Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
7d7d035e
Commit
7d7d035e
authored
Feb 09, 2018
by
masahi
Committed by
Tianqi Chen
Feb 08, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
allow fallback path to non imagenet workloads (#886)
parent
28bb0f68
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
50 additions
and
44 deletions
+50
-44
topi/python/topi/x86/conv2d.py
+50
-44
No files found.
topi/python/topi/x86/conv2d.py
View file @
7d7d035e
...
...
@@ -66,8 +66,8 @@ def _get_schedule_conv(wkl):
@conv2d.register
(
"cpu"
)
def
_declaration_conv
(
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
):
target
=
tvm
.
target
.
current_target
(
allow_none
=
False
)
if
'avx'
in
str
(
target
)
and
layout
==
'NCHW'
:
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
out_dtype
)
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
out_dtype
)
if
wkl
in
_WORKLOADS
and
'avx'
in
str
(
target
)
and
layout
==
'NCHW'
:
sch
=
_get_schedule
(
wkl
)
return
_AVX_SCH_TO_DECL_FUNC
[
type
(
sch
)](
data
,
kernel
,
stride
,
padding
,
layout
,
out_dtype
)
elif
layout
==
'NCHW'
:
...
...
@@ -86,6 +86,30 @@ def schedule_conv2d(outs):
s
=
tvm
.
create_schedule
([
x
.
op
for
x
in
outs
])
target
=
tvm
.
target
.
current_target
(
allow_none
=
False
)
def
default_schedule
(
op
):
"""NCHW conv2d schedule for non imagenet workloads"""
conv
=
op
.
output
(
0
)
kernel
=
op
.
input_tensors
[
1
]
data
=
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"pad"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
n_pad
,
c_pad
,
h_pad
,
w_pad
=
data_pad
.
op
.
axis
pad_fused
=
s
[
data_pad
]
.
fuse
(
n_pad
,
c_pad
)
s
[
data_pad
]
.
parallel
(
pad_fused
)
C
=
conv
n
,
c
,
h
,
w
=
C
.
op
.
axis
rc
,
ry
,
rx
=
C
.
op
.
reduce_axis
fused
=
s
[
C
]
.
fuse
(
n
,
c
)
s
[
C
]
.
parallel
(
fused
)
wo
,
wi
=
s
[
C
]
.
split
(
w
,
factor
=
16
)
s
[
C
]
.
reorder
(
fused
,
rc
,
h
,
wo
,
ry
,
rx
,
wi
)
# move rc to outer loop
s
[
C
]
.
unroll
(
rx
)
s
[
C
]
.
unroll
(
ry
)
s
[
C
]
.
vectorize
(
wi
)
def
traverse
(
op
):
"""Traverse operators from computation graph"""
# inline all one-to-one-mapping operators except the last stage (output)
...
...
@@ -104,49 +128,31 @@ def schedule_conv2d(outs):
if
'conv2d_nchw'
in
op
.
tag
:
if
'avx'
in
str
(
target
):
output
=
op
.
output
(
0
)
conv_out
=
op
.
input_tensors
[
0
]
kernel_vec
=
conv_out
.
op
.
input_tensors
[
1
]
kernel
=
kernel_vec
.
op
.
input_tensors
[
0
]
data_vec
=
conv_out
.
op
.
input_tensors
[
0
]
data
=
data_vec
.
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"pad"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
padding
=
infer_pad
(
data
,
data_pad
)
if
data_pad
is
None
:
stride
=
infer_stride
(
data
,
kernel
,
output
)
else
:
stride
=
infer_stride
(
data_pad
,
kernel
,
output
)
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
output
.
dtype
)
sch
=
_get_schedule
(
wkl
)
_AVX_SCH_TO_SCH_FUNC
[
type
(
sch
)](
s
,
data
,
data_pad
,
data_vec
,
kernel
,
kernel_vec
,
conv_out
,
output
,
outs
[
0
])
try
:
output
=
op
.
output
(
0
)
conv_out
=
op
.
input_tensors
[
0
]
kernel_vec
=
conv_out
.
op
.
input_tensors
[
1
]
kernel
=
kernel_vec
.
op
.
input_tensors
[
0
]
data_vec
=
conv_out
.
op
.
input_tensors
[
0
]
data
=
data_vec
.
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"pad"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
padding
=
infer_pad
(
data
,
data_pad
)
if
data_pad
is
None
:
stride
=
infer_stride
(
data
,
kernel
,
output
)
else
:
stride
=
infer_stride
(
data_pad
,
kernel
,
output
)
wkl
=
_get_workload
(
data
,
kernel
,
stride
,
padding
,
output
.
dtype
)
sch
=
_get_schedule
(
wkl
)
_AVX_SCH_TO_SCH_FUNC
[
type
(
sch
)](
s
,
data
,
data_pad
,
data_vec
,
kernel
,
kernel_vec
,
conv_out
,
output
,
outs
[
0
])
except
IndexError
:
default_schedule
(
op
)
else
:
conv
=
op
.
output
(
0
)
kernel
=
op
.
input_tensors
[
1
]
data
=
op
.
input_tensors
[
0
]
data_pad
=
None
if
isinstance
(
data
.
op
,
tvm
.
tensor
.
ComputeOp
)
and
"pad"
in
data
.
op
.
tag
:
data_pad
=
data
data
=
data_pad
.
op
.
input_tensors
[
0
]
n_pad
,
c_pad
,
h_pad
,
w_pad
=
data_pad
.
op
.
axis
pad_fused
=
s
[
data_pad
]
.
fuse
(
n_pad
,
c_pad
)
s
[
data_pad
]
.
parallel
(
pad_fused
)
C
=
conv
n
,
c
,
h
,
w
=
C
.
op
.
axis
rc
,
ry
,
rx
=
C
.
op
.
reduce_axis
fused
=
s
[
C
]
.
fuse
(
n
,
c
)
s
[
C
]
.
parallel
(
fused
)
wo
,
wi
=
s
[
C
]
.
split
(
w
,
factor
=
16
)
s
[
C
]
.
reorder
(
fused
,
rc
,
h
,
wo
,
ry
,
rx
,
wi
)
# move rc to outer loop
s
[
C
]
.
unroll
(
rx
)
s
[
C
]
.
unroll
(
ry
)
s
[
C
]
.
vectorize
(
wi
)
default_schedule
(
op
)
traverse
(
outs
[
0
]
.
op
)
return
s
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment