Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
6b0359b4
Unverified
Commit
6b0359b4
authored
Sep 03, 2019
by
Tianqi Chen
Committed by
GitHub
Sep 03, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Revert "[Runtime] Allow parameter sharing between modules (#3489)" (#3884)
This reverts commit
224cc243
.
parent
9e595b42
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
12 additions
and
123 deletions
+12
-123
include/tvm/runtime/ndarray.h
+1
-9
src/runtime/graph/graph_runtime.cc
+3
-22
src/runtime/graph/graph_runtime.h
+1
-11
src/runtime/ndarray.cc
+7
-10
tests/cpp/build_module_test.cc
+0
-71
No files found.
include/tvm/runtime/ndarray.h
View file @
6b0359b4
...
...
@@ -99,8 +99,6 @@ class NDArray {
bool
defined
()
const
{
return
data_
!=
nullptr
;
}
/*! \return If NDArray is allocated*/
inline
bool
allocated
()
const
;
/*! \return If both NDArray reference the same container */
bool
same_as
(
const
NDArray
&
other
)
const
{
return
data_
==
other
.
data_
;
...
...
@@ -166,13 +164,11 @@ class NDArray {
* \param shape The shape of the new array.
* \param dtype The data type of the new array.
* \param ctx The context of the Array.
* \param allocate Allocate memory if true.
* \return The created Array
*/
TVM_DLL
static
NDArray
Empty
(
std
::
vector
<
int64_t
>
shape
,
DLDataType
dtype
,
DLContext
ctx
,
bool
allocate
=
true
);
DLContext
ctx
);
/*!
* \brief Create a NDArray backed by a dlpack tensor.
*
...
...
@@ -358,10 +354,6 @@ inline void NDArray::reset() {
}
}
inline
bool
NDArray
::
allocated
()
const
{
return
defined
()
&&
data_
->
dl_tensor
.
data
!=
nullptr
;
}
/*! \brief return the size of data the DLTensor hold, in term of number of bytes
*
* \param arr the input DLTensor
...
...
src/runtime/graph/graph_runtime.cc
View file @
6b0359b4
...
...
@@ -54,15 +54,7 @@ inline size_t GetDataAlignment(const DLTensor& arr) {
void
GraphRuntime
::
Run
()
{
// setup the array and requirements.
for
(
size_t
i
=
0
;
i
<
op_execs_
.
size
();
++
i
)
{
if
(
op_execs_
[
i
])
{
auto
&
op_arg
=
op_args_
[
i
];
if
(
op_arg
)
{
for
(
auto
&
arg
:
op_arg
->
args
)
{
CHECK
(
arg
.
data
!=
nullptr
)
<<
"Un-initialized input!"
;
}
}
op_execs_
[
i
]();
}
if
(
op_execs_
[
i
])
op_execs_
[
i
]();
}
}
/*!
...
...
@@ -114,8 +106,6 @@ int GraphRuntime::GetInputIndex(const std::string& name) {
void
GraphRuntime
::
SetInput
(
int
index
,
DLTensor
*
data_in
)
{
CHECK_LT
(
static_cast
<
size_t
>
(
index
),
input_nodes_
.
size
());
uint32_t
eid
=
this
->
entry_id
(
input_nodes_
[
index
],
0
);
CHECK
(
data_entry_
[
eid
].
allocated
())
<<
"Invoke 'set_input_zero_copy' for 'lazy_init_input' entry!"
;
data_entry_
[
eid
].
CopyFrom
(
data_in
);
}
/*!
...
...
@@ -265,14 +255,7 @@ void GraphRuntime::SetupStorage() {
for
(
const
std
::
string
&
s_type
:
attrs_
.
dltype
)
{
vtype
.
push_back
(
tvm
::
runtime
::
String2TVMType
(
s_type
));
}
// get the entry id(s) of lazy initialized inputs
std
::
vector
<
uint32_t
>
lazy_init_entries
;
for
(
auto
const
&
name
:
attrs_
.
lazy_init_input
)
{
int
in_idx
=
GetInputIndex
(
name
);
CHECK_GE
(
in_idx
,
0
)
<<
"input
\"
"
<<
name
<<
"
\"
does not exist!"
;
uint32_t
eid
=
this
->
entry_id
(
input_nodes_
[
in_idx
],
0
);
lazy_init_entries
.
push_back
(
eid
);
}
// Size and device type of each storage pool entry.
std
::
vector
<
PoolEntry
>
pool_entry
;
// Find the maximum space size.
...
...
@@ -303,8 +286,6 @@ void GraphRuntime::SetupStorage() {
}
pool_entry
[
sid
].
size
=
std
::
max
(
pool_entry
[
sid
].
size
,
bytes
);
pool_entry
[
sid
].
device_type
=
device_type
;
pool_entry
[
sid
].
lazy_init
=
(
std
::
find
(
lazy_init_entries
.
begin
(),
lazy_init_entries
.
end
(),
i
)
!=
lazy_init_entries
.
end
());
}
// Allocate the space.
...
...
@@ -319,7 +300,7 @@ void GraphRuntime::SetupStorage() {
TVMContext
ctx
=
cit
==
ctxs_
.
end
()
?
ctxs_
[
0
]
:
*
cit
;
shape
.
push_back
(
static_cast
<
int64_t
>
(
pit
.
size
+
3
)
/
4
);
storage_pool_
.
push_back
(
NDArray
::
Empty
(
shape
,
DLDataType
{
kDLFloat
,
32
,
1
},
ctx
,
!
pit
.
lazy_init
));
NDArray
::
Empty
(
shape
,
DLDataType
{
kDLFloat
,
32
,
1
},
ctx
));
}
// Assign the pooled entries. A unified memory pool is used to simplifiy
...
...
src/runtime/graph/graph_runtime.h
View file @
6b0359b4
...
...
@@ -188,8 +188,7 @@ class GraphRuntime : public ModuleNode {
struct
PoolEntry
{
size_t
size
;
int
device_type
;
bool
lazy_init
;
PoolEntry
(
int
s
,
int
dev_type
)
:
size
(
s
),
device_type
(
dev_type
),
lazy_init
(
false
)
{}
PoolEntry
(
int
s
,
int
dev_type
)
:
size
(
s
),
device_type
(
dev_type
)
{}
};
// Node entry
struct
NodeEntry
{
...
...
@@ -278,7 +277,6 @@ class GraphRuntime : public ModuleNode {
std
::
vector
<
int
>
device_index
;
std
::
vector
<
std
::
string
>
dltype
;
std
::
vector
<
std
::
vector
<
int64_t
>
>
shape
;
std
::
vector
<
std
::
string
>
lazy_init_input
;
// The graph attribute fields.
void
Load
(
dmlc
::
JSONReader
*
reader
)
{
reader
->
BeginObject
();
...
...
@@ -320,14 +318,6 @@ class GraphRuntime : public ModuleNode {
CHECK
(
reader
->
NextArrayItem
());
reader
->
Read
(
&
device_index
);
CHECK
(
!
reader
->
NextArrayItem
());
}
else
if
(
key
==
"lazy_init_input"
)
{
reader
->
BeginArray
();
CHECK
(
reader
->
NextArrayItem
());
reader
->
Read
(
&
type
);
CHECK_EQ
(
type
,
"list_str"
);
CHECK
(
reader
->
NextArrayItem
());
reader
->
Read
(
&
lazy_init_input
);
CHECK
(
!
reader
->
NextArrayItem
());
}
else
{
reader
->
BeginArray
();
CHECK
(
reader
->
NextArrayItem
());
...
...
src/runtime/ndarray.cc
View file @
6b0359b4
...
...
@@ -142,17 +142,14 @@ DLManagedTensor* NDArray::ToDLPack() const {
NDArray
NDArray
::
Empty
(
std
::
vector
<
int64_t
>
shape
,
DLDataType
dtype
,
DLContext
ctx
,
bool
allocate
)
{
DLContext
ctx
)
{
NDArray
ret
=
Internal
::
Create
(
shape
,
dtype
,
ctx
);
if
(
allocate
)
{
// setup memory content
size_t
size
=
GetDataSize
(
ret
.
data_
->
dl_tensor
);
size_t
alignment
=
GetDataAlignment
(
ret
.
data_
->
dl_tensor
);
ret
.
data_
->
dl_tensor
.
data
=
DeviceAPI
::
Get
(
ret
->
ctx
)
->
AllocDataSpace
(
ret
->
ctx
,
size
,
alignment
,
ret
->
dtype
);
}
// setup memory content
size_t
size
=
GetDataSize
(
ret
.
data_
->
dl_tensor
);
size_t
alignment
=
GetDataAlignment
(
ret
.
data_
->
dl_tensor
);
ret
.
data_
->
dl_tensor
.
data
=
DeviceAPI
::
Get
(
ret
->
ctx
)
->
AllocDataSpace
(
ret
->
ctx
,
size
,
alignment
,
ret
->
dtype
);
return
ret
;
}
...
...
tests/cpp/build_module_test.cc
View file @
6b0359b4
...
...
@@ -189,77 +189,6 @@ TEST(BuildModule, Heterogeneous) {
}
}
TEST
(
BuildModule
,
LazyInitInput
)
{
using
namespace
tvm
;
const
int
n
=
4
;
Array
<
Expr
>
shape
{
n
};
auto
A
=
placeholder
(
shape
,
Float
(
32
),
"A"
);
auto
B
=
placeholder
(
shape
,
Float
(
32
),
"B"
);
auto
C
=
compute
(
A
->
shape
,
[
&
A
,
&
B
](
Expr
i
)
{
return
A
[
i
]
+
B
[
i
];
},
"C"
);
auto
s
=
create_schedule
({
C
->
op
});
auto
args
=
Array
<
Tensor
>
({
A
,
B
,
C
});
std
::
unordered_map
<
Tensor
,
Buffer
>
binds
;
auto
config
=
BuildConfig
::
Create
();
auto
target
=
target
::
llvm
();
auto
lowered
=
lower
(
s
,
args
,
"myadd"
,
binds
,
config
);
auto
module
=
build
(
lowered
,
target
,
Target
(),
config
);
std
::
string
json
=
"{
\"
nodes
\"
: [{
\"
op
\"
:
\"
null
\"
,
\"
name
\"
:
\"
x
\"
,
\"
inputs
\"
: []}, {
\"
op
\"
:
\"
null
\"
,
\"
name
\"
:
\"
y
\"
,
\"
inputs
\"
: []}, "
"{
\"
op
\"
:
\"
tvm_op
\"
,
\"
name
\"
:
\"
add
\"
,
\"
inputs
\"
: [[0, 0, 0], [1, 0, 0]],
\"
attrs
\"
: {
\"
func_name
\"
: "
"
\"
myadd
\"
,
\"
flatten_data
\"
:
\"
1
\"
,
\"
num_inputs
\"
:
\"
2
\"
,
\"
num_outputs
\"
:
\"
1
\"
}}], "
"
\"
arg_nodes
\"
: [0, 1],
\"
node_row_ptr
\"
: [0, 1, 2, 3],
\"
heads
\"
: [[2, 0, 0]], "
"
\"
attrs
\"
: {
\"
shape
\"
: [
\"
list_shape
\"
, [[4], [4], [4]]],
\"
dltype
\"
: [
\"
list_str
\"
, [
\"
float32
\"
,
\"
float32
\"
,
\"
float32
\"
]], "
"
\"
storage_id
\"
: [
\"
list_int
\"
, [0, 1, 2]],
\"
lazy_init_input
\"
: [
\"
list_str
\"
, [
\"
y
\"
]]}}"
;
// Setup inputs.
auto
a_val
=
runtime
::
NDArray
::
Empty
({
n
},
{
kDLFloat
,
32
,
1
},
{
kDLCPU
,
0
});
auto
b_val
=
runtime
::
NDArray
::
Empty
({
n
},
{
kDLFloat
,
32
,
1
},
{
kDLCPU
,
0
});
auto
pa
=
(
float
*
)
a_val
.
ToDLPack
()
->
dl_tensor
.
data
;
auto
pb
=
(
float
*
)
b_val
.
ToDLPack
()
->
dl_tensor
.
data
;
// Assign values.
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
pa
[
i
]
=
pb
[
i
]
=
i
;
}
// Initialize graph runtime.
int
cpu_dev_ty
=
static_cast
<
int
>
(
kDLCPU
);
int
cpu_dev_id
=
0
;
const
runtime
::
PackedFunc
*
graph_runtime
=
tvm
::
runtime
::
Registry
::
Get
(
"tvm.graph_runtime.create"
);
runtime
::
Module
mod
=
(
*
graph_runtime
)(
json
,
module
,
cpu_dev_ty
,
cpu_dev_id
);
PackedFunc
get_input
=
mod
.
GetFunction
(
"get_input"
,
false
);
CHECK
(((
runtime
::
NDArray
)
get_input
(
"x"
)).
allocated
());
CHECK
(
!
((
runtime
::
NDArray
)
get_input
(
"y"
)).
allocated
());
PackedFunc
set_input
=
mod
.
GetFunction
(
"set_input"
,
false
);
PackedFunc
set_input_zero_copy
=
mod
.
GetFunction
(
"set_input_zero_copy"
,
false
);
PackedFunc
run
=
mod
.
GetFunction
(
"run"
,
false
);
PackedFunc
get_output
=
mod
.
GetFunction
(
"get_output"
,
false
);
set_input
(
"x"
,
a_val
);
set_input_zero_copy
(
"y"
,
b_val
);
run
();
tvm
::
runtime
::
NDArray
out
=
get_output
(
0
);
float
*
p_out
=
(
float
*
)
out
.
ToDLPack
()
->
dl_tensor
.
data
;
// Check correctness.
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
CHECK_LT
(
std
::
fabs
(
p_out
[
i
]
-
i
*
2
),
1e-5
);
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
testing
::
FLAGS_gtest_death_test_style
=
"threadsafe"
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment