Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
8eef1565
Unverified
Commit
8eef1565
authored
Mar 29, 2019
by
Tianqi Chen
Committed by
GitHub
Mar 29, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Revert "[Relay] add test for second order ad (#2754)" (#2926)
This reverts commit
f5ca9915
.
parent
f5ca9915
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
27 additions
and
66 deletions
+27
-66
python/tvm/relay/op/_tensor_grad.py
+1
-18
tests/python/relay/test_pass_gradient.py
+26
-48
No files found.
python/tvm/relay/op/_tensor_grad.py
View file @
8eef1565
...
...
@@ -3,7 +3,7 @@
from
__future__
import
absolute_import
from
..expr
import
const
from
.op
import
register_gradient
from
.transform
import
collapse_sum_like
,
broadcast_to_like
,
where
from
.transform
import
collapse_sum_like
,
where
from
.tensor
import
exp
,
negative
,
power
,
less
from
.tensor
import
zeros_like
,
ones_like
...
...
@@ -77,20 +77,3 @@ def divide_grad(orig, grad):
x
,
y
=
orig
.
args
return
[
collapse_sum_like
(
grad
/
y
,
x
),
collapse_sum_like
(
-
(
grad
*
orig
/
y
),
y
)]
@register_gradient
(
"zeros_like"
)
def
zeros_like_grad
(
orig
,
grad
):
"""Returns [0]"""
return
[
orig
]
@register_gradient
(
"ones_like"
)
def
ones_like_grad
(
orig
,
grad
):
"""Returns [0]"""
return
[
zeros_like
(
orig
.
args
[
0
])]
@register_gradient
(
"collapse_sum_like"
)
def
collapse_sum_like_grad
(
orig
,
grad
):
"""Returns [broadcast_to_like(grad, x), 0]"""
x
,
y
=
orig
.
args
return
[
broadcast_to_like
(
grad
,
x
),
zeros_like
(
y
)]
tests/python/relay/test_pass_gradient.py
View file @
8eef1565
...
...
@@ -20,8 +20,8 @@ def test_id():
ex
=
create_executor
()
x
=
rand
(
dtype
,
*
shape
)
forward
,
(
grad
,)
=
ex
.
evaluate
(
back_func
)(
x
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
x
.
asnumpy
())
tvm
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
np
.
ones_like
(
x
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
x
.
asnumpy
())
np
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
np
.
ones_like
(
x
.
asnumpy
()))
def
test_add
():
...
...
@@ -35,8 +35,8 @@ def test_add():
ex
=
create_executor
()
x
=
rand
(
dtype
,
*
shape
)
forward
,
(
grad
,)
=
ex
.
evaluate
(
back_func
)(
x
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
2
*
x
.
asnumpy
())
tvm
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
2
*
np
.
ones_like
(
x
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
2
*
x
.
asnumpy
())
np
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
2
*
np
.
ones_like
(
x
.
asnumpy
()))
def
test_temp_add
():
...
...
@@ -51,8 +51,8 @@ def test_temp_add():
ex
=
create_executor
()
x
=
rand
(
dtype
,
*
shape
)
forward
,
(
grad
,)
=
ex
.
evaluate
(
back_func
)(
x
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
4
*
x
.
asnumpy
())
tvm
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
4
*
np
.
ones_like
(
x
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
4
*
x
.
asnumpy
())
np
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
4
*
np
.
ones_like
(
x
.
asnumpy
()))
def
test_sub
():
...
...
@@ -66,8 +66,8 @@ def test_sub():
ex
=
create_executor
()
x
=
rand
(
dtype
,
*
shape
)
forward
,
(
grad
,)
=
ex
.
evaluate
(
back_func
)(
x
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
np
.
zeros_like
(
x
.
asnumpy
()))
tvm
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
np
.
zeros_like
(
x
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
np
.
zeros_like
(
x
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
grad
.
asnumpy
(),
np
.
zeros_like
(
x
.
asnumpy
()))
def
test_broadcast_add
():
...
...
@@ -90,11 +90,11 @@ def test_broadcast_add():
relay
.
TupleType
([
t1
,
t2
])]))
ex
=
create_executor
()
forward
,
(
grad_x
,
grad_y
)
=
ex
.
evaluate
(
full_func
)(
x_nd
,
y_nd
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
expected_forward
)
tvm
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
2
,
keepdims
=
True
))
tvm
.
testing
.
assert_allclose
(
grad_y
.
asnumpy
(),
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
(
0
,
1
),
keepdims
=
True
)
.
squeeze
(
axis
=
0
))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
expected_forward
)
np
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
2
,
keepdims
=
True
))
np
.
testing
.
assert_allclose
(
grad_y
.
asnumpy
(),
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
(
0
,
1
),
keepdims
=
True
)
.
squeeze
(
axis
=
0
))
def
test_broadcast_subtract
():
...
...
@@ -117,11 +117,11 @@ def test_broadcast_subtract():
relay
.
TupleType
([
t1
,
t2
])]))
ex
=
create_executor
()
forward
,
(
grad_x
,
grad_y
)
=
ex
.
evaluate
(
full_func
)(
x_nd
,
y_nd
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
expected_forward
)
tvm
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
2
,
keepdims
=
True
))
tvm
.
testing
.
assert_allclose
(
grad_y
.
asnumpy
(),
-
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
(
0
,
1
),
keepdims
=
True
)
.
squeeze
(
axis
=
0
))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
expected_forward
)
np
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
2
,
keepdims
=
True
))
np
.
testing
.
assert_allclose
(
grad_y
.
asnumpy
(),
-
np
.
ones_like
(
expected_forward
)
.
sum
(
axis
=
(
0
,
1
),
keepdims
=
True
)
.
squeeze
(
axis
=
0
))
def
test_tuple
():
...
...
@@ -147,10 +147,10 @@ def test_tuple():
expected_forward
=
x_np
+
y_np
-
z_np
ex
=
create_executor
()
forward
,
(
grad_x
,
grad_y
,
grad_z
)
=
ex
.
evaluate
(
back_func
)(
x_nd
,
y_nd
,
z_nd
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
expected_forward
)
tvm
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
np
.
ones_like
(
grad_x
.
asnumpy
()))
tvm
.
testing
.
assert_allclose
(
grad_y
.
asnumpy
(),
np
.
ones_like
(
grad_y
.
asnumpy
()))
tvm
.
testing
.
assert_allclose
(
grad_z
.
asnumpy
(),
-
1
*
np
.
ones_like
(
grad_z
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
expected_forward
)
np
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
np
.
ones_like
(
grad_x
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
grad_y
.
asnumpy
(),
np
.
ones_like
(
grad_y
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
grad_z
.
asnumpy
(),
-
1
*
np
.
ones_like
(
grad_z
.
asnumpy
()))
def
test_pow
():
...
...
@@ -168,9 +168,8 @@ def test_pow():
i_nd
=
rand
(
dtype
,
*
shape
)
ex
=
create_executor
(
mod
=
mod
)
forward
,
(
grad_i
,)
=
ex
.
evaluate
(
back_func
)(
i_nd
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
8
*
i_nd
.
asnumpy
())
tvm
.
testing
.
assert_allclose
(
grad_i
.
asnumpy
(),
8
*
np
.
ones_like
(
grad_i
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
8
*
i_nd
.
asnumpy
())
np
.
testing
.
assert_allclose
(
grad_i
.
asnumpy
(),
8
*
np
.
ones_like
(
grad_i
.
asnumpy
()))
def
test_ref
():
shape
=
(
10
,
10
)
...
...
@@ -188,28 +187,8 @@ def test_ref():
x_nd
=
rand
(
dtype
,
*
shape
)
ex
=
create_executor
()
forward
,
(
grad_x
,)
=
ex
.
evaluate
(
back_func
)(
x_nd
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
2
*
x_nd
.
asnumpy
())
tvm
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
2
*
np
.
ones_like
(
grad_x
.
asnumpy
()))
def
test_square_second_order
():
shape
=
(
10
,
10
)
dtype
=
'float32'
t
=
relay
.
TensorType
(
shape
,
dtype
)
x
=
relay
.
var
(
"x"
,
t
)
func
=
relay
.
Function
([
x
],
x
*
x
)
back_func
=
relay
.
ir_pass
.
infer_type
(
gradient
(
func
))
y
=
relay
.
var
(
"y"
,
t
)
back_func_adjusted
=
relay
.
Function
([
y
],
relay
.
TupleGetItem
(
relay
.
TupleGetItem
(
back_func
(
y
),
1
),
0
))
back_func_adjusted
=
relay
.
ir_pass
.
infer_type
(
back_func_adjusted
)
back_back_func
=
relay
.
ir_pass
.
infer_type
(
gradient
(
back_func_adjusted
))
assert
back_func
.
checked_type
==
relay
.
FuncType
([
t
],
relay
.
TupleType
([
t
,
relay
.
TupleType
([
t
])]))
x_nd
=
rand
(
dtype
,
*
shape
)
ex
=
create_executor
()
forward
,
(
grad_x
,)
=
ex
.
evaluate
(
back_back_func
)(
x_nd
)
tvm
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
2
*
x_nd
.
asnumpy
())
tvm
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
2
*
np
.
ones_like
(
grad_x
.
asnumpy
()))
np
.
testing
.
assert_allclose
(
forward
.
asnumpy
(),
2
*
x_nd
.
asnumpy
())
np
.
testing
.
assert_allclose
(
grad_x
.
asnumpy
(),
2
*
np
.
ones_like
(
grad_x
.
asnumpy
()))
if
__name__
==
"__main__"
:
test_id
()
...
...
@@ -221,4 +200,3 @@ if __name__ == "__main__":
test_tuple
()
test_pow
()
test_ref
()
test_square_second_order
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment