Commit 882ae126 by Thierry Moreau Committed by Tianqi Chen

producing simulation statistics instead of time to get useful information out of…

producing simulation statistics instead of time to get useful information out of simulation runs (#3481)
parent d1eb1229
...@@ -229,25 +229,39 @@ image = np.repeat(image, env.BATCH, axis=0) ...@@ -229,25 +229,39 @@ image = np.repeat(image, env.BATCH, axis=0)
m.set_input(**params) m.set_input(**params)
m.set_input('data', image) m.set_input('data', image)
# Perform inference: we run the module 4 times, # Perform inference and gather execution statistics
# and repeat 3 times to get error bounds # More on: https://docs.tvm.ai/api/python/module.html#tvm.module.Module.time_evaluator
timer = m.module.time_evaluator("run", ctx, number=4, repeat=3) num = 4 # number of times we run module for a single measurement
tcost = timer() rep = 3 # number of measurements (we derive std dev from this)
timer = m.module.time_evaluator("run", ctx, number=num, repeat=rep)
if env.TARGET == "sim":
simulator.clear_stats()
timer()
sim_stats = simulator.stats()
print("\nExecution statistics:")
for k, v in sim_stats.items():
# Since we execute the workload many times, we need to normalize stats
# Note that there is always one warm up run
# Therefore we divide the overall stats by (num * rep + 1)
print("\t{:<16}: {:>16}".format(k, v // (num * rep + 1)))
else:
tcost = timer()
std = np.std(tcost.results) * 1000 / env.BATCH
mean = tcost.mean * 1000 / env.BATCH
print("\nPerformed inference in %.2fms/sample (std = %.2f)" % (mean, std))
# Get classification results # Get classification results
tvm_output = m.get_output(0, tvm.nd.empty((env.BATCH, 1000), "float32", remote.cpu(0))) tvm_output = m.get_output(0, tvm.nd.empty((env.BATCH, 1000), "float32", remote.cpu(0)))
top_categories = np.argsort(tvm_output.asnumpy()[0]) top_categories = np.argsort(tvm_output.asnumpy()[0])
# Report top-5 classification results # Report top-5 classification results
std = np.std(tcost.results) * 1000 / env.BATCH print("\n%s prediction" % model)
mean = tcost.mean * 1000 / env.BATCH print("\t#1:", synset[top_categories[-1]])
print("%s prediction" % model) print("\t#2:", synset[top_categories[-2]])
print(" #1:", synset[top_categories[-1]]) print("\t#3:", synset[top_categories[-3]])
print(" #2:", synset[top_categories[-2]]) print("\t#4:", synset[top_categories[-4]])
print(" #3:", synset[top_categories[-3]]) print("\t#5:", synset[top_categories[-5]])
print(" #4:", synset[top_categories[-4]])
print(" #5:", synset[top_categories[-5]])
print("Performed inference in %.2fms/sample (std = %.2f)" % (mean, std))
# This just checks that one of the 5 top categories # This just checks that one of the 5 top categories
# is one variety of cat; this is by no means an accurate # is one variety of cat; this is by no means an accurate
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment