Unverified Commit 7226c010 by Tianqi Chen Committed by GitHub

[TEST] Hotfix CI outrage after TF in docker update (#2781)

parent 92a00489
...@@ -50,7 +50,7 @@ def run_tvm_graph(graph_def, input_data, input_node, num_output=1, target='llvm' ...@@ -50,7 +50,7 @@ def run_tvm_graph(graph_def, input_data, input_node, num_output=1, target='llvm'
else: else:
shape_dict = {input_node: input_data.shape} shape_dict = {input_node: input_data.shape}
dtype_dict = {input_node: input_data.dtype} dtype_dict = {input_node: input_data.dtype}
sym, params = nnvm.frontend.from_tensorflow(graph_def, layout=layout, shape=shape_dict, outputs=out_names) sym, params = nnvm.frontend.from_tensorflow(graph_def, layout=layout, shape=shape_dict, outputs=out_names)
graph, lib, params = nnvm.compiler.build(sym, target=target, target_host=target_host, shape=shape_dict, graph, lib, params = nnvm.compiler.build(sym, target=target, target_host=target_host, shape=shape_dict,
dtype=dtype_dict, params=params) dtype=dtype_dict, params=params)
...@@ -126,7 +126,7 @@ def compare_tf_with_tvm(in_data, in_name, out_name, init_global_variables=False, ...@@ -126,7 +126,7 @@ def compare_tf_with_tvm(in_data, in_name, out_name, init_global_variables=False,
tvm_output = run_tvm_graph(final_graph_def, in_data, in_node, tvm_output = run_tvm_graph(final_graph_def, in_data, in_node,
num_output=len(out_node), target=device, out_names=out_name) num_output=len(out_node), target=device, out_names=out_name)
# since the names from tensorflow and nnvm runs are not exactly same, # since the names from tensorflow and nnvm runs are not exactly same,
# first len(tf_output) will be compared # first len(tf_output) will be compared
for i in range(len(tf_output)): for i in range(len(tf_output)):
tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5) tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5)
...@@ -621,7 +621,7 @@ def test_forward_multi_output(): ...@@ -621,7 +621,7 @@ def test_forward_multi_output():
out_name = ['out1:0', 'out2:0'] out_name = ['out1:0', 'out2:0']
out_node = [out.strip(':0') for out in out_name] out_node = [out.strip(':0') for out in out_name]
in_node = [inp.strip(':0') for inp in in_name] in_node = [inp.strip(':0') for inp in in_name]
with tf.Session() as sess: with tf.Session() as sess:
final_graph_def = tf.graph_util.convert_variables_to_constants( final_graph_def = tf.graph_util.convert_variables_to_constants(
sess, sess.graph.as_graph_def(add_shapes=True), out_node,) sess, sess.graph.as_graph_def(add_shapes=True), out_node,)
...@@ -1125,7 +1125,7 @@ def test_forward_leaky_relu(): ...@@ -1125,7 +1125,7 @@ def test_forward_leaky_relu():
with tf.Graph().as_default(): with tf.Graph().as_default():
in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
tf.nn.leaky_relu(in1, alpha=0.4) tf.nn.leaky_relu(in1, alpha=0.4)
compare_tf_with_tvm(inp_array, 'Placeholder:0', 'LeakyRelu/mul:0') compare_tf_with_tvm(inp_array, 'Placeholder:0', 'LeakyRelu:0')
def test_forward_elu(): def test_forward_elu():
ishape = (1, 3, 10, 10) ishape = (1, 3, 10, 10)
......
...@@ -50,7 +50,7 @@ def run_tvm_graph(graph_def, input_data, input_node, num_output=1, target='llvm' ...@@ -50,7 +50,7 @@ def run_tvm_graph(graph_def, input_data, input_node, num_output=1, target='llvm'
else: else:
shape_dict = {input_node: input_data.shape} shape_dict = {input_node: input_data.shape}
dtype_dict = {input_node: input_data.dtype} dtype_dict = {input_node: input_data.dtype}
sym, params = relay.frontend.from_tensorflow(graph_def, sym, params = relay.frontend.from_tensorflow(graph_def,
layout=layout, layout=layout,
shape=shape_dict, shape=shape_dict,
...@@ -543,7 +543,7 @@ def test_forward_multi_output(): ...@@ -543,7 +543,7 @@ def test_forward_multi_output():
out_name = ['out1:0', 'out2:0'] out_name = ['out1:0', 'out2:0']
out_node = [out.strip(':0') for out in out_name] out_node = [out.strip(':0') for out in out_name]
in_node = [inp.strip(':0') for inp in in_name] in_node = [inp.strip(':0') for inp in in_name]
with tf.Session() as sess: with tf.Session() as sess:
final_graph_def = tf.graph_util.convert_variables_to_constants( final_graph_def = tf.graph_util.convert_variables_to_constants(
sess, sess.graph.as_graph_def(add_shapes=True), out_node,) sess, sess.graph.as_graph_def(add_shapes=True), out_node,)
...@@ -1033,7 +1033,7 @@ def test_forward_leaky_relu(): ...@@ -1033,7 +1033,7 @@ def test_forward_leaky_relu():
with tf.Graph().as_default(): with tf.Graph().as_default():
in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
tf.nn.leaky_relu(in1, alpha=0.4) tf.nn.leaky_relu(in1, alpha=0.4)
compare_tf_with_tvm(inp_array, 'Placeholder:0', 'LeakyRelu/mul:0') compare_tf_with_tvm(inp_array, 'Placeholder:0', 'LeakyRelu:0')
def test_forward_elu(): def test_forward_elu():
ishape = (1, 3, 10, 10) ishape = (1, 3, 10, 10)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment