Unverified Commit 69149635 by Ina Dobreva Committed by GitHub

[Relay][Frontend][TFlite] Add add parser support for relational ops (#4695)

Add support for: greater_equal, less, less_equal, equal, not_equal
Add tests for the elemwise relational ops
parent 6798ba80
......@@ -89,6 +89,11 @@ class OperatorConverter(object):
'MAXIMUM': self.convert_maximum,
'MINIMUM': self.convert_minimum,
'GREATER': self.convert_greater,
'GREATER_EQUAL': self.convert_greater_equal,
'LESS': self.convert_less,
'LESS_EQUAL': self.convert_less_equal,
'EQUAL': self.convert_equal,
'NOT_EQUAL': self.convert_not_equal,
'ZEROS_LIKE': self.convert_zeros_like,
'REDUCE_MIN': self._convert_reduce_min,
'REDUCE_MAX': self._convert_reduce_max,
......@@ -690,7 +695,7 @@ class OperatorConverter(object):
# Check if the input tensor is quantized, call QNN op
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized sub operator is not supported yet.')
'TFlite quantized SUB operator is not supported yet.')
return self._convert_elemwise(_op.subtract, op)
def convert_mul(self, op):
......@@ -705,38 +710,43 @@ class OperatorConverter(object):
# Check if the input tensor is quantized, call QNN op
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized div operator is not supported yet.')
'TFlite quantized DIV operator is not supported yet.')
return self._convert_elemwise(_op.divide, op)
def convert_pow(self, op):
"""Convert TFLite POW"""
# Check if the input tensor is quantized, call QNN op
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized pow operator is not supported yet.')
'TFlite quantized POW operator is not supported yet.')
return self._convert_elemwise(_op.power, op)
def convert_maximum(self, op):
"""Convert TFLite MAXIMUM"""
# Check if the input tensor is quantized, call QNN op
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized maximum operator is not supported yet.')
'TFlite quantized MAXIMUM operator is not supported yet.')
return self._convert_elemwise(_op.maximum, op)
def convert_minimum(self, op):
"""Convert TFLite MINIMUM"""
# Check if the input tensor is quantized, call QNN op
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized minimum operator is not supported yet.')
'TFlite quantized MINIMUM operator is not supported yet.')
return self._convert_elemwise(_op.minimum, op)
def convert_greater(self, op):
"""Convert TFLite GREATER"""
# Check if the input tensor is quantized, call QNN op
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized greater operator is not supported yet.')
'TFlite quantized GREATER operator is not supported yet.')
return self._convert_elemwise(_op.greater, op)
def convert_squared_difference(self, op):
"""Convert TFLite SQUARED DIFFERENCE"""
# Check if the input tensor is quantized, call QNN op
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
......@@ -747,6 +757,41 @@ class OperatorConverter(object):
out = _op.power(difference, relay.const(2, exp_type))
return out
def convert_greater_equal(self, op):
"""Convert TFLite GREATER_EQUAL"""
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized GREATER_EQUAL operator is not supported yet.')
return self._convert_elemwise(_op.greater_equal, op)
def convert_less(self, op):
"""Convert TFLite LESS"""
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized LESS operator is not supported yet.')
return self._convert_elemwise(_op.less, op)
def convert_less_equal(self, op):
"""Convert TFLite LESS_EQUAL"""
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized LESS_EQUAL operator is not supported yet.')
return self._convert_elemwise(_op.less_equal, op)
def convert_equal(self, op):
"""Convert TFLite EQUAL"""
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized EQUAL operator is not supported yet.')
return self._convert_elemwise(_op.equal, op)
def convert_not_equal(self, op):
"""Convert TFLite NOT_EQUAL"""
if self.is_quantized(op):
raise tvm.error.OpNotImplemented(
'TFlite quantized NOT_EQUAL operator is not supported yet.')
return self._convert_elemwise(_op.not_equal, op)
def convert_zeros_like(self, op):
"""Convert TFLite ZEROS LIKE"""
try:
......
......@@ -863,7 +863,41 @@ def _test_minimum(data):
def _test_greater(data):
""" One iteration of greater """
return _test_elemwise(math_ops.greater, data)
#######################################################################
# Greater_equal
# -------------
def _test_greater_equal(data):
""" One iteration of greater_equal """
return _test_elemwise(math_ops.greater_equal, data)
#######################################################################
# Less
# ----
def _test_less(data):
""" One iteration of less """
return _test_elemwise(math_ops.less, data)
#######################################################################
# Less_equal
# ----------
def _test_less_equal(data):
""" One iteration of less_equal """
return _test_elemwise(math_ops.less_equal, data)
#######################################################################
# Equal
# -----
def _test_equal(data):
""" One iteration of equal """
return _test_elemwise(math_ops.equal, data)
#######################################################################
# Not_equal
# ---------
def _test_not_equal(data):
""" One iteration of not_equal"""
return _test_elemwise(math_ops.not_equal, data)
#######################################################################
# Squared_difference
# ------------------
......@@ -915,6 +949,11 @@ def test_all_elemwise():
_test_forward_elemwise(_test_minimum)
_test_forward_elemwise(_test_greater)
_test_forward_elemwise(_test_squared_difference)
_test_forward_elemwise(_test_greater_equal)
_test_forward_elemwise(_test_less)
_test_forward_elemwise(_test_less_equal)
_test_forward_elemwise(_test_equal)
_test_forward_elemwise(_test_not_equal)
#######################################################################
# Zeros like
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment