Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
76b79671
Commit
76b79671
authored
5 years ago
by
Cody Hao Yu
Committed by
Wuwei Lin
5 years ago
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI][CUDA] Fix Winograd Kernel Size Support (#4276)
* fix_winograd_cuda_kernel_size * add unit test
parent
5bcd3313
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
75 additions
and
3 deletions
+75
-3
tests/python/relay/test_op_level2.py
+72
-0
topi/python/topi/cuda/conv2d_winograd.py
+3
-3
No files found.
tests/python/relay/test_op_level2.py
View file @
76b79671
...
@@ -18,6 +18,7 @@
...
@@ -18,6 +18,7 @@
"""
"""
import
numpy
as
np
import
numpy
as
np
import
tvm
import
tvm
from
tvm
import
autotvm
from
tvm
import
relay
from
tvm
import
relay
from
tvm.relay
import
transform
from
tvm.relay
import
transform
from
tvm.relay.testing
import
ctx_list
from
tvm.relay.testing
import
ctx_list
...
@@ -174,6 +175,76 @@ def test_conv2d_run():
...
@@ -174,6 +175,76 @@ def test_conv2d_run():
run_test_conv2d
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
run_test_conv2d
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
channels
=
10
,
kernel_size
=
(
3
,
3
),
dilation
=
(
3
,
3
))
padding
=
(
1
,
1
),
channels
=
10
,
kernel_size
=
(
3
,
3
),
dilation
=
(
3
,
3
))
def
test_conv2d_winograd
():
class
WinogradFallback
(
autotvm
.
FallbackContext
):
def
_query_inside
(
self
,
target
,
workload
):
key
=
(
target
,
workload
)
if
key
in
self
.
memory
:
return
self
.
memory
[
key
]
cfg
=
autotvm
.
task
.
space
.
FallbackConfigEntity
()
cfg
.
template_key
=
'winograd'
cfg
.
is_fallback
=
False
cfg
[
'tile_b'
]
=
autotvm
.
task
.
space
.
SplitEntity
([
-
1
,
1
,
1
,
1
])
cfg
[
'tile_y'
]
=
autotvm
.
task
.
space
.
SplitEntity
([
-
1
,
1
,
1
,
1
])
cfg
[
'tile_x'
]
=
autotvm
.
task
.
space
.
SplitEntity
([
-
1
,
1
,
1
,
1
])
cfg
[
'tile_rc'
]
=
autotvm
.
task
.
space
.
SplitEntity
([
-
1
,
1
])
cfg
[
'auto_unroll_max_setp'
]
=
autotvm
.
task
.
space
.
OtherOptionEntity
(
1500
)
cfg
[
'unroll_explicit'
]
=
autotvm
.
task
.
space
.
OtherOptionEntity
(
1
)
self
.
memory
[
key
]
=
cfg
return
cfg
def
run_test_conv2d_cuda
(
dtype
,
out_dtype
,
scale
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
groups
=
1
,
dilation
=
(
1
,
1
),
**
attrs
):
x
=
relay
.
var
(
"x"
,
shape
=
dshape
,
dtype
=
dtype
)
w
=
relay
.
var
(
"w"
,
shape
=
kshape
,
dtype
=
dtype
)
y
=
relay
.
nn
.
conv2d
(
x
,
w
,
padding
=
padding
,
dilation
=
dilation
,
groups
=
groups
,
**
attrs
)
func
=
relay
.
Function
([
x
,
w
],
y
)
mod
=
relay
.
Module
()
mod
[
'main'
]
=
func
mod
=
relay
.
transform
.
InferType
()(
mod
)
data
=
np
.
random
.
uniform
(
-
scale
,
scale
,
size
=
dshape
)
.
astype
(
dtype
)
kernel
=
np
.
random
.
uniform
(
-
scale
,
scale
,
size
=
kshape
)
.
astype
(
dtype
)
ref_res
=
topi
.
testing
.
conv2d_nchw_python
(
data
.
astype
(
out_dtype
),
kernel
.
astype
(
out_dtype
),
1
,
padding
,
groups
=
groups
)
with
WinogradFallback
(),
relay
.
build_config
(
opt_level
=
3
):
for
target
,
ctx
in
ctx_list
():
if
target
!=
'cuda'
:
continue
params
=
{
'w'
:
tvm
.
nd
.
array
(
kernel
)}
graph
,
lib
,
params
=
relay
.
build_module
.
build
(
mod
,
target
=
target
,
params
=
params
)
module
=
tvm
.
contrib
.
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
module
.
set_input
(
'x'
,
tvm
.
nd
.
array
(
data
))
module
.
set_input
(
**
params
)
module
.
run
()
op_res1
=
module
.
get_output
(
0
)
tvm
.
testing
.
assert_allclose
(
op_res1
.
asnumpy
(),
ref_res
,
rtol
=
1e-3
,
atol
=
1e-3
)
# normal winograd: stride 1, padding 1, kernel 3x3
dshape
=
(
1
,
80
,
73
,
73
)
kshape
=
(
192
,
80
,
3
,
3
)
run_test_conv2d_cuda
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
1
,
1
),
channels
=
192
,
kernel_size
=
(
3
,
3
))
# extended winograd: stride 1, padding N, kernel 3x3
run_test_conv2d_cuda
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
0
,
0
),
channels
=
192
,
kernel_size
=
(
3
,
3
))
run_test_conv2d_cuda
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
2
,
2
),
channels
=
192
,
kernel_size
=
(
3
,
3
))
# extended winograd: stride 1, padding N, kernel NxN
kshape
=
(
192
,
80
,
7
,
7
)
run_test_conv2d_cuda
(
"float32"
,
"float32"
,
1
,
dshape
,
kshape
,
padding
=
(
2
,
2
),
channels
=
192
,
kernel_size
=
(
7
,
7
))
def
test_conv2d_transpose_infer_type
():
def
test_conv2d_transpose_infer_type
():
# symbolic in batch dimension
# symbolic in batch dimension
...
@@ -702,6 +773,7 @@ if __name__ == "__main__":
...
@@ -702,6 +773,7 @@ if __name__ == "__main__":
test_conv2d_transpose_infer_type
()
test_conv2d_transpose_infer_type
()
test_conv2d_transpose_run
()
test_conv2d_transpose_run
()
test_conv2d_run
()
test_conv2d_run
()
test_conv2d_winograd
()
test_bitserial_conv2d_infer_type
()
test_bitserial_conv2d_infer_type
()
test_batch_flatten
()
test_batch_flatten
()
test_upsampling
()
test_upsampling
()
...
...
This diff is collapsed.
Click to expand it.
topi/python/topi/cuda/conv2d_winograd.py
View file @
76b79671
...
@@ -55,12 +55,13 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
...
@@ -55,12 +55,13 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
if
dilation_h
!=
1
or
dilation_w
!=
1
:
if
dilation_h
!=
1
or
dilation_w
!=
1
:
kernel
=
dilation
(
kernel
,
(
1
,
1
,
dilation_h
,
dilation_w
))
kernel
=
dilation
(
kernel
,
(
1
,
1
,
dilation_h
,
dilation_w
))
CO
,
CI
,
KH
,
KW
=
get_const_tuple
(
kernel
.
shape
)
CO
,
CI
,
KH
,
KW
=
get_const_tuple
(
kernel
.
shape
)
alpha
=
KW
+
tile_size
-
1
assert
HSTR
==
1
and
WSTR
==
1
and
KH
==
KW
assert
HSTR
==
1
and
WSTR
==
1
and
KH
==
KW
else
:
else
:
# kernel tensor is pre-transfomred. this op is created by alter op layout.
# kernel tensor is pre-transfomred. this op is created by alter op layout.
# dilation is not supported
# dilation is not supported
_
,
_
,
CI
,
CO
=
get_const_tuple
(
kernel
.
shape
)
alpha
,
_
,
CI
,
CO
=
get_const_tuple
(
kernel
.
shape
)
KH
=
KW
=
3
KH
=
KW
=
alpha
+
1
-
tile_size
assert
HSTR
==
1
and
WSTR
==
1
and
dilation_h
==
1
and
dilation_w
==
1
assert
HSTR
==
1
and
WSTR
==
1
and
dilation_h
==
1
and
dilation_w
==
1
HPAD
,
WPAD
,
_
,
_
=
nn
.
get_pad_tuple
(
padding
,
kernel
)
HPAD
,
WPAD
,
_
,
_
=
nn
.
get_pad_tuple
(
padding
,
kernel
)
...
@@ -68,7 +69,6 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
...
@@ -68,7 +69,6 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
r
=
KW
r
=
KW
m
=
tile_size
m
=
tile_size
alpha
=
m
+
r
-
1
A
,
B
,
G
=
winograd_transform_matrices
(
m
,
r
,
out_dtype
)
A
,
B
,
G
=
winograd_transform_matrices
(
m
,
r
,
out_dtype
)
H
=
(
H
+
2
*
HPAD
-
KH
)
//
HSTR
+
1
H
=
(
H
+
2
*
HPAD
-
KH
)
//
HSTR
+
1
...
...
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment