Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
84bd230c
Commit
84bd230c
authored
Jun 26, 2018
by
Jian Weng
Committed by
Tianqi Chen
Jun 26, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[FRONTEND] [HYBIRD] [TEST] Add GPU shared memory test! (#1338)
parent
50681784
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
85 additions
and
121 deletions
+85
-121
src/api/api_pass.cc
+9
-0
tests/python/unittest/test_hybrid_script.py
+76
-121
No files found.
src/api/api_pass.cc
View file @
84bd230c
...
...
@@ -47,6 +47,15 @@ TVM_REGISTER_API("ir_pass.CanonicalSimplify")
}
});
TVM_REGISTER_API
(
"ir_pass.Substitute"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
ret
)
{
if
(
args
[
0
].
IsNodeType
<
Stmt
>
())
{
*
ret
=
Substitute
(
args
[
0
].
operator
Stmt
(),
args
[
1
].
operator
Map
<
Var
,
Expr
>
());
}
else
{
*
ret
=
Substitute
(
args
[
0
].
operator
Expr
(),
args
[
1
].
operator
Map
<
Var
,
Expr
>
());
}
});
TVM_REGISTER_API
(
"ir_pass.Equal"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
ret
)
{
if
(
args
[
0
].
IsNodeType
<
Stmt
>
())
{
...
...
tests/python/unittest/test_hybrid_script.py
View file @
84bd230c
import
tvm
,
inspect
,
sys
,
traceback
,
numpy
import
tvm
,
inspect
,
sys
,
traceback
,
numpy
,
nose
from
tvm.hybrid
import
script
from
tvm.hybrid.intrin
import
HYBRID_GLOBALS
@nose.tools.nottest
def
run_and_check
(
func
,
args
,
outs
,
var_dict
=
{},
target
=
'llvm'
):
def
tvm_val_2_py_val
(
val
):
val
=
tvm
.
ir_pass
.
Substitute
(
val
,
var_dict
)
val
=
tvm
.
ir_pass
.
Simplify
(
val
)
assert
isinstance
(
val
,
(
tvm
.
expr
.
IntImm
,
tvm
.
expr
.
UIntImm
))
return
val
.
value
ctx
=
tvm
.
context
(
target
,
0
)
emu_args
=
[]
nd_args
=
[]
to_check
=
[]
for
i
in
args
:
if
isinstance
(
i
,
tvm
.
tensor
.
Tensor
):
shape
=
[
tvm_val_2_py_val
(
j
)
for
j
in
i
.
shape
]
if
i
in
outs
:
emu_args
.
append
(
numpy
.
zeros
(
shape
)
.
astype
(
i
.
dtype
))
nd_args
.
append
(
tvm
.
nd
.
array
(
emu_args
[
-
1
],
ctx
))
to_check
.
append
((
nd_args
[
-
1
],
emu_args
[
-
1
]))
else
:
emu_args
.
append
(
numpy
.
random
.
randn
(
*
shape
)
.
astype
(
i
.
dtype
))
nd_args
.
append
(
tvm
.
nd
.
array
(
emu_args
[
-
1
],
ctx
))
else
:
assert
isinstance
(
i
,
tvm
.
expr
.
Var
)
emu_args
.
append
(
tvm_val_2_py_val
(
i
))
nd_args
.
append
(
emu_args
[
-
1
])
func
(
*
emu_args
)
lowerd_func
=
tvm
.
lower
(
func
(
*
args
),
args
)
module
=
tvm
.
build
(
lowerd_func
,
target
=
target
)
assert
module
module
(
*
nd_args
)
for
nd
,
np
in
to_check
:
numpy
.
testing
.
assert_allclose
(
nd
.
asnumpy
(),
np
,
rtol
=
1e-5
,
atol
=
1e-5
)
@script
def
outer_product
(
n
,
m
,
a
,
b
,
c
):
...
...
@@ -45,18 +83,7 @@ def test_outer_product():
func
=
tvm
.
lower
(
ir
,
[
n
,
m
,
a
,
b
,
c
])
func
=
tvm
.
build
(
func
)
_n
=
999
_m
=
1001
_a
=
numpy
.
random
.
rand
(
_n
)
.
astype
(
'float32'
)
_b
=
numpy
.
random
.
rand
(
_m
)
.
astype
(
'float32'
)
c_python
=
numpy
.
zeros
((
_n
,
_m
),
dtype
=
'float32'
)
outer_product
(
_n
,
_m
,
_a
,
_b
,
c_python
)
tvm_a
=
tvm
.
ndarray
.
array
(
_a
)
tvm_b
=
tvm
.
ndarray
.
array
(
_b
)
tvm_c
=
tvm
.
ndarray
.
array
(
numpy
.
zeros
((
_n
,
_m
),
dtype
=
'float32'
))
func
(
_n
,
_m
,
tvm_a
,
tvm_b
,
tvm_c
)
numpy
.
testing
.
assert_allclose
(
tvm_c
.
asnumpy
(),
c_python
,
rtol
=
1e-5
)
run_and_check
(
outer_product
,
[
n
,
m
,
a
,
b
,
c
],
[
c
],
{
n
:
999
,
m
:
1001
})
for
key
,
_
in
HYBRID_GLOBALS
.
items
():
assert
key
not
in
globals
()
.
keys
()
...
...
@@ -135,19 +162,7 @@ def test_fanout():
assert
len
(
write
.
value
.
args
)
==
1
assert
write
.
value
.
args
[
0
]
.
value
==
0
func
=
tvm
.
build
(
tvm
.
lower
(
ir
,
[
n
,
a
,
b
]))
assert
func
np_a
=
numpy
.
random
.
randn
(
10
)
.
astype
(
'float32'
)
np_b
=
numpy
.
zeros
(
7
)
.
astype
(
'float32'
)
nd_a
=
tvm
.
ndarray
.
array
(
np_a
)
nd_b
=
tvm
.
ndarray
.
array
(
np_b
)
fanout
(
10
,
np_a
,
np_b
)
func
(
10
,
nd_a
,
nd_b
)
numpy
.
testing
.
assert_allclose
(
nd_b
.
asnumpy
(),
np_b
,
rtol
=
1e-5
,
atol
=
1e-5
)
run_and_check
(
fanout
,
[
n
,
a
,
b
],
[
b
],
{
n
:
10
})
@script
...
...
@@ -160,7 +175,7 @@ def test_failure():
tvm
.
hybrid
.
parse
(
failure
,
[])
except
IOError
as
err
:
assert
sys
.
version_info
[
0
]
==
2
print
(
'[Warning]
Python2 cannot do the failure case
because "
%
s"'
%
str
(
err
))
print
(
'[Warning]
Case test_failure is skipped by Python2
because "
%
s"'
%
str
(
err
))
except
Exception
as
err
:
assert
str
(
err
)
==
'You CAN NEVER overwrite a loop variable!'
...
...
@@ -186,22 +201,7 @@ def test_looptype():
assert
jloop
.
for_type
==
tvm
.
stmt
.
For
.
Vectorized
assert
kloop
.
for_type
==
tvm
.
stmt
.
For
.
Unrolled
func
=
tvm
.
build
(
tvm
.
lower
(
ir
,
[
a
,
b
,
c
]))
np_a
=
numpy
.
zeros
((
8
,
))
.
astype
(
'int32'
)
np_b
=
numpy
.
zeros
((
8
,
))
.
astype
(
'int32'
)
np_c
=
numpy
.
zeros
((
8
,
))
.
astype
(
'int32'
)
nd_a
=
tvm
.
ndarray
.
array
(
np_a
)
nd_b
=
tvm
.
ndarray
.
array
(
np_b
)
nd_c
=
tvm
.
ndarray
.
array
(
np_c
)
looptype
(
np_a
,
np_b
,
np_c
)
func
(
nd_a
,
nd_b
,
nd_c
)
numpy
.
testing
.
assert_allclose
(
np_a
,
nd_a
.
asnumpy
())
numpy
.
testing
.
assert_allclose
(
np_b
,
nd_b
.
asnumpy
())
numpy
.
testing
.
assert_allclose
(
np_c
,
nd_c
.
asnumpy
())
run_and_check
(
looptype
,
[
a
,
b
,
c
],
[
a
,
b
,
c
])
def
test_if
():
...
...
@@ -217,26 +217,13 @@ def test_if():
a
=
tvm
.
placeholder
((
10
,
),
dtype
=
'int32'
,
name
=
'a'
)
b
=
tvm
.
placeholder
((
10
,
),
dtype
=
'int32'
,
name
=
'b'
)
ir
=
if_then_else
(
a
,
b
)
func
=
tvm
.
lower
(
ir
,
[
a
,
b
])
func
=
tvm
.
build
(
func
)
assert
func
_a
=
numpy
.
zeros
((
10
,
),
dtype
=
'int32'
)
_b
=
numpy
.
zeros
((
10
,
),
dtype
=
'int32'
)
if_then_else
(
_a
,
_b
)
tvm_a
=
tvm
.
ndarray
.
array
(
numpy
.
zeros
((
10
,
),
dtype
=
'int32'
))
tvm_b
=
tvm
.
ndarray
.
array
(
numpy
.
zeros
((
10
,
),
dtype
=
'int32'
))
func
(
tvm_a
,
tvm_b
)
run_and_check
(
if_then_else
,
[
a
,
b
],
[
a
,
b
])
numpy
.
testing
.
assert_allclose
(
tvm_a
.
asnumpy
(),
_a
,
rtol
=
1e-5
)
numpy
.
testing
.
assert_allclose
(
tvm_b
.
asnumpy
(),
_b
,
rtol
=
1e-5
)
numpy
.
testing
.
assert_allclose
(
tvm_a
.
asnumpy
(),
tvm_b
.
asnumpy
(),
rtol
=
1e-5
)
def
test_bind
():
if
not
tvm
.
gpu
(
0
)
.
exist
:
print
(
'
No GPU found! Skip this
test!'
)
print
(
'
[Warning] No GPU found! Skip bind
test!'
)
return
@script
def
vec_add
(
a
,
b
,
c
):
...
...
@@ -246,24 +233,8 @@ def test_bind():
a
=
tvm
.
placeholder
((
1000
,
),
dtype
=
'float32'
,
name
=
'a'
)
b
=
tvm
.
placeholder
((
1000
,
),
dtype
=
'float32'
,
name
=
'b'
)
c
=
tvm
.
placeholder
((
1000
,
),
dtype
=
'float32'
,
name
=
'c'
)
ir
=
vec_add
(
a
,
b
,
c
)
func
=
tvm
.
lower
(
ir
,
[
a
,
b
,
c
])
func
=
tvm
.
build
(
func
,
target
=
'cuda'
)
_a
=
numpy
.
random
.
rand
(
1000
)
.
astype
(
'float32'
)
_b
=
numpy
.
random
.
rand
(
1000
)
.
astype
(
'float32'
)
_c
=
numpy
.
zeros
((
1000
,
),
dtype
=
'float32'
)
tvm_a
=
tvm
.
ndarray
.
array
(
_a
,
tvm
.
gpu
(
0
))
tvm_b
=
tvm
.
ndarray
.
array
(
_b
,
tvm
.
gpu
(
0
))
tvm_c
=
tvm
.
ndarray
.
array
(
_c
,
tvm
.
gpu
(
0
))
func
(
tvm_a
,
tvm_b
,
tvm_c
)
vec_add
(
_a
,
_b
,
_c
)
numpy
.
testing
.
assert_allclose
(
_c
,
tvm_c
.
asnumpy
(),
rtol
=
1e-5
)
run_and_check
(
vec_add
,
[
a
,
b
,
c
],
[
c
],
target
=
'cuda'
)
def
test_math_intrin
():
@script
...
...
@@ -277,9 +248,9 @@ def test_math_intrin():
a
[
6
]
=
min
(
a
[
4
],
a
[
5
])
a
[
7
]
=
max
(
a
[
5
],
a
[
6
])
a
6
=
tvm
.
placeholder
((
8
,
),
dtype
=
'float32'
,
name
=
'a'
)
ir
=
intrin_real
(
a
6
)
func
=
tvm
.
build
(
tvm
.
lower
(
ir
,
[
a
6
]))
a
8
=
tvm
.
placeholder
((
8
,
),
dtype
=
'float32'
,
name
=
'a'
)
ir
=
intrin_real
(
a
8
)
func
=
tvm
.
build
(
tvm
.
lower
(
ir
,
[
a
8
]))
assert
func
a
=
numpy
.
arange
(
2
,
10
)
.
astype
(
'float32'
)
tvm_a
=
tvm
.
ndarray
.
array
(
a
)
...
...
@@ -312,23 +283,12 @@ def test_non_zero():
s
=
s
+
a
[
i
-
di
,
j
-
dj
]
b
[
i
-
2
,
j
-
2
]
=
s
/
9.0
try
:
np_a
=
numpy
.
random
.
randn
(
32
,
32
)
.
astype
(
'float32'
)
np_b
=
numpy
.
zeros
((
30
,
30
),
dtype
=
'float32'
)
blur
(
np_a
,
np_b
)
ph_a
=
tvm
.
placeholder
((
32
,
32
),
'float32'
,
'a'
)
ph_b
=
tvm
.
placeholder
((
30
,
30
),
'float32'
,
'b'
)
ir
=
tvm
.
hybrid
.
parse
(
blur
,
[
ph_a
,
ph_b
])
func
=
tvm
.
lower
(
ir
,
[
ph_a
,
ph_b
])
func
=
tvm
.
build
(
func
)
nd_a
=
tvm
.
ndarray
.
array
(
np_a
)
nd_b
=
tvm
.
ndarray
.
array
(
np_b
)
func
(
nd_a
,
nd_b
)
numpy
.
testing
.
assert_allclose
(
np_b
,
nd_b
.
asnumpy
(),
atol
=
1e-5
,
rtol
=
1e-5
)
except
IOError
:
print
(
'[Warning] Non-zero first test skipped by Python2'
)
a
=
tvm
.
placeholder
((
32
,
32
),
'float32'
,
'a'
)
b
=
tvm
.
placeholder
((
30
,
30
),
'float32'
,
'b'
)
run_and_check
(
blur
,
[
a
,
b
],
[
b
])
except
IOError
as
err
:
assert
sys
.
version_info
[
0
]
==
2
print
(
'[Warning] Case test_non_zero is skipped by Python2 because "
%
s"'
%
str
(
err
))
@tvm.hybrid.script
def
triangle
(
a
,
b
,
c
):
...
...
@@ -340,20 +300,7 @@ def test_non_zero():
b
=
tvm
.
placeholder
((
10
,
),
dtype
=
'float32'
,
name
=
'b'
)
c
=
tvm
.
placeholder
((
10
,
10
),
dtype
=
'float32'
,
name
=
'c'
)
np_a
=
numpy
.
random
.
randn
(
10
)
.
astype
(
'float32'
)
np_b
=
numpy
.
random
.
randn
(
10
)
.
astype
(
'float32'
)
np_c
=
numpy
.
zeros
((
10
,
10
))
.
astype
(
'float32'
)
nd_a
=
tvm
.
ndarray
.
array
(
np_a
)
nd_b
=
tvm
.
ndarray
.
array
(
np_b
)
nd_c
=
tvm
.
ndarray
.
array
(
np_c
)
triangle
(
np_a
,
np_b
,
np_c
)
func
=
tvm
.
build
(
tvm
.
lower
(
triangle
(
a
,
b
,
c
),
[
a
,
b
,
c
]))
assert
func
func
(
nd_a
,
nd_b
,
nd_c
)
numpy
.
testing
.
assert_allclose
(
nd_c
.
asnumpy
(),
np_c
)
run_and_check
(
triangle
,
[
a
,
b
,
c
],
[
c
])
def
test_allocate
():
@tvm.hybrid.script
...
...
@@ -369,19 +316,27 @@ def test_allocate():
a
=
tvm
.
placeholder
((
32
,
32
),
'float32'
,
'a'
)
b
=
tvm
.
placeholder
((
30
,
30
),
'float32'
,
'b'
)
func
=
tvm
.
build
(
tvm
.
lower
(
blur2d
(
a
,
b
),
[
a
,
b
]))
assert
func
np_a
=
numpy
.
random
.
randn
(
32
,
32
)
.
astype
(
'float32'
)
np_b
=
numpy
.
zeros
((
30
,
30
))
.
astype
(
'float32'
)
nd_a
=
tvm
.
ndarray
.
array
(
np_a
)
nd_b
=
tvm
.
ndarray
.
array
(
np_b
)
func
(
nd_a
,
nd_b
)
blur2d
(
np_a
,
np_b
)
run_and_check
(
blur2d
,
[
a
,
b
],
[
b
])
if
tvm
.
gpu
()
.
exist
:
@tvm.hybrid.script
def
share_vec_add
(
a
,
b
,
c
):
shared
=
allocate
((
256
,
),
'float32'
,
'shared'
)
for
i
in
bind
(
"threadIdx.x"
,
256
):
shared
[
i
]
=
a
[
i
]
local
=
allocate
((
256
,
),
'float32'
,
'local'
)
for
i
in
bind
(
"threadIdx.x"
,
256
):
local
[
i
]
=
b
[
i
]
for
i
in
bind
(
"threadIdx.x"
,
256
):
c
[
i
]
=
shared
[
i
]
+
local
[
i
]
a
=
tvm
.
placeholder
((
256
,
),
dtype
=
'float32'
,
name
=
'a'
)
b
=
tvm
.
placeholder
((
256
,
),
dtype
=
'float32'
,
name
=
'b'
)
c
=
tvm
.
placeholder
((
256
,
),
dtype
=
'float32'
,
name
=
'c'
)
run_and_check
(
share_vec_add
,
[
a
,
b
,
c
],
[
c
],
target
=
'cuda'
)
else
:
print
(
'[Warning] No GPU found! Skip shared mem test!'
)
numpy
.
testing
.
assert_allclose
(
nd_b
.
asnumpy
(),
np_b
,
atol
=
1e-5
,
rtol
=
1e-5
)
if
__name__
==
"__main__"
:
test_outer_product
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment