Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
82e868a4
Commit
82e868a4
authored
Mar 29, 2019
by
masahi
Committed by
Tianqi Chen
Mar 29, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay] Add support for TupleGetItem in op fusion (#2914)
parent
a0537ecb
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
157 additions
and
4 deletions
+157
-4
src/relay/pass/fuse_ops.cc
+41
-3
tests/python/relay/test_backend_graph_runtime.py
+39
-0
tests/python/relay/test_pass_fuse_ops.py
+77
-1
No files found.
src/relay/pass/fuse_ops.cc
View file @
82e868a4
...
...
@@ -261,9 +261,30 @@ class IndexedForwardGraph::Creator : private ExprVisitor {
}
void
VisitExpr_
(
const
TupleGetItemNode
*
op
)
final
{
CHECK
(
graph_
.
node_map
.
count
(
op
));
Node
*
node
=
graph_
.
node_map
.
at
(
op
);
this
->
Update
(
op
->
tuple
,
node
,
kOpaque
);
auto
tuple_type
=
op
->
tuple
->
checked_type
().
as
<
TupleTypeNode
>
();
CHECK
(
tuple_type
);
// If this tuple contain a reference type, and we fuse TupleGetItem and
// the reference, a fused function will have a tuple containing a reference
// in its parameters. But when TVM lowers a fused function, it expects all
// arguments to be a Tensor or a tuple containing only Tensors.
// To avoid modifying codegen logic, we do not allow fusing through a reference.
// The reference itself will be recursively visited via call to ExprVisitor::VisitExpr_(op)
// below and corresponding visitor methods
bool
has_reference
=
false
;
for
(
auto
ty
:
tuple_type
->
fields
)
{
if
(
ty
.
as
<
RefTypeNode
>
())
{
has_reference
=
true
;
break
;
}
}
if
(
has_reference
)
{
this
->
Update
(
op
->
tuple
,
nullptr
,
kOpaque
);
}
else
{
CHECK
(
graph_
.
node_map
.
count
(
op
));
Node
*
node
=
graph_
.
node_map
.
at
(
op
);
node
->
pattern
=
kInjective
;
this
->
Update
(
op
->
tuple
,
node
,
kInjective
);
}
ExprVisitor
::
VisitExpr_
(
op
);
this
->
AddNode
(
op
);
}
...
...
@@ -809,6 +830,23 @@ class FuseMutator : private ExprMutator {
return
TupleNode
::
make
(
new_fields
);
}
Expr
VisitExpr_
(
const
TupleGetItemNode
*
tuple_get
)
{
auto
*
ret_group
=
gmap_
.
at
(
tuple_get
)
->
FindRoot
();
auto
new_tuple
=
GetNewArguments
({
tuple_get
->
tuple
},
ret_group
)[
0
];
auto
new_node
=
TupleGetItemNode
::
make
(
new_tuple
,
tuple_get
->
index
);
if
(
ret_group
==
gmap_
.
at
(
tuple_get
))
{
if
(
gmap_
.
at
(
tuple_get
->
tuple
.
get
())
->
FindRoot
()
!=
ret_group
)
{
// Isolated. This case occurs when tuple is created by an Opaque op
// e.g. multibox_transform_loc
return
ExprMutator
::
VisitExpr_
(
tuple_get
);
}
// A new function whose output is a tuple field access
return
MakeNewFunction
(
ret_group
,
tuple_get
->
checked_type
(),
new_node
);
}
// This is an intermediate node in the group
return
new_node
;
}
Expr
MakeNewFunction
(
GraphPartitioner
::
Group
*
group
,
Type
ret_type
,
Expr
body
)
{
const
GroupInfo
&
ginfo
=
ginfo_
[
group
];
auto
func
=
FunctionNode
::
make
(
ginfo
.
params
,
body
,
ret_type
,
{});
...
...
tests/python/relay/test_backend_graph_runtime.py
View file @
82e868a4
...
...
@@ -7,6 +7,7 @@ from tvm.relay.ir_pass import infer_type
from
tvm.relay.scope_builder
import
ScopeBuilder
from
tvm.relay.op
import
add
from
tvm.relay.module
import
Module
from
tvm.relay.testing.config
import
ctx_list
# @tq, @jr should we put this in testing ns?
def
check_rts
(
expr
,
args
,
expected_result
,
mod
=
None
):
...
...
@@ -127,9 +128,47 @@ def test_plan_memory():
assert
len
(
device_types
)
==
1
def
test_gru_like
():
def
unit
(
rnn_dim
):
X
=
relay
.
var
(
"X"
,
shape
=
(
1
,
rnn_dim
))
W
=
relay
.
var
(
"y"
,
shape
=
(
3
*
rnn_dim
,
rnn_dim
))
matmul
=
relay
.
nn
.
dense
(
X
,
W
)
splitted
=
relay
.
split
(
matmul
,
indices_or_sections
=
3
,
axis
=
1
)
out
=
relay
.
sigmoid
(
splitted
[
0
])
+
relay
.
tanh
(
splitted
[
1
])
*
relay
.
exp
(
splitted
[
2
])
return
relay
.
Function
([
X
,
W
],
out
)
def
sigmoid
(
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
unit_numpy
(
X
,
W
):
prod
=
np
.
dot
(
X
,
W
.
transpose
())
splits
=
np
.
split
(
prod
,
indices_or_sections
=
3
,
axis
=
1
)
return
sigmoid
(
splits
[
0
])
+
np
.
tanh
(
splits
[
1
])
*
np
.
exp
(
splits
[
2
])
dtype
=
"float32"
rnn_dim
=
1000
x
=
np
.
random
.
rand
(
1
,
rnn_dim
)
.
astype
(
dtype
)
y
=
np
.
random
.
rand
(
3
*
rnn_dim
,
rnn_dim
)
.
astype
(
dtype
)
*
0.01
-
0.005
out_shape
=
(
1
,
rnn_dim
)
z
=
unit
(
rnn_dim
)
for
target
,
ctx
in
ctx_list
():
with
relay
.
build_config
(
opt_level
=
2
):
graph
,
lib
,
params
=
relay
.
build
(
z
,
target
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
m
.
set_input
(
"X"
,
tvm
.
nd
.
array
(
x
.
astype
(
dtype
)))
m
.
set_input
(
"y"
,
tvm
.
nd
.
array
(
y
.
astype
(
dtype
)))
m
.
set_input
(
**
params
)
m
.
run
()
out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
dtype
))
.
asnumpy
()
ref
=
unit_numpy
(
x
,
y
)
tvm
.
testing
.
assert_allclose
(
out
,
ref
,
rtol
=
1e-5
,
atol
=
1e-5
)
if
__name__
==
"__main__"
:
test_plan_memory
()
test_with_params
()
test_add_op_scalar
()
test_add_op_tensor
()
test_add_op_broadcast
()
test_gru_like
()
tests/python/relay/test_pass_fuse_ops.py
View file @
82e868a4
...
...
@@ -217,7 +217,6 @@ def test_tuple_strided_slice():
assert
not
relay
.
ir_pass
.
free_vars
(
zz
)
after
=
relay
.
ir_pass
.
infer_type
(
expected
(
dshape
))
assert
relay
.
ir_pass
.
alpha_equal
(
zz
,
after
)
print
(
zz
.
astext
())
def
test_stop_fusion
():
...
...
@@ -287,6 +286,81 @@ def test_fuse_myia_regression():
assert
relay
.
ir_pass
.
alpha_equal
(
f
,
after
)
def
test_fuse_tuple_get_elemwise
():
def
before
(
dim
):
X
=
relay
.
var
(
"X"
,
shape
=
(
1
,
dim
))
W
=
relay
.
var
(
"W"
,
shape
=
(
3
*
dim
,
dim
))
matmul
=
relay
.
nn
.
dense
(
X
,
W
)
splitted
=
relay
.
split
(
matmul
,
indices_or_sections
=
3
,
axis
=
1
)
out
=
relay
.
sigmoid
(
splitted
[
0
])
+
relay
.
tanh
(
splitted
[
1
])
*
relay
.
exp
(
splitted
[
2
])
return
relay
.
Function
([
X
,
W
],
out
)
def
expected
(
dim
):
p0
=
relay
.
var
(
"p0"
,
shape
=
(
1
,
dim
))
p1
=
relay
.
var
(
"p1"
,
shape
=
(
3
*
dim
,
dim
))
matmul
=
relay
.
nn
.
dense
(
p0
,
p1
)
f0
=
relay
.
Function
([
p0
,
p1
],
matmul
)
p01
=
relay
.
var
(
"p01"
,
shape
=
(
1
,
3
*
dim
))
splitted
=
relay
.
split
(
p01
,
indices_or_sections
=
3
,
axis
=
1
)
out
=
relay
.
sigmoid
(
splitted
[
0
])
+
relay
.
tanh
(
splitted
[
1
])
*
relay
.
exp
(
splitted
[
2
])
f1
=
relay
.
Function
([
p01
],
out
)
X
=
relay
.
var
(
"X"
,
shape
=
(
1
,
dim
))
W
=
relay
.
var
(
"W"
,
shape
=
(
3
*
dim
,
dim
))
y
=
relay
.
Call
(
f0
,
[
X
,
W
])
z
=
relay
.
Call
(
f1
,
[
y
])
return
relay
.
Function
([
X
,
W
],
z
)
dim
=
10
z
=
before
(
dim
)
z
=
relay
.
ir_pass
.
infer_type
(
z
)
zz
=
relay
.
ir_pass
.
fuse_ops
(
z
,
opt_level
=
0
)
assert
not
relay
.
ir_pass
.
free_vars
(
zz
)
zz
=
relay
.
ir_pass
.
fuse_ops
(
z
,
opt_level
=
2
)
zz
=
relay
.
ir_pass
.
infer_type
(
zz
)
assert
not
relay
.
ir_pass
.
free_vars
(
zz
)
after
=
relay
.
ir_pass
.
infer_type
(
expected
(
dim
))
assert
relay
.
ir_pass
.
alpha_equal
(
zz
,
after
)
def
test_tuple_get_root
():
def
before
(
dim
):
X
=
relay
.
var
(
"X"
,
shape
=
(
1
,
3
*
dim
))
W
=
relay
.
var
(
"W"
,
shape
=
(
dim
,
dim
))
splitted
=
relay
.
split
(
X
,
indices_or_sections
=
3
,
axis
=
1
)
out
=
relay
.
nn
.
dense
(
splitted
[
0
],
W
)
return
relay
.
Function
([
X
,
W
],
out
)
def
expected
(
dim
):
p0
=
relay
.
var
(
"p0"
,
shape
=
(
1
,
3
*
dim
))
splitted
=
relay
.
split
(
p0
,
indices_or_sections
=
3
,
axis
=
1
)
out
=
splitted
[
0
]
f0
=
relay
.
Function
([
p0
],
out
)
p01
=
relay
.
var
(
"p01"
,
shape
=
(
1
,
dim
))
p1
=
relay
.
var
(
"p1"
,
shape
=
(
dim
,
dim
))
out
=
relay
.
nn
.
dense
(
p01
,
p1
)
f1
=
relay
.
Function
([
p01
,
p1
],
out
)
X
=
relay
.
var
(
"X"
,
shape
=
(
1
,
3
*
dim
))
W
=
relay
.
var
(
"W"
,
shape
=
(
dim
,
dim
))
y
=
relay
.
Call
(
f0
,
[
X
])
z
=
relay
.
Call
(
f1
,
[
y
,
W
])
return
relay
.
Function
([
X
,
W
],
z
)
dim
=
10
z
=
before
(
dim
)
z
=
relay
.
ir_pass
.
infer_type
(
z
)
zz
=
relay
.
ir_pass
.
fuse_ops
(
z
,
opt_level
=
0
)
assert
not
relay
.
ir_pass
.
free_vars
(
zz
)
zz
=
relay
.
ir_pass
.
fuse_ops
(
z
,
opt_level
=
2
)
zz
=
relay
.
ir_pass
.
infer_type
(
zz
)
assert
not
relay
.
ir_pass
.
free_vars
(
zz
)
after
=
relay
.
ir_pass
.
infer_type
(
expected
(
dim
))
assert
relay
.
ir_pass
.
alpha_equal
(
zz
,
after
)
if
__name__
==
"__main__"
:
test_fuse_simple
()
test_conv2d_fuse
()
...
...
@@ -295,3 +369,5 @@ if __name__ == "__main__":
test_tuple_strided_slice
()
test_stop_fusion
()
test_fuse_myia_regression
()
test_fuse_tuple_get_elemwise
()
test_tuple_get_root
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment