Commit 81f9d5b3 by ziheng Committed by Tianqi Chen

[TOP] Initial Schedule of MobileNet on Rasp (#496)

* [TOP] Initial Schedule of MobileNet on Rasp

* Fix

* Fix
parent 5b8a8d00
......@@ -21,8 +21,8 @@ SpatialPack = namedtuple('SpatialPack',
Im2ColPack = namedtuple('Im2ColPack',
['vp', 'vq', 'ba', 'bc', 'unroll'])
# workloads of resnet18 on imagenet
_WORKLOADS = [
# workloads of resnet18 on imagenet
Workload(224, 224, 3, 64, 7, 7, 3, 3, 2, 2),
Workload(56, 56, 64, 64, 3, 3, 1, 1, 1, 1),
Workload(56, 56, 64, 64, 1, 1, 0, 0, 1, 1),
......@@ -35,6 +35,17 @@ _WORKLOADS = [
Workload(14, 14, 256, 512, 3, 3, 1, 1, 2, 2),
Workload(14, 14, 256, 512, 1, 1, 0, 0, 2, 2),
Workload(7, 7, 512, 512, 3, 3, 1, 1, 1, 1),
# workloads of mobile net on imagenet
Workload(224, 224, 3, 32, 3, 3, 1, 1, 2, 2),
Workload(112, 112, 32, 64, 1, 1, 0, 0, 1, 1),
Workload(56, 56, 64, 128, 1, 1, 0, 0, 1, 1),
Workload(56, 56, 128, 128, 1, 1, 0, 0, 1, 1),
Workload(28, 28, 128, 256, 1, 1, 0, 0, 1, 1),
Workload(28, 28, 256, 256, 1, 1, 0, 0, 1, 1),
Workload(14, 14, 256, 512, 1, 1, 0, 0, 1, 1),
Workload(14, 14, 512, 512, 1, 1, 0, 0, 1, 1),
Workload(7, 7, 512, 1024, 1, 1, 0, 0, 1, 1),
Workload(7, 7, 1024, 1024, 1, 1, 0, 0, 1, 1),
]
# platform specific schedule
......
......@@ -3,3 +3,4 @@
from __future__ import absolute_import as _abs
from .conv2d import *
from .depthwise_conv2d import *
......@@ -23,6 +23,17 @@ _SCHEDULES = [
Im2ColPack(7, 4, 1, 16, True),
Im2ColPack(7, 4, 1, 8, False),
Im2ColPack(7, 4, 1, 16, False),
SpatialPack(2, 2, 4, 28, 1, True),
SpatialPack(1, 4, 8, 14, 1, False),
SpatialPack(1, 2, 16, 8, 1, True),
SpatialPack(1, 4, 8, 8, 8, True),
SpatialPack(2, 2, 8, 1, 1, False),
SpatialPack(1, 4, 8, 4, 8, False),
SpatialPack(2, 2, 8, 1, 4, False),
SpatialPack(2, 2, 8, 1, 8, False),
SpatialPack(1, 1, 16, 1, 4, False),
SpatialPack(1, 1, 4, 1, 4, True),
]
def _schedule_conv2d(wkl):
......
# pylint: disable=invalid-name,unused-variable
"""Schedule for depthwise_conv2d with auto fusion"""
import tvm
from .. import tag
def _schedule(s, data, data_pad, kernel, output, last):
A, B, C = data, kernel, output
A0 = data_pad
C0 = last
_, c, h, w = s[C].op.axis
dh, dw = s[C].op.reduce_axis
oh, ow, ih, iw = s[C].tile(h, w, 2, 4)
s[C].reorder(oh, ow, dh, dw, ih, iw)
s[C].unroll(ih)
s[C].vectorize(iw)
s[C].parallel(c)
s[C].pragma(c, "parallel_launch_point")
s[C].pragma(c, "parallel_stride_pattern")
s[C].pragma(c, "parallel_barrier_when_finish")
return s
def schedule_depthwise_conv2d(outs):
"""Schedule for depthwise_conv2d nchw forward.
Parameters
----------
outs: Array of Tensor
The computation graph description of depthwise_conv2d
in the format of an array of tensors.
Returns
-------
s: Schedule
The computation schedule for depthwise_conv2d nchw.
"""
outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs
s = tvm.create_schedule([x.op for x in outs])
def traverse(op):
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(op.tag):
if op not in s.outputs:
s[op].compute_inline()
for tensor in op.input_tensors:
if tensor.op.input_tensors:
traverse(tensor.op)
# schedule depthwise_conv2d
if op.tag == 'depthwise_conv2d_nchw':
output = op.output(0)
kernel = op.input_tensors[1]
data = op.input_tensors[0]
data_pad = None
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
data_pad = data
data = data_pad.op.input_tensors[0]
_schedule(s, data, data_pad, kernel, output, outs[0])
traverse(outs[0].op)
return s
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment