Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
8eb4519a
Commit
8eb4519a
authored
Sep 21, 2018
by
MORITA Kazutaka
Committed by
Tianqi Chen
Sep 20, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TEST][KERAS] convert tvm output to channels_last format (#1733)
parent
27b6812b
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
23 deletions
+13
-23
nnvm/tests/python/frontend/keras/test_forward.py
+13
-23
No files found.
nnvm/tests/python/frontend/keras/test_forward.py
View file @
8eb4519a
...
...
@@ -21,15 +21,6 @@ def verify_keras_frontend(keras_model, need_transpose=True):
for
layer
in
keras_model
.
_input_layers
:
in_shapes
.
append
(
tuple
(
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
layer
.
input
.
shape
))
#keras_model._output_coordinates contains the output_node, node_index and tensor_index
#get the outshapes from combining output node and tensor index
out_shapes
=
[]
for
layer
,
node_index
,
tensor_index
in
keras_model
.
_output_coordinates
:
layer_out
=
layer
.
output
if
isinstance
(
layer
.
output
,
list
):
#if multiple outputs are there
layer_out
=
layer
.
output
[
tensor_index
]
out_shapes
.
append
(
tuple
(
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
layer_out
.
shape
))
def
get_keras_output
(
xs
,
dtype
=
'float32'
):
return
keras_model
.
predict
(
xs
)
...
...
@@ -44,20 +35,24 @@ def verify_keras_frontend(keras_model, need_transpose=True):
m
.
set_input
(
**
params
)
m
.
run
()
out
=
[
m
.
get_output
(
i
)
.
asnumpy
()
for
i
,
shape
in
enumerate
(
out_shapes
)]
return
out
if
len
(
out
)
>
1
else
out
[
0
]
return
[
m
.
get_output
(
i
)
.
asnumpy
()
for
i
in
range
(
m
.
get_num_outputs
())]
def
to_channels_first
(
arr
):
return
arr
.
transpose
([
0
,
-
1
]
+
list
(
range
(
1
,
arr
.
ndim
-
1
)))
def
to_channels_last
(
arr
):
return
arr
.
transpose
([
0
]
+
list
(
range
(
2
,
arr
.
ndim
))
+
[
1
])
xs
=
[
np
.
random
.
uniform
(
size
=
shape
,
low
=-
1.0
,
high
=
1.0
)
for
shape
in
in_shapes
]
keras_out
=
get_keras_output
(
xs
)
keras_out
=
keras_out
if
isinstance
(
keras_out
,
list
)
else
[
keras_out
]
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
([
x
.
transpose
([
0
,
3
,
1
,
2
])
for
x
in
xs
]
if
need_transpose
else
xs
,
target
,
ctx
)
if
isinstance
(
keras_out
,
list
):
for
kout
,
tout
in
zip
(
keras_out
,
tvm_out
):
np
.
testing
.
assert_allclose
(
kout
,
tout
.
reshape
(
kout
.
shape
),
rtol
=
1e-5
,
atol
=
1e-5
)
else
:
np
.
testing
.
assert_allclose
(
keras_out
,
tvm_out
.
reshape
(
keras_out
.
shape
),
rtol
=
1e-5
,
atol
=
1e-5
)
tvm_out
=
get_tvm_output
([
to_channels_first
(
x
)
for
x
in
xs
]
if
need_transpose
else
xs
,
target
,
ctx
)
for
kout
,
tout
in
zip
(
keras_out
,
tvm_out
):
if
need_transpose
:
tout
=
to_channels_last
(
tout
)
np
.
testing
.
assert_allclose
(
kout
,
tout
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_forward_elemwise_add
():
r
=
[]
...
...
@@ -111,7 +106,6 @@ def test_forward_conv():
keras
.
layers
.
SeparableConv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'same'
)]
for
conv_func
in
conv_funcs
:
x
=
conv_func
(
data
)
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
...
...
@@ -119,7 +113,6 @@ def test_forward_conv():
def
test_forward_upsample
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
UpSampling2D
(
size
=
(
3
,
3
))(
data
)
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
...
...
@@ -127,7 +120,6 @@ def test_forward_upsample():
def
test_forward_reshape
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Reshape
(
target_shape
=
(
32
,
32
,
3
))(
data
)
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
...
...
@@ -141,7 +133,6 @@ def test_forward_crop():
x
=
keras
.
layers
.
Cropping2D
(
cropping
=
(
1
,
0
))(
x
)
x
=
keras
.
layers
.
Cropping2D
(
cropping
=
0
)(
x
)
x
=
keras
.
layers
.
Add
()([
x
,
x
])
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
...
...
@@ -189,7 +180,6 @@ def test_forward_activations():
keras
.
layers
.
Activation
(
'linear'
)]
for
act_func
in
act_funcs
:
x
=
act_func
(
data
)
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment