Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
8acc413c
Commit
8acc413c
authored
Dec 23, 2019
by
Neo Chien
Committed by
Zhi
Dec 22, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Frontend][ONNX] Support auto_pad in Conv and ConvTranspose (#4563)
parent
f076c839
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
150 additions
and
11 deletions
+150
-11
python/tvm/relay/frontend/onnx.py
+65
-8
tests/python/frontend/onnx/test_forward.py
+85
-3
No files found.
python/tvm/relay/frontend/onnx.py
View file @
8acc413c
...
...
@@ -66,6 +66,17 @@ def revert_caffe2_pad(pads):
return
pads
def
get_pad_pair
(
input1d
,
kernel1d
,
stride1d
):
"""infer pad size"""
if
input1d
%
stride1d
==
0
:
pad
=
max
(
kernel1d
-
stride1d
,
0
)
else
:
pad
=
max
(
kernel1d
-
(
input1d
%
stride1d
),
0
)
pad_before
=
pad
//
2
pad_after
=
pad
-
pad_before
return
[
pad_before
,
pad_after
]
def
onnx_storage_order2layout
(
storage_order
):
"""converter of onnx storage order parameter to tvm storage order format"""
if
storage_order
not
in
(
0
,
1
):
...
...
@@ -202,14 +213,37 @@ class Conv(OnnxOpConverter):
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
out
=
AttrCvt
(
op_name
=
dimension_picker
(
'conv'
),
transforms
=
{
'kernel_shape'
:
'kernel_size'
,
'dilations'
:
(
'dilation'
,
(
0
,
0
)),
'pads'
:
(
'padding'
,
(
0
,
0
),
revert_caffe2_pad
),
'group'
:
(
'groups'
,
1
)},
ignores
=
[
'auto_pad'
],
custom_check
=
dimension_constraint
())(
inputs
[:
2
],
attr
,
params
)
# infer pads for auto_pad
if
'auto_pad'
in
attr
:
attr
[
'auto_pad'
]
=
attr
[
'auto_pad'
]
.
decode
(
'utf-8'
)
if
attr
[
'auto_pad'
]
in
(
'SAME_UPPER'
,
'SAME_LOWER'
):
input_shape
=
infer_shape
(
inputs
[
0
])
in_h
,
in_w
=
input_shape
[
2
],
input_shape
[
3
]
stride_h
,
stride_w
=
attr
[
'strides'
]
kernel_h
,
kernel_w
=
attr
[
'kernel_shape'
]
dilation_h
,
dilation_w
=
attr
[
'dilations'
]
dilated_kernel_h
=
(
kernel_h
-
1
)
*
dilation_h
+
1
dilated_kernel_w
=
(
kernel_w
-
1
)
*
dilation_w
+
1
pad_v
=
get_pad_pair
(
in_h
,
dilated_kernel_h
,
stride_h
)
pad_h
=
get_pad_pair
(
in_w
,
dilated_kernel_w
,
stride_w
)
attr
[
'pads'
]
=
(
pad_v
[
0
],
pad_h
[
0
],
pad_v
[
1
],
pad_h
[
1
])
elif
attr
[
'auto_pad'
]
==
'VALID'
:
attr
[
'pads'
]
=
(
0
,
0
)
elif
attr
[
'auto_pad'
]
==
'NOTSET'
:
pass
else
:
msg
=
'Value {} in attribute "auto_pad" of operator Conv is invalid.'
raise
tvm
.
error
.
OpAttributeInvalid
(
msg
.
format
(
attr
[
'auto_pad'
]))
attr
.
pop
(
'auto_pad'
)
out
=
AttrCvt
(
op_name
=
dimension_picker
(
'conv'
),
transforms
=
{
'kernel_shape'
:
'kernel_size'
,
'dilations'
:
(
'dilation'
,
(
0
,
0
)),
'pads'
:
(
'padding'
,
(
0
,
0
),
revert_caffe2_pad
),
'group'
:
(
'groups'
,
1
)},
custom_check
=
dimension_constraint
())(
inputs
[:
2
],
attr
,
params
)
use_bias
=
len
(
inputs
)
==
3
if
use_bias
:
out
=
_op
.
nn
.
bias_add
(
out
,
inputs
[
2
])
...
...
@@ -226,6 +260,29 @@ class ConvTranspose(OnnxOpConverter):
attr
[
'channels'
]
=
channels
groups
=
attr
.
pop
(
'group'
)
attr
[
'groups'
]
=
groups
# infer pads for auto_pad
if
'auto_pad'
in
attr
:
attr
[
'auto_pad'
]
=
attr
[
'auto_pad'
]
.
decode
(
'utf-8'
)
if
attr
[
'auto_pad'
]
in
(
'SAME_UPPER'
,
'SAME_LOWER'
):
input_shape
=
infer_shape
(
inputs
[
0
])
in_h
,
in_w
=
input_shape
[
2
],
input_shape
[
3
]
stride_h
,
stride_w
=
attr
[
'strides'
]
kernel_h
,
kernel_w
=
attr
[
'kernel_shape'
]
dilation_h
,
dilation_w
=
attr
[
'dilations'
]
dilated_kernel_h
=
(
kernel_h
-
1
)
*
dilation_h
+
1
dilated_kernel_w
=
(
kernel_w
-
1
)
*
dilation_w
+
1
pad_v
=
get_pad_pair
(
in_h
,
dilated_kernel_h
,
stride_h
)
pad_h
=
get_pad_pair
(
in_w
,
dilated_kernel_w
,
stride_w
)
attr
[
'pads'
]
=
(
pad_v
[
0
],
pad_h
[
0
],
pad_v
[
1
],
pad_h
[
1
])
elif
attr
[
'auto_pad'
]
==
'VALID'
:
attr
[
'pads'
]
=
(
0
,
0
)
elif
attr
[
'auto_pad'
]
==
'NOTSET'
:
pass
else
:
msg
=
'Value {} in attribute "auto_pad" of operator Conv is invalid.'
raise
tvm
.
error
.
OpAttributeInvalid
(
msg
.
format
(
attr
[
'auto_pad'
]))
attr
.
pop
(
'auto_pad'
)
out
=
AttrCvt
(
op_name
=
dimension_picker
(
'conv'
,
'_transpose'
),
transforms
=
{
...
...
tests/python/frontend/onnx/test_forward.py
View file @
8acc413c
...
...
@@ -77,11 +77,14 @@ def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output
return
tvm_output
.
asnumpy
()
def
get_onnxruntime_output
(
model
,
x
,
dtype
=
'float32'
):
def
get_onnxruntime_output
(
model
,
inputs
,
dtype
=
'float32'
):
import
onnxruntime.backend
rep
=
onnxruntime
.
backend
.
prepare
(
model
,
'CPU'
)
x
=
x
.
astype
(
dtype
)
ort_out
=
rep
.
run
(
x
)[
0
]
if
isinstance
(
inputs
,
list
)
and
len
(
inputs
)
>
1
:
ort_out
=
rep
.
run
(
inputs
)
else
:
x
=
inputs
.
astype
(
dtype
)
ort_out
=
rep
.
run
(
x
)[
0
]
return
ort_out
...
...
@@ -1746,6 +1749,83 @@ def test_or():
verify_or
(
indata
=
[
x
,
y
],
dtype
=
bool
)
def
verify_conv
(
x_shape
,
w_shape
,
y_shape
,
p
):
node
=
helper
.
make_node
(
'Conv'
,
inputs
=
[
'x'
,
'W'
],
outputs
=
[
'y'
],
kernel_shape
=
[
3
,
3
],
# Default values for other attributes:
# strides=[1, 1],
# dilations=[1, 1],
# groups=1
pads
=
p
,)
graph
=
helper
.
make_graph
([
node
],
'conv_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"x"
,
TensorProto
.
FLOAT
,
list
(
x_shape
)),
helper
.
make_tensor_value_info
(
"W"
,
TensorProto
.
FLOAT
,
list
(
w_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"y"
,
TensorProto
.
FLOAT
,
list
(
y_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'conv_test'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
x_shape
)
.
astype
(
'float32'
)
W
=
np
.
random
.
uniform
(
size
=
w_shape
)
.
astype
(
'float32'
)
tvm_out
=
get_tvm_output
(
model
,
[
x
,
W
],
target
,
ctx
,
y_shape
)
onnx_out
=
get_onnxruntime_output
(
model
,
[
x
,
W
],
'float32'
)[
0
]
tvm
.
testing
.
assert_allclose
(
onnx_out
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_conv
():
# Convolution with padding
# (1, 1, 5, 5) input tensor
# (1, 1, 3, 3) tensor for convolution weights
# (1, 1, 5, 5) output tensor
# [1, 1, 1, 1] list for pads
verify_conv
((
1
,
1
,
5
,
5
),
(
1
,
1
,
3
,
3
),
(
1
,
1
,
5
,
5
),
[
1
,
1
,
1
,
1
])
# Convolution without padding
# (1, 1, 5, 5) input tensor
# (1, 1, 3, 3) tensor for convolution weights
# (1, 1, 3, 3) output tensor
# [0, 0, 0, 0] list for pads
verify_conv
((
1
,
1
,
5
,
5
),
(
1
,
1
,
3
,
3
),
(
1
,
1
,
3
,
3
),
[
0
,
0
,
0
,
0
])
def
verify_convtranspose
(
x_shape
,
w_shape
,
y_shape
,
p
):
node
=
onnx
.
helper
.
make_node
(
"ConvTranspose"
,
inputs
=
[
"x"
,
"W"
],
outputs
=
[
'y'
],
strides
=
[
3
,
2
],
group
=
1
,
kernel_shape
=
[
3
,
3
],
pads
=
p
)
graph
=
helper
.
make_graph
([
node
],
'verify_convtranspose_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"x"
,
TensorProto
.
FLOAT
,
list
(
x_shape
)),
helper
.
make_tensor_value_info
(
"W"
,
TensorProto
.
FLOAT
,
list
(
w_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"y"
,
TensorProto
.
FLOAT
,
list
(
y_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'convtranspose_trest'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
x_shape
)
.
astype
(
'float32'
)
W
=
np
.
random
.
uniform
(
size
=
w_shape
)
.
astype
(
'float32'
)
tvm_out
=
get_tvm_output
(
model
,
[
x
,
W
],
target
,
ctx
,
y_shape
)
onnx_out
=
get_onnxruntime_output
(
model
,
[
x
,
W
],
'float32'
)[
0
]
tvm
.
testing
.
assert_allclose
(
onnx_out
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_convtranspose
():
# Convolution Transpose with padding
# (1, 1, 3, 3) input tensor
# (1, 2, 3, 3) tensor for convolution weights
# (1, 2, 7, 3) output tensor
# [1, 2, 1, 2] list for pads
verify_convtranspose
((
1
,
1
,
3
,
3
),
(
1
,
2
,
3
,
3
),
(
1
,
2
,
7
,
3
),
[
1
,
2
,
1
,
2
])
if
__name__
==
'__main__'
:
test_flatten
()
test_reshape
()
...
...
@@ -1800,3 +1880,5 @@ if __name__ == '__main__':
test_or
()
test_depth_to_space
()
test_space_to_depth
()
test_conv
()
test_convtranspose
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment