Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
7e8a8767
Commit
7e8a8767
authored
Oct 11, 2018
by
Steven S. Lyubomirsky
Committed by
Tianqi Chen
Oct 11, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Op] Pad operator (#1843)
parent
493fc040
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
151 additions
and
3 deletions
+151
-3
docs/langref/relay_op.rst
+1
-0
include/tvm/relay/attrs/nn.h
+12
-1
python/tvm/relay/op/nn/nn.py
+27
-2
src/relay/op/nn/pad.cc
+86
-0
tests/python/relay/test_op_level2.py
+25
-0
No files found.
docs/langref/relay_op.rst
View file @
7e8a8767
...
...
@@ -55,6 +55,7 @@ This level enables typical convnet models.
tvm.relay.nn.global_avg_pool2d
tvm.relay.nn.upsampling
tvm.relay.nn.batch_flatten
tvm.relay.nn.pad
tvm.relay.nn.lrn
tvm.relay.nn.l2_normalize
...
...
include/tvm/relay/attrs/nn.h
View file @
7e8a8767
...
...
@@ -223,8 +223,19 @@ struct UpSamplingAttrs : public tvm::AttrsNode<UpSamplingAttrs> {
}
};
/*! \brief Attributes used for the padding operator */
struct
PadAttrs
:
public
tvm
::
AttrsNode
<
PadAttrs
>
{
double
pad_value
;
Array
<
Array
<
IndexExpr
>
>
pad_width
;
TVM_DECLARE_ATTRS
(
PadAttrs
,
"relay.attrs.PadAttrs"
)
{
TVM_ATTR_FIELD
(
pad_value
).
set_default
(
0
.
0
)
.
describe
(
"Specifies the strides of the convolution."
);
TVM_ATTR_FIELD
(
pad_width
)
.
describe
(
"Number of values padded to the edges of each axis, "
"in the format of ((before_1, after_1), ..., (before_N, after_N))"
);
}
};
/*! \brief Attributes for LRN operator */
struct
LRNAttrs
:
public
tvm
::
AttrsNode
<
LRNAttrs
>
{
...
...
python/tvm/relay/op/nn/nn.py
View file @
7e8a8767
...
...
@@ -429,7 +429,6 @@ def batch_flatten(data):
"""
return
_make
.
batch_flatten
(
data
)
def
relu
(
data
):
"""Rectified linear unit.
...
...
@@ -449,6 +448,32 @@ def relu(data):
return
_make
.
relu
(
data
)
def
pad
(
data
,
pad_width
,
pad_value
=
0.0
):
r"""Padding
This operator takes in a tensor and pads each axis by the specified
widths using the specified value.
Parameters
----------
data: relay.Expr
The input data to the operator
pad_width: tuple of <tuple of <int>>, required
Number of values padded to the edges of each axis, in the format
of ((before_1, after_1), ..., (before_N, after_N))
pad_value: float, optional, default=0.0
The value used for padding
Returns
-------
result : relay.Expr
The computed result.
"""
return
_make
.
pad
(
data
,
pad_width
,
pad_value
)
def
lrn
(
data
,
size
=
5
,
axis
=
1
,
bias
=
2
,
alpha
=.
00001
,
beta
=
0.75
):
"""This operator takes data as input and does local response normalization.
...
...
@@ -484,9 +509,9 @@ def lrn(data, size=5, axis=1, bias=2, alpha=.00001, beta=0.75):
result : relay.Expr
The computed result.
"""
return
_make
.
lrn
(
data
,
size
,
axis
,
alpha
,
beta
,
bias
)
def
l2_normalize
(
data
,
eps
,
axis
=
None
):
"""Perform L2 normalization on the input data
...
...
src/relay/op/nn/pad.cc
0 → 100644
View file @
7e8a8767
/*!
* Copyright (c) 2018 by Contributors
* \file pad.cc
* \brief Implementation of operator pad
*/
#include <tvm/ir_operator.h>
#include <tvm/relay/op.h>
#include <tvm/relay/attrs/nn.h>
#include <vector>
#include "layout.h"
namespace
tvm
{
namespace
relay
{
TVM_REGISTER_NODE_TYPE
(
PadAttrs
);
bool
PadRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
2
);
const
auto
*
data
=
types
[
0
].
as
<
TensorTypeNode
>
();
if
(
data
==
nullptr
)
return
false
;
const
PadAttrs
*
param
=
attrs
.
as
<
PadAttrs
>
();
CHECK
(
param
!=
nullptr
);
// check that pad widths match lengths
CHECK
(
data
->
shape
.
size
()
==
param
->
pad_width
.
size
())
<<
"There should be as many pad width pairs as shape dimensions "
<<
"but the shape has "
<<
data
->
shape
.
size
()
<<
" dimensions "
<<
"and there are "
<<
param
->
pad_width
.
size
()
<<
" pad width pairs."
;
// each pad width element should be a pair of positive integers
std
::
vector
<
IndexExpr
>
oshape
;
for
(
size_t
i
=
0
;
i
<
param
->
pad_width
.
size
();
i
++
)
{
CHECK
(
param
->
pad_width
[
i
].
size
()
==
2
)
<<
"Each pad width element should be a pair but at index "
<<
i
<<
" there are "
<<
param
->
pad_width
[
i
].
size
()
<<
" elements."
;
auto
width1
=
as_const_int
(
param
->
pad_width
[
i
][
0
]);
auto
width2
=
as_const_int
(
param
->
pad_width
[
i
][
1
]);
CHECK
(
width1
!=
nullptr
);
CHECK
(
width2
!=
nullptr
);
CHECK
(
*
width1
>=
0
)
<<
"Param width elements should be positive but first pad width at "
<<
"index "
<<
i
<<
" is "
<<
*
width1
<<
"."
;
CHECK
(
*
width2
>=
0
)
<<
"Param width elements should be positive but first pad width at "
<<
"index "
<<
i
<<
" is "
<<
*
width2
<<
"."
;
auto
padding
=
make_const
(
data
->
shape
[
i
].
type
(),
*
width1
+
*
width2
);
oshape
.
push_back
(
data
->
shape
[
i
]
+
padding
);
}
reporter
->
Assign
(
types
[
1
],
TensorTypeNode
::
make
(
Array
<
IndexExpr
>
(
oshape
),
data
->
dtype
));
return
true
;
}
// Handler to create a call to the padding op used by front-end FFI
Expr
MakePad
(
Expr
data
,
Array
<
Array
<
IndexExpr
>
>
pad_width
,
double
pad_value
)
{
auto
attrs
=
make_node
<
PadAttrs
>
();
attrs
->
pad_value
=
pad_value
;
attrs
->
pad_width
=
std
::
move
(
pad_width
);
static
const
Op
&
op
=
Op
::
Get
(
"nn.pad"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
}
TVM_REGISTER_API
(
"relay.op.nn._make.pad"
)
.
set_body
([](
const
TVMArgs
&
args
,
TVMRetValue
*
rv
)
{
runtime
::
detail
::
unpack_call
<
Expr
,
3
>
(
MakePad
,
args
,
rv
);
});
RELAY_REGISTER_OP
(
"nn.pad"
)
.
describe
(
R"code(Pad for n-D tensor.
)code"
TVM_ADD_FILELINE
)
.
set_num_inputs
(
1
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
set_support_level
(
2
)
.
add_type_rel
(
"Pad"
,
PadRel
);
}
// namespace relay
}
// namespace tvm
tests/python/relay/test_op_level2.py
View file @
7e8a8767
...
...
@@ -196,10 +196,35 @@ def test_flatten_infer_type():
ftype
=
func
.
checked_type
assert
ftype
.
ret_type
==
relay
.
ty
.
TensorType
((
d1
,
((
2
*
d3
)
*
3
)),
"float32"
)
def
test_pad_infer_type
():
# entirely concrete case
ib
=
relay
.
ir_builder
.
IRBuilder
()
n
,
c
,
h
,
w
=
1
,
2
,
3
,
4
t
=
ib
.
param
(
"t"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
with
ib
.
function
(
t
)
as
func
:
ib
.
ret
(
relay
.
nn
.
pad
(
t
.
var
,
((
1
,
1
),
(
2
,
2
),
(
3
,
3
),
(
4
,
4
))))
ib
.
ret
(
func
)
func
=
relay
.
ir_pass
.
infer_type
(
ib
.
env
,
func
.
to_func
())
ftype
=
func
.
checked_type
assert
ftype
.
ret_type
==
relay
.
TensorType
((
3
,
6
,
9
,
12
),
"float32"
)
# some symbolic values
ib
=
relay
.
ir_builder
.
IRBuilder
()
n
,
c
,
h
,
w
=
tvm
.
var
(
"n"
),
2
,
3
,
tvm
.
var
(
"w"
)
t
=
ib
.
param
(
"t"
,
relay
.
TensorType
((
n
,
c
,
h
,
w
),
"float32"
))
with
ib
.
function
(
t
)
as
func
:
ib
.
ret
(
relay
.
nn
.
pad
(
t
.
var
,
((
1
,
1
),
(
2
,
2
),
(
3
,
3
),
(
4
,
4
))))
ib
.
ret
(
func
)
func
=
relay
.
ir_pass
.
infer_type
(
ib
.
env
,
func
.
to_func
())
ftype
=
func
.
checked_type
assert
ftype
.
ret_type
==
relay
.
TensorType
((
n
+
2
,
6
,
9
,
w
+
8
),
"float32"
)
if
__name__
==
"__main__"
:
test_conv2d_infer_type
()
test_pool2d_infer_type
()
test_upsampling_infer_type
()
test_flatten_infer_type
()
test_pad_infer_type
()
test_conv2d_transpose_infer_type
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment