(
a
,
n
):
f
=
lambda
j
,
i
:
reduce
(
mul
,
((
a
[
i
]
-
a
[
k
]
if
k
!=
i
else
1
)
for
k
in
range
(
0
,
n
-
1
)),
1
)
Ff
=
np
.
fromfunction
(
np
.
vectorize
(
f
),
(
1
,
n
-
1
),
dtype
=
int
)
f
=
lambda
i
,
nth
:
(
reduce
(
mul
,
[(
np
.
poly1d
([
1
,
-
a
[
k
]])
if
k
!=
i
else
1
)
\
for
k
in
range
(
0
,
n
-
1
)],
1
))
.
coef
[
n
-
1
-
nth
-
1
]
/
Ff
[
0
,
i
]
F
=
np
.
fromfunction
(
np
.
vectorize
(
f
),
(
n
-
1
,
n
-
1
),
dtype
=
int
)
f
=
lambda
i
,
j
:
-
a
[
i
]
**
(
n
-
1
)
t
=
np
.
fromfunction
(
np
.
vectorize
(
f
),
(
n
-
1
,
1
),
dtype
=
int
)
T
=
np
.
append
(
np
.
eye
(
n
-
1
),
t
,
axis
=
1
)
return
np
.
append
(
F
.
T
.
dot
(
T
),
np
.
array
([
np
.
eye
(
n
)[
n
-
1
]]),
axis
=
0
)
alpha
=
n
+
r
-
1
f
=
_F_m
(
a
,
alpha
)
if
f
[
0
,
0
]
<
0
:
f
[
0
,
:]
*=
-
1
A
=
_A_m
(
a
,
alpha
,
n
)
G
=
_A_m
(
a
,
alpha
,
r
)
.
T
G
=
G
.
dot
(
np
.
linalg
.
inv
(
f
))
.
T
B
=
_B_m
(
a
,
alpha
)
B
=
B
.
dot
(
f
.
T
)
return
(
A
,
B
,
G
)
def
_interpolation_points
(
degree
):
"""Propose filter points"""
assert
2
<
degree
<
18
# Default interpolation lookup table
#
# [1] Error Analysis and Improving the Accuracy of Winograd Convolution for Deep Neural Networks
# Barbara Barabasz, Andrew Anderson, Kirk M. Soodhalter, David Gregg
# https://arxiv.org/abs/1803.10986
#
# pylint: disable=bad-whitespace,line-too-long
in_pts
=
[
# {invalid}
[],
#01 {E=4.63E-08 on conv2d [1]}
[],
#02 {E=7.65E-08 on F( 2,3) [1]}
[
0
,
-
1
,
1
],
#03 {E=2.35E-07 on F( 3,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
],
#04 {E=3.29E-07 on F( 4,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
2
],
#05 {E=6.81E-07 on F( 5,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
2
,
-
1
/
2
],
#06 {E=8.79E-07 on F( 6,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
],
#07 {E=3.71E-06 on F( 7,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
],
#08 {E=7.35E-06 on F( 8,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
],
#09 {E=2.20E-05 on F( 9,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
3
/
4
,
-
4
/
3
],
#10 {E=3.22E-05 on F(10,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
,
3
/
4
,
-
4
/
3
],
#11 {E=1.09E-04 on F(11,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
,
3
/
4
,
-
4
/
3
,
1
/
4
],
#12 {E=1.99E-04 on F(12,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
,
1
/
4
,
-
3
/
4
,
4
/
3
,
-
4
],
#13 {E=5.54E-04 on F(13,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
,
1
/
4
,
-
3
/
4
,
4
/
3
,
3
/
4
,
-
4
/
3
],
#14 {E=8.80E-04 on F(14,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
,
1
/
4
,
-
3
/
4
,
4
/
3
,
-
4
,
3
/
4
,
-
4
/
3
],
#15 {E=1.07E-02 on F(15,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
,
1
/
4
,
-
3
/
4
,
4
/
3
,
-
4
,
2
/
3
,
-
3
/
2
,
3
/
2
],
#16 {E=1.93E-02 on F(16,3) [1]}
[
0
,
-
1
,
1
,
1
/
2
,
-
1
/
2
,
2
,
-
2
,
-
1
/
4
,
4
,
1
/
4
,
-
3
/
4
,
4
/
3
,
-
4
,
2
/
3
,
-
3
/
2
,
-
2
/
3
,
3
/
2
]
]
# pylint: enable=bad-whitespace,line-too-long
return
np
.
array
(
in_pts
[
degree
-
1
],
dtype
=
np
.
float64
)
def
winograd_transform_matrices
(
tile_size
,
kernel_size
,
out_dtype
):
"""Compute the A, B, and G transform matrices for `tile_size` as a `tvm.Expr`.
"""
if
not
1
<
tile_size
<
9
:
raise
ValueError
(
"Unsupported tile size for Winograd: {}"
.
format
(
tile_size
))
if
not
2
<
kernel_size
<
8
:
raise
ValueError
(
"Unsupported kernel size for Winograd: {}"
.
format
(
kernel_size
))
degree
=
tile_size
+
kernel_size
-
2
intp_pts
=
_interpolation_points
(
degree
)
A_data
,
B_data
,
G_data
=
_cook_toom_convolution
(
intp_pts
,
tile_size
,
kernel_size
)
return
(
const_matrix
(
A_data
.
astype
(
out_dtype
),
"A"
),
const_matrix
(
B_data
.
astype
(
out_dtype
),
"B"
),
const_matrix
(
G_data
.
astype
(
out_dtype
),
"G"
),
)
topi/tests/python/test_topi_conv2d_winograd.py
View file @
97e333ca
...
...
@@ -103,11 +103,18 @@ def test_conv2d_nchw():
autotvm
.
DispatchContext
.
current
.
silent
=
True
with
WinogradFallback
():
# inception v3 workloads
verify_conv2d_nchw
(
1
,
128
,
17
,
192
,
7
,
1
,
3
,
devices
=
[
'cuda'
])
verify_conv2d_nchw
(
1
,
128
,
17
,
128
,
7
,
1
,
3
,
devices
=
[
'cuda'
])
verify_conv2d_nchw
(
1
,
160
,
17
,
160
,
7
,
1
,
3
,
devices
=
[
'cuda'
])
# resnet 18 workloads
verify_conv2d_nchw
(
1
,
64
,
56
,
64
,
3
,
1
,
1
)
verify_conv2d_nchw
(
1
,
128
,
28
,
128
,
3
,
1
,
1
)
verify_conv2d_nchw
(
1
,
256
,
14
,
256
,
3
,
1
,
1
)
verify_conv2d_nchw
(
1
,
512
,
7
,
512
,
3
,
1
,
1
)
verify_conv2d_nchw
(
1
,
48
,
35
,
64
,
5
,
1
,
2
,
devices
=
[
'cuda'
])
# batch size = 2
verify_conv2d_nchw
(
2
,
64
,
56
,
64
,
3
,
1
,
1
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment