Commit 70017ef6 by Neo Chien Committed by Siva

[Golang][Doc] improve the samples and doc (#4385)

* [Golang][Doc] improve the samples and doc

* [Golang][Doc] add asf header

* [Golang][Doc] Improve the end to end example

* [Golang][Doc] Improve the end to end example
parent 030a1632
......@@ -68,6 +68,8 @@ To Demonstrates sample TVM module compilation using python and deploy via golang
To deploy a realtime module with lib, graph and param.
```bash
python3 gen_mobilenet_lib.py
./complex
```
......@@ -80,13 +82,13 @@ To demonstrate go function closure conversion to packed function handle.
To demonstrate a packed function handle given as an argument.
```bash
pack_func_handle_arg
./pack_func_handle_arg
```
To register go function with runtime as a global function.
```bash
pack_func_register
./pack_func_register
```
To demonstrate function closure passed as argument to a function call.
......@@ -120,5 +122,5 @@ Please refer ```docker/install/ubuntu_install_golang.sh``` for the packages depe
go compiler 1.10 on ubuntu doesn't install on standard path, hence an explicit export may be needed as shown below.
```bash
export PATH="/usr/lib/go-1.10/bin:$PATH"```
export PATH="/usr/lib/go-1.10/bin:$PATH"
```
......@@ -31,4 +31,4 @@ all: $(EXECUTABLE)
@go tool compile -pack -o $@ $<
clean:
@rm -f $(EXECUTABLE) *.so *.o *.a
@rm -f $(EXECUTABLE) *.so *.o *.a *.json *.params
......@@ -89,7 +89,7 @@ func main() {
// Array allocation attributes
tshapeIn := []int64{1, 224, 224, 3}
tshapeOut := []int64{1, 1001}
tshapeOut := []int64{1, 1000}
// Allocate input Array
inX, err := gotvm.Empty(tshapeIn, "float32", gotvm.CPU(0))
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
from tvm import relay
from tvm.contrib.download import download_testdata
import tflite.Model
################################################
# Utils for downloading and extracting zip files
# ----------------------------------------------
def extract(path):
import tarfile
if path.endswith("tgz") or path.endswith("gz"):
dir_path = os.path.dirname(path)
tar = tarfile.open(path)
tar.extractall(path=dir_path)
tar.close()
else:
raise RuntimeError('Could not decompress the file: ' + path)
###################################
# Download TFLite pre-trained model
# ---------------------------------
model_url = "https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz"
model_path = download_testdata(model_url, "mobilenet_v2_1.4_224.tgz", module=['tf', 'official'])
model_dir = os.path.dirname(model_path)
extract(model_path)
# now we have mobilenet_v2_1.4_224.tflite on disk
model_file = os.path.join(model_dir, "mobilenet_v2_1.4_224.tflite")
# get TFLite model from buffer
tflite_model_buf = open(model_file, "rb").read()
tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_buf, 0)
##############################
# Load Neural Network in Relay
# ----------------------------
# TFLite input tensor name, shape and type
input_tensor = "input"
input_shape = (1, 224, 224, 3)
input_dtype = "float32"
# parse TFLite model and convert into Relay computation graph
mod, params = relay.frontend.from_tflite(tflite_model,
shape_dict={input_tensor: input_shape},
dtype_dict={input_tensor: input_dtype})
#############
# Compilation
# -----------
target = 'llvm'
# Build with Relay
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(
mod, target, params=params)
###############################################
# Save the graph, lib and parameters into files
# ---------------------------------------------
lib.export_library("./mobilenet.so")
print('lib export succeefully')
with open("./mobilenet.json", "w") as fo:
fo.write(graph)
with open("./mobilenet.params", "wb") as fo:
fo.write(relay.save_param_dict(params))
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment