Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
967d7318
Unverified
Commit
967d7318
authored
May 01, 2020
by
Samuel
Committed by
GitHub
May 01, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[MXNET]broadcast and logical op support (#5461)
* [MXNET]broadcast and logical op support * Review comment fixed
parent
3f33b254
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
97 additions
and
11 deletions
+97
-11
python/tvm/relay/frontend/mxnet.py
+36
-1
tests/python/frontend/mxnet/test_forward.py
+61
-10
No files found.
python/tvm/relay/frontend/mxnet.py
View file @
967d7318
...
...
@@ -1712,6 +1712,33 @@ def _qnn_fully_connected(inputs, attrs, subgraphs, params):
res
=
_op
.
nn
.
relu
(
res
)
return
res
def
_mx_broadcast_to
(
inputs
,
attrs
):
data
=
inputs
[
0
]
tgt_shape
=
attrs
.
get_int_tuple
(
"shape"
,
[])
return
_op
.
broadcast_to
(
data
,
tgt_shape
)
def
_mx_logical_not
(
inputs
,
input_types
):
data
=
inputs
[
0
]
dtype
=
_infer_type
(
data
)
.
checked_type
.
dtype
data
=
_op
.
cast
(
data
,
"bool"
)
if
dtype
!=
"bool"
else
data
return
_op
.
cast
(
_op
.
logical_not
(
data
),
dtype
)
def
_mx_broadcast_logical
(
logical_op
):
def
impl
(
inputs
,
input_types
):
lhs_type
=
_infer_type
(
inputs
[
0
])
.
checked_type
.
dtype
rhs_type
=
_infer_type
(
inputs
[
1
])
.
checked_type
.
dtype
lhs
=
_op
.
cast
(
inputs
[
0
],
"bool"
)
if
lhs_type
!=
"bool"
else
inputs
[
0
]
rhs
=
_op
.
cast
(
inputs
[
1
],
"bool"
)
if
rhs_type
!=
"bool"
else
inputs
[
1
]
return
_op
.
cast
(
logical_op
(
lhs
,
rhs
),
lhs_type
)
return
impl
# Note: due to attribute conversion constraint
# ops in the identity set must be attribute free
_identity_list
=
[
...
...
@@ -1738,12 +1765,15 @@ _convert_map = {
"_copy"
:
_rename
(
_op
.
copy
),
"relu"
:
_rename
(
_op
.
nn
.
relu
),
"broadcast_add"
:
_rename
(
_op
.
add
),
"broadcast_plus"
:
_rename
(
_op
.
add
),
"broadcast_sub"
:
_rename
(
_op
.
subtract
),
"broadcast_minus"
:
_rename
(
_op
.
subtract
),
"broadcast_mul"
:
_rename
(
_op
.
multiply
),
"broadcast_div"
:
_rename
(
_op
.
divide
),
"broadcast_mod"
:
_rename
(
_op
.
mod
),
"broadcast_maximum"
:
_rename
(
_op
.
maximum
),
"broadcast_minimum"
:
_rename
(
_op
.
minimum
),
"broadcast_power"
:
_rename
(
_op
.
power
),
"arctan"
:
_rename
(
_op
.
atan
),
"broadcast_equal"
:
_mx_compare
(
_op
.
equal
,
_rename
),
"broadcast_not_equal"
:
_mx_compare
(
_op
.
not_equal
,
_rename
),
...
...
@@ -1751,6 +1781,11 @@ _convert_map = {
"broadcast_greater_equal"
:
_mx_compare
(
_op
.
greater_equal
,
_rename
),
"broadcast_lesser"
:
_mx_compare
(
_op
.
less
,
_rename
),
"broadcast_lesser_equal"
:
_mx_compare
(
_op
.
less_equal
,
_rename
),
"broadcast_logical_or"
:
_mx_broadcast_logical
(
_op
.
logical_or
),
"broadcast_logical_and"
:
_mx_broadcast_logical
(
_op
.
logical_and
),
"broadcast_logical_xor"
:
_mx_broadcast_logical
(
_op
.
logical_xor
),
"broadcast_to"
:
_mx_broadcast_to
,
"logical_not"
:
_mx_logical_not
,
"_equal"
:
_mx_compare
(
_op
.
equal
,
_rename
),
"_not_equal"
:
_mx_compare
(
_op
.
not_equal
,
_rename
),
"_greater"
:
_mx_compare
(
_op
.
greater
,
_rename
),
...
...
@@ -1860,6 +1895,7 @@ _convert_map = {
"reverse"
:
_mx_reverse
,
"squeeze"
:
_mx_squeeze
,
"broadcast_axis"
:
_mx_broadcast_axis
,
"broadcast_axes"
:
_mx_broadcast_axis
,
"BlockGrad"
:
_mx_BlockGrad
,
"shape_array"
:
_mx_shape_array
,
"Embedding"
:
_mx_embedding
,
...
...
@@ -1897,7 +1933,6 @@ _convert_map = {
# List of missing operators that are present in NNVMv1
# TODO(tvm-tvm): support all operators.
#
# "broadcast_to",
# "contrib_fifo_buffer": _mx_contrib_fifo_buffer,
"ring_buffer"
:
_mx_contrib_fifo_buffer
,
# Qnn ops
...
...
tests/python/frontend/mxnet/test_forward.py
View file @
967d7318
...
...
@@ -301,11 +301,25 @@ def _mx_symbol(F, op_name, inputs):
return
op
(
*
inputs
)
def
test_forward_broadcast_ops
():
for
op
in
[
"broadcast_add"
,
"broadcast_sub"
,
"broadcast_mul"
,
"broadcast_div"
,
"broadcast_mod"
,
"broadcast_maximum"
,
"broadcast_minimum"
,
"broadcast_equal"
,
"broadcast_not_equal"
,
"broadcast_greater"
,
"broadcast_greater_equal"
,
"broadcast_lesser"
,
"broadcast_lesser_equal"
]:
for
op
in
[
"broadcast_add"
,
"broadcast_plus"
,
"broadcast_sub"
,
"broadcast_minus"
,
"broadcast_mul"
,
"broadcast_div"
,
"broadcast_mod"
,
"broadcast_maximum"
,
"broadcast_minimum"
,
"broadcast_equal"
,
"broadcast_not_equal"
,
"broadcast_greater"
,
"broadcast_greater_equal"
,
"broadcast_lesser"
,
"broadcast_lesser_equal"
,
"broadcast_power"
,
"broadcast_logical_or"
,
"broadcast_logical_and"
,
"broadcast_logical_xor"
]:
a_shape
=
(
3
,
4
,
5
)
b_shape
=
(
4
,
5
)
if
op
==
"broadcast_mod"
:
...
...
@@ -462,16 +476,51 @@ def test_forward_squeeze():
def
test_forward_broadcast_axis
():
def
verify
(
shape
,
axis
,
size
):
x_np
=
np
.
random
.
uniform
(
size
=
shape
)
.
astype
(
"float32"
)
ref_res
=
mx
.
nd
.
broadcast_axis
(
mx
.
nd
.
array
(
x_np
),
axis
=
axis
,
size
=
size
)
mx_sym
=
mx
.
sym
.
broadcast_axis
(
mx
.
sym
.
var
(
"x"
),
axis
=
axis
,
size
=
size
)
mod
,
_
=
relay
.
frontend
.
from_mxnet
(
mx_sym
,
{
"x"
:
shape
})
for
op
in
[
"broadcast_axis"
,
"broadcast_axes"
]:
mx_sym
=
_mx_symbol
(
mx
.
sym
,
op
,
[
mx
.
sym
.
var
(
'x'
),
axis
,
size
])
ref_res
=
_mx_symbol
(
mx
.
nd
,
op
,
[
mx
.
nd
.
array
(
x_np
),
axis
,
size
])
mod
,
_
=
relay
.
frontend
.
from_mxnet
(
mx_sym
,
{
"x"
:
shape
})
for
target
,
ctx
in
ctx_list
():
for
kind
in
[
"graph"
,
"debug"
]:
intrp
=
relay
.
create_executor
(
kind
,
mod
=
mod
,
ctx
=
ctx
,
target
=
target
)
op_res
=
intrp
.
evaluate
()(
x_np
)
tvm
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
.
asnumpy
())
verify
((
1
,
2
,
1
),
2
,
3
)
verify
((
1
,
2
,
1
),
(
0
,
2
),
(
2
,
3
))
def
test_forward_broadcast_to
():
def
verify
(
input_shape
,
shape
):
x_np
=
np
.
random
.
uniform
(
size
=
input_shape
)
.
astype
(
"float32"
)
ref_res
=
mx
.
nd
.
broadcast_to
(
mx
.
nd
.
array
(
x_np
),
shape
=
shape
)
mx_sym
=
mx
.
sym
.
broadcast_to
(
mx
.
sym
.
var
(
"x"
),
shape
=
shape
)
mod
,
_
=
relay
.
frontend
.
from_mxnet
(
mx_sym
,
{
"x"
:
input_shape
})
for
target
,
ctx
in
ctx_list
():
for
kind
in
[
"graph"
,
"debug"
]:
intrp
=
relay
.
create_executor
(
kind
,
mod
=
mod
,
ctx
=
ctx
,
target
=
target
)
op_res
=
intrp
.
evaluate
()(
x_np
)
tvm
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
.
asnumpy
())
verify
((
1
,
2
,
1
),
2
,
3
)
verify
((
1
,
2
,
1
),
(
0
,
2
),
(
2
,
3
))
verify
((
1
,
2
,
3
),
(
3
,
2
,
3
))
verify
((
4
,
1
,
32
,
32
),
(
4
,
8
,
32
,
32
))
def
test_forward_logical_not
():
a_shape
=
(
3
,
4
,
5
)
dtype
=
'float32'
a_np
=
np
.
random
.
uniform
(
size
=
a_shape
)
.
astype
(
dtype
)
mx_sym
=
mx
.
sym
.
logical_not
(
mx
.
sym
.
var
(
'a'
))
ref_res
=
mx
.
nd
.
logical_not
(
mx
.
nd
.
array
(
a_np
))
shapes
=
{
'a'
:
a_shape
}
mod
,
_
=
relay
.
frontend
.
from_mxnet
(
mx_sym
,
shapes
,
dtype
)
for
target
,
ctx
in
ctx_list
():
for
kind
in
[
"graph"
,
"debug"
]:
intrp
=
relay
.
create_executor
(
kind
,
mod
=
mod
,
ctx
=
ctx
,
target
=
target
)
op_res
=
intrp
.
evaluate
()(
a_np
)
tvm
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
.
asnumpy
())
def
test_forward_full
():
def
verify
(
val
,
shape
,
dtype
):
...
...
@@ -1061,6 +1110,8 @@ if __name__ == '__main__':
test_forward_where
()
test_forward_arange
()
test_forward_broadcast_ops
()
test_forward_broadcast_to
()
test_forward_logical_not
()
test_forward_elemwise_ops
()
test_forward_scalar_ops
()
test_forward_slice_like
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment