Commit 7afe6ba8 by Lianmin Zheng Committed by Tianqi Chen

fix CO CI problem (#1641)

parent 56ab0adb
...@@ -64,7 +64,7 @@ from tvm import autotvm ...@@ -64,7 +64,7 @@ from tvm import autotvm
# #
@autotvm.template @autotvm.template
def conv2d_no_batching(N, H, W, CI, CO, KH, KW, stride, padding): def conv2d_no_batching(N, H, W, CO, CI, KH, KW, stride, padding):
assert N == 1, "Only consider batch_size = 1 in this template" assert N == 1, "Only consider batch_size = 1 in this template"
data = tvm.placeholder((N, CI, H, W), name='data') data = tvm.placeholder((N, CI, H, W), name='data')
...@@ -206,8 +206,8 @@ func(a_tvm, w_tvm, c_tvm) ...@@ -206,8 +206,8 @@ func(a_tvm, w_tvm, c_tvm)
np.testing.assert_allclose(c_np, c_tvm.asnumpy(), rtol=1e-2) np.testing.assert_allclose(c_np, c_tvm.asnumpy(), rtol=1e-2)
# Evaluate running time. Here we choose a large repeat number (200) to reduce the noise # Evaluate running time. Here we choose a large repeat number (400) to reduce the noise
# and the overhead of kernel launch. You can also use nvprof to validate the result. # and the overhead of kernel launch. You can also use nvprof to validate the result.
evaluator = func.time_evaluator(func.entry_name, ctx, number=200) evaluator = func.time_evaluator(func.entry_name, ctx, number=400)
print('Time cost of this operator: %f' % evaluator(a_tvm, w_tvm, c_tvm).mean) print('Time cost of this operator: %f' % evaluator(a_tvm, w_tvm, c_tvm).mean)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment